A Distributed Scaleable Real-Time Add-On for Operating Systems

Uwe Brinkschulte

Holger Vogelsang

Institute for Microcomputers and Automation
University of Karlsruhe
Haid-und-Neu-Str. 7, 76131 Karlsruhe, Germany

Abstract

This paper describes the architecture of a distributed,
scaleable real-time system platform. After defining the
requirements, the basic conceptions for the service
oriented system platform called OSA+ are discussed. The
main concept is the exchange of tasks and resLiis.
mechanism is used for communication, synchronisation
and definition of real-time constraints between services.

1 Introduction
The main research area of ti\A is the design and
development of complex automation systems. One of our
interestsfocuses onautomated guided vehiclgystems
(AGVS) for industrial applications. Because of individual
work- and tranportation-flows, an AGVS for a specific
plant is a uniqueystem. It differs irhard- andsoftware
components from a system designed for another plant.
To allow an efficientand cost-effective development,

test and maintenance of such individual systems, we have

decided to use an open service-oriented architecture
based on a scaleable system platform.

The following sections describethe conception,
requirementsand the resultingarchitecture of such a
system platform for individual distributed automation
systems.

2 Conception and Requirements

Figure 1 showghe conception of an open service-

Server Server/Client Client

Service
n

Service
2

Applica-
tion
1

Applica-
tion
m
| |
T T
System Platform

Service
1

t It |t |t 1]
Tasks | | Tasks | ||__

Results

Results

Figure 1: Service-oriented architecture

oriented architecture. This architectureonsists of
services, applicationsand an interconnectingystem
platform. The system platform has two main tasks:

Service definition

provides the capability to plug in services and
applications into the system platforand toconfigure
and connect those services and applications.
Service access

allows the access tothe plugged-inservices. It
manages the communicatidmetween services and
applications.

In this conception, service access is done by
processing taskandresults. Task&nd results areused
for communicatiorand synchroizationbetween services
and applications. Even multirole  components
(server/client) are possible.

With a well defined, documentednd user-friendly
interface for these two tasks, the system platform allows a
flexible construction of individual opemystems. Basic
services (e.g. database servieean-machineservice,
measuremenand control service,...) can becombined
with completely user-definable services and applications.

Furthermore, thesystemplatform abstracts from the
underlying hardware, operatingystem and the used

programming language. It provides platform
independence.
Finally, the system platform hides distributed

hardware.Local system platforms combine to a global
virtual system pldbrm. For applicationgnd services it

] 1 [Appli- Jd Appli-
Sel}/l g Seg/l 4 | cation Se:}w ¥ | cation
1 m
I I I | |

: Local System Platform Local System Platform

Operating Communicatior
System System

Global Vitual
: System Platform

Communicatior
System

Operating
System

i
i

Computer System 1 Computer System i

Figure 2 : Distributed hardware hidden by the virtual system
platform



is completely invisible, if they reside othe same
machine or on distributed machines. It shouldelzen
possible to change distribution at runtimewithout
changing any service or application.

To use the system platform for AGVS similar auto-
mation systems, it must meet some special requirements:

e Scaleability

The system platform should be scaleable for:

— Different hardware
The systemplatform must operate with theame
interfaceand behavior orvery different hardware
platforms from simple microcontrollesystems to
workstations and PC's.

— Different operating systems
The system platform must be adaptable to
different underlying operatingsystems (or no
operating system at all).

— Different communication systems
In distributed applications, theystem platform
must be scaleable for different underlying
communication systems (serial interfacdigld
busses, networks, ...)

— Different process models
It should be possible to use different process
models forthe services plugged inthe system
platftorm. A service may e.g. operate as
lightweight processes (thread), heavyweight
process or as a sequential procedure.

¢ Real-time behavior
In automation applications, real-time behavior must
be guarantiedor time-critical services. So, service
must be definable as real-time owon real-time
service. For real-time servicesguarantied and
predictable timing must be provided for:
— Service access
Transportation timefor tasksandresults must be
defined or better, be definable lbye user (e.g.
earliestand laest time for a task taeach a
service).
— Service scheduling
Execution times for real-time services must be
predictable and controllable (e.g. usingdfixed
priorities , deadlines, critically-values, ...)
Of course, the real-time behavior of theystem
platform depends on the underlying hardware,
operating system and communication system. For
example, on aystemplatform with underlying real-
time operating system butnon-real-time commu-
nication system, only local services can be real-time.

¢ Remote configuration, test and maintenance
Figure 3 shows an example of remote test and
maintenance.

In industrial automation systems, the ability of remote
systemconfiguration, tesind maintenancegia long
distant lines saves costsand time. The system
platform can significanthsimplify this, if it provides
the following features:
— Service Movement
A service can bemoved atruntime from one
machine to another machine.
— Service Replacement
A servicecan be replaced at runtime by another
service

Senvice 1 Update and Test Application 1 are moved to the system
platform on the automation computer systerd they replace

Senvice 1and Application 1
Servicq

Servicd |Servicd | AP Test-
1 > cation ce 1 Appl.

1 Update 1

| Global Virtual

; | System Platform | System Platform | | System Platform

| I
Communicatiol Communicatiol
System System

long distance
line

Operating
System

Operating
System

Automationcomputer syste
in the plant

Maintenance computer system
in a distant office

Figure 3: Remote test and maintenance on a virtual system
platform.

3 The OSA+ system platform

The development ofthe systemplatform OSA+ is
guided by the requirements analysis in chapted2A+
picks the idea of services shown in figure 1. We will now
discuss the following pointsising the platform functions
as a principle.

» Operation modes and functions
» Scaleability
* Real-time capabilities, scheduling

3.1 Platform Initialization

A systemplatform is initialized with severapara-
meters, which influence the later behavior of the system.

osalnitPlatform(char *platform, osaPartner *partner,
osaNetworkType network,
osaProcinfo *info );

The parameters control the kind of communications
system(s) to be usethe names of the partnptatforms,
which form theglobal virtual platformand the name of
the own platform. The last parameter returns the
capabilities of thesystemplatform together with its state.
This represents the first step of scaleability.



3.2 Service Creation deliver mode itself is a structure witthe following

members:
The purpose othis function is the creation of a new typedef struct {
service with several properties: struct {
osaStartService( void(*Proc)(), osaProcType type, osaTime deliver_at,
osaConfigType *config, char *name ); deliver_tolerance,
The parametersy/pe and config represent theecond dell\.'er— period;
step of scaleability.The parametertype defines the osaLong deliver_mult;
process typaised. Possible valuewe procedures (as a ~ yorder_mode;
process substitute), lightweighprocessesand real union {
operatingsystem processe®hereas the firstwo types struct { _ _
force shared memory between thksels ofprocesses on osaTime deadline;
the same platform, the lattarses operationsystem osaShort critically;
processesvith separatenemory segmentshe value of } realtime;
config sets additional configuration parameters for the struct {
service, e.g. real-time behavi@uring service creation, osaShort priority;
OSA+ distinguishesnly betweerreal-time services and osaTime timeslice;
non-real-time servicesSSpecificreal-time parameters are } realtime_priority;
bound to service operation described in the next section. struct {
Of course, the grade of available real-time capabilities osaShort cpu_load;
and process typeslepend on the underlying operating- Jrealtime_load;
and communication systemThis is one of the infor- } service_mode;
mation returned by th&fo parameter obsalnitPlatform } 0saOMode;
3.3 Service Operation The following description usesthe expression
messagdo specifyeither task or result We distinguish
This section containghe modesand principles of between messagesnfluencing the delivermode of
service operatioriThe idea behind this is mudlifferent themselvesdrder_modg and messages, influencing the
from any other concepts found.dliows a very flexible  pehavior of the destinatioservice éervice_mode Both
service configuratiorand timespecification withonly a modes can be combined for the most flexible delivery.

few functions. Servicemteract by the exchange of tasks
and results. There are no other communication or 1 grder mode:
synchronization methods necessary. As an introduction, =
Figure 4 shows a simple example: ServiceaAd B
communicate synchronized using tasks and results.

If the structureorder_modeis specifiedthis controls
the real-time behavior of theervice access, which is
the mode, the message is delivered with. The
attributes of this mode are defined as follows:

e deliver_atanddeliver_tolerancegive the interval,

osaGivelfask Bl - - - [] - > osaAwaitTask in which themessage must be delivered.tliis
S & Service B time is exceededthe message iseturned to its
osaAwaitResult <+ [] - - - - - osaRetumResult sender together with an error message.

e The systemplatform is able tohandle standing
orders.deliver_periodcontains the time interval,

Figure 4 : Communication example after which a message must be seagain.
deliver_periodis ignored, ifdeliver_multis 1.

e deliver_multacts as a counteand specifies the
number of times, the sammessagehas to be
delivered.

osaGiveTask( osaTask *task );
osaReturnResult( osaResult *result );

The mainidea is to usehis exchange of tasks and

result also as thenly way to add time conditions to .
2. service_mode:

services. . : . :
Therefor, tasks and result can contain optional deliver ~ 1hiS controls the real-timéehavior of theservice

modes to specif§ime restrictions. If no deliver mode is scheduling (see requirements analysis). Three

given, all tasksand results are handled with theame different kinds of modes allow a very flexible

priority, using thefirst-come first-serve method. The configuration of the behavior of the destination



service. This allows the sender of a message to

of a message is to write it®rvice numbemto the task

control the behavior of the receiver with respect to the or result. Thesystemplatform caneasily transport this

importance of the message.
realtime:

» deadline contains the laspossible point of
time, at which the answer to theessage must
be delivered.

» critically tells what to do, if deadline expires
(soft-, firm-, hard-deadline).deadline and
critically areused as well to calculatbe new
priority of service, which receives the message.

realtime_priority:

e priority is an alternativeway to specify a
simpler form of time constraintpriority
contains theabsolute fixed priority for the
receiving service, used byhe scheduling
algorithm.

* The timeslice, aservicecan use before it is
preempted, is specified usitigneslice

realtime_load:

» cpu_loadcontains a percentage 6PU usage
for the receiving service. This allows the
service-execution nearly independent of the
current CPU load.

In most systems, services should be able tahsst
own priority and time behaviolhis can be realizedery
easyusing task andesults: To be started with a given
interval andpriority, a service sends itself standing
order or changes prenis orders to itseliwith this very
simple mechanismservicescan controlthemselves and
other services only by seimtly orders or result. This
allows maximumflexibility with a minimum number of
functions. The sender iable to changehe real-time
conditions of thereceiver for one or more messages.
Figure 5 showsll variants to control the timeehavior
of services and message deliveries.

Service

non real-time real-time

osaGiveTask osaGiveTask

service scheduling service acces: service scheduling

deadline
deliver_tolerance critically
deliver_period
deliver_mult

priority
timeslice

deliver_at priority  cpu load

timeslice

Figure 5 : Time control

After the discussion of time constraints, we whitlve
a look atthe different kinds ofmnessage deliveries. The
first and simplestvay todefinethe destination or partner

message to this destination. Sometimes it impoéssary
to specify aunique partnersometimes it is sufficient to
specify aclass of partners. In thiscase, thesystem
platform is responsible of choosingnaatching partner.
Therecould be some strategiefhe simplest is to take
partners, connected overthe fastest communication
systemspartnerswho are idle, partners ofast systems,
... In our approach wehoosethe nearest idle partner.
The system platform transports thamessage tothis
partner, if only the destination class is given in the
message. As a consequence, messagede teameclass
of servicesare notnecessarilyhandled by thesame
service.And how are classes buildThe construction of
classes is simpl&ll services wittthe same name are in
the same clas§ hey can be distinguishednly by their
unique process number.

There are - ofcourse - more functions to control
services, to handle the communication, to busdlgices
to libraries and toexchange services auntime for
remote configuration, but wean notdiscussthem here.
A more detailed description can fmnd inthe internal
paper of the system platform [SP97].

4 Conclusions

The development othe OSA+systemplatform is an
ongoing process. We have a working prototyyth a
subset othe total functionality. Thigrototype is in test
with several applicationsand produces encouraging
results. We hope to get the full functionaldyring this
year.

References
[1] Uwe Brinkschulte, Holger Vogelsangihe OSA+

System  Architecture Internal Paper, 1997,
http://lwww-ima.ira.uka.de/mitarbeiter/vogelsang/



