
A Distributed Scaleable Real-Time Add-On for Operating Systems

Uwe Brinkschulte Holger Vogelsang

Institute for Microcomputers and Automation
University of Karlsruhe

Haid-und-Neu-Str. 7, 76131 Karlsruhe, Germany

Abstract
This paper describes the architecture of a distributed,

scaleable real-time system platform. After defining the
requirements, the basic conceptions for the service
oriented system platform called OSA+ are discussed. The
main concept is the exchange of tasks and results. This
mechanism is used for communication, synchronisation
and definition of real-time constraints between services.

1 Introduction

The main research area of the IMA is the design and
development of complex automation systems. One of our
interests focuses on automated guided vehicle systems
(AGVS) for industrial applications. Because of individual
work- and transportation-flows, an AGVS for a specific
plant is a unique system. It differs in hard- and software
components from a system designed for another plant.

To allow an efficient and cost-effective development,
test and maintenance of such individual systems, we have
decided to use an open service-oriented architecture
based on a scaleable system platform.

The following sections describe the conception,
requirements and the resulting architecture of such a
system platform for individual distributed automation
systems.

2 Conception and Requirements

Figure 1 shows the conception of an open service-

Service
1

Applica-
tion

1

 System Platform

Service
2

Tasks

Results

Tasks

Results

Server Server/Client Client

. . .
Service

n
Applica-

tion
m

. . .

Figure 1: Service-oriented architecture

oriented architecture. This architecture consists of
services, applications and an interconnecting system
platform. The system platform has two main tasks:

• Service definition
 provides the capability to plug in services and

applications into the system platform and to configure
and connect those services and applications.

• Service access
allows the access to the plugged-in services. It
manages the communication between services and
applications.

In this conception, service access is done by
processing tasks and results. Tasks and results are used
for communication and synchronization between services
and applications. Even multirole components
(server/client) are possible.

With a well defined, documented and user-friendly
interface for these two tasks, the system platform allows a
flexible construction of individual open systems. Basic
services (e.g. database service, man-machine service,
measurement and control service, ...) can be combined
with completely user-definable services and applications.

Furthermore, the system platform abstracts from the
underlying hardware, operating system and the used
programming language. It provides platform
independence.

Finally, the system platform hides distributed
hardware. Local system platforms combine to a global
virtual system platform. For applications and services it

Local System Platform

Service
n

Appli-
cation

m

Computer System i

Local System Platform

Service
1

Service
2

Appli-
cation

1

Operating
System

Computer System 1

Operating
System

Communication
System

Communication
System

. . .

Global Virtual
System Platform

Communication
media

 Figure 2 : Distributed hardware hidden by the virtual system
platform

is completely invisible, if they reside on the same
machine or on distributed machines. It should be even
possible to change distribution at runtime without
changing any service or application.

To use the system platform for AGVS or similar auto-
mation systems, it must meet some special requirements:

• • Scaleability
The system platform should be scaleable for:
− − Different hardware

The system platform must operate with the same
interface and behavior on very different hardware
platforms from simple microcontroller systems to
workstations and PC's.

− − Different operating systems
The system platform must be adaptable to
different underlying operating systems (or no
operating system at all).

− − Different communication systems
In distributed applications, the system platform
must be scaleable for different underlying
communication systems (serial interfaces, field
busses, networks, ...)

− − Different process models
It should be possible to use different process
models for the services plugged in the system
platform. A service may e.g. operate as
lightweight processes (thread), heavyweight
process or as a sequential procedure.

• • Real-time behavior
In automation applications, real-time behavior must
be guarantied for time-critical services. So, a service
must be definable as real-time or non real-time
service. For real-time services, guarantied and
predictable timing must be provided for:
− − Service access

Transportation times for tasks and results must be
defined or better, be definable by the user (e.g.
earliest and latest time for a task to reach a
service).

− − Service scheduling
Execution times for real-time services must be
predictable and controllable (e.g. using fixed
priorities , deadlines, critically-values, ...)

Of course, the real-time behavior of the system
platform depends on the underlying hardware,
operating system and communication system. For
example, on a system platform with underlying real-
time operating system but non-real-time commu-
nication system, only local services can be real-time.

• • Remote configuration, test and maintenance
Figure 3 shows an example of remote test and
maintenance.

In industrial automation systems, the ability of remote
system configuration, test and maintenance via long
distant lines saves costs and time. The system
platform can significantly simplify this, if it provides
the following features:
− − Service Movement

A service can be moved at runtime from one
machine to another machine.

− − Service Replacement
A service can be replaced at runtime by another
service

System Platform

Service
1

Update

Test-
Appl.

1

Maintenance computer system
in a distant office

System Platform

Service
1

Service
2

Appli-
cation

1

Operating
System

Automation computer system
in the plant

Operating
System

Communication
System

Communication
System

. . .

Global Virtual
System Platform

Service 1 Update and Test Application 1 are moved to the system
platform on the automation computer system and they replace
Service 1 and Application 1

long distance
line

Figure 3: Remote test and maintenance on a virtual system
platform.

3 The OSA+ system platform

The development of the system platform OSA+ is
guided by the requirements analysis in chapter 2. OSA+
picks the idea of services shown in figure 1. We will now
discuss the following points, using the platform functions
as a principle.
• Operation modes and functions
• Scaleability
• Real-time capabilities, scheduling

3.1 Platform Initialization

A system platform is initialized with several para-
meters, which influence the later behavior of the system.

osaInitPlatform(char *platform, osaPartner *partner,
 osaNetworkType network,
 osaProcInfo *info);

The parameters control the kind of communications
system(s) to be used, the names of the partner platforms,
which form the global virtual platform and the name of
the own platform. The last parameter returns the
capabilities of the system platform together with its state.
This represents the first step of scaleability.

3.2 Service Creation

The purpose of this function is the creation of a new
service with several properties:

osaStartService(void(*Proc)(), osaProcType type,
 osaConfigType *config, char *name);

The parameters type and config represent the second
step of scaleability. The parameter type defines the
process type used. Possible values are procedures (as a
process substitute), lightweight processes and real
operating system processes. Whereas the first two types
force shared memory between these kinds of processes on
the same platform, the latter uses operation system
processes with separate memory segments. The value of
config sets additional configuration parameters for the
service, e.g. real-time behavior. During service creation,
OSA+ distinguishes only between real-time services and
non-real-time services. Specific real-time parameters are
bound to service operation described in the next section.

Of course, the grade of available real-time capabilities
and process types depend on the underlying operating-
and communication system. This is one of the infor-
mation returned by the info parameter of osaInitPlatform.

3.3 Service Operation

This section contains the modes and principles of
service operation. The idea behind this is much different
from any other concepts found. It allows a very flexible
service configuration and time specification with only a
few functions. Services interact by the exchange of tasks
and results. There are no other communication or
synchronization methods necessary. As an introduction,
Figure 4 shows a simple example: Service A and B
communicate synchronized using tasks and results.

osaGiveTask osaAwaitTask

osaAwaitResult osaReturnResult

Service A Service B

Figure 4 : Communication example

osaGiveTask(osaTask *task);
osaReturnResult(osaResult *result);

The main idea is to use this exchange of tasks and
result also as the only way to add time conditions to
services.

Therefor, tasks and result can contain optional deliver
modes to specify time restrictions. If no deliver mode is
given, all tasks and results are handled with the same
priority, using the first-come first-serve method. The

deliver mode itself is a structure with the following
members:

typedef struct {
struct {

osaTime deliver_at,
deliver_tolerance,
deliver_ period;

osaLong deliver_mult;
} order_mode;

union {
struct {

osaTime deadline;
osaShort critically;
} realtime;

struct {
osaShort priority;
osaTime timeslice;
} realtime_priority;

struct {
osaShort cpu_load;
}realtime_load;

} service_mode;
} osaOMode;

The following description uses the expression
message to specify either task or result. We distinguish
between messages, influencing the deliver mode of
themselves (order_mode) and messages, influencing the
behavior of the destination service (service_mode). Both
modes can be combined for the most flexible delivery.

1. order_mode:
 If the structure order_mode is specified, this controls

the real-time behavior of the service access, which is
the mode, the message is delivered with. The
attributes of this mode are defined as follows:
• deliver_at and deliver_tolerance give the interval,

in which the message must be delivered. If this
time is exceeded, the message is returned to its
sender together with an error message.

• The system platform is able to handle standing
orders. deliver_period contains the time interval,
after which a message must be send again.
deliver_period is ignored, if deliver_mult is 1.

• deliver_mult acts as a counter and specifies the
number of times, the same message has to be
delivered.

2. service_mode:
 This controls the real-time behavior of the service

scheduling (see requirements analysis). Three
different kinds of modes allow a very flexible
configuration of the behavior of the destination

service. This allows the sender of a message to
control the behavior of the receiver with respect to the
importance of the message.

 realtime:
• deadline contains the last possible point of

time, at which the answer to the message must
be delivered.

• critically tells what to do, if deadline expires
(soft-, firm-, hard-deadline). deadline and
critically are used as well to calculate the new
priority of service, which receives the message.

 realtime_priority:
• priority is an alternative way to specify a

simpler form of time constraint. priority
contains the absolute fixed priority for the
receiving service, used by the scheduling
algorithm.

• The timeslice, a service can use before it is
preempted, is specified using timeslice.

 realtime_load:
• cpu_load contains a percentage of CPU usage

for the receiving service. This allows the
service-execution nearly independent of the
current CPU load.

In most systems, services should be able to set their
own priority and time behavior. This can be realized very
easy using task and results: To be started with a given
interval and priority, a service sends itself a standing
order or changes previous orders to itself. With this very
simple mechanism, services can control themselves and
other services only by sending orders or result. This
allows maximum flexibility with a minimum number of
functions. The sender is able to change the real-time
conditions of the receiver for one or more messages.
Figure 5 shows all variants to control the time behavior
of services and message deliveries.

Service

non real-time real-time

osaGiveTask osaGiveTask

priority
timeslice

service scheduling service access service scheduling

deliver_at
deliver_tolerance

deliver_period
deliver_mult

deadline
critically

priority
timeslice

cpu load

Figure 5 : Time control

After the discussion of time constraints, we will have
a look at the different kinds of message deliveries. The
first and simplest way to define the destination or partner

of a message is to write its service number into the task
or result. The system platform can easily transport this
message to this destination. Sometimes it is not necessary
to specify a unique partner, sometimes it is sufficient to
specify a class of partners. In this case, the system
platform is responsible of choosing a matching partner.
There could be some strategies: The simplest is to take
partners, connected over the fastest communication
systems, partners, who are idle, partners on fast systems,
... In our approach we choose the nearest idle partner.
The system platform transports the message to this
partner, if only the destination class is given in the
message. As a consequence, messages to the same class
of services are not necessarily handled by the same
service. And how are classes build? The construction of
classes is simple: All services with the same name are in
the same class. They can be distinguished only by their
unique process number.

There are - of course - more functions to control
services, to handle the communication, to bundle services
to libraries and to exchange services at runtime for
remote configuration, but we can not discuss them here.
A more detailed description can be found in the internal
paper of the system platform [SP97].

4 Conclusions

The development of the OSA+ system platform is an
ongoing process. We have a working prototype with a
subset of the total functionality. This prototype is in test
with several applications and produces encouraging
results. We hope to get the full functionality during this
year.

References

[1] Uwe Brinkschulte, Holger Vogelsang, The OSA+
System Architecture, Internal Paper, 1997,
http://www-ima.ira.uka.de/mitarbeiter/vogelsang/

