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1. Constrained Hamiltonian Systems

Let the Hamiltonian H(q;p) (with @
2
H

@p@p
nonsingular) be de�ned in a 2N -dimen-

sional phase space and impose K (irreducible) position constraints ��(q) = 0. The

arising dynamics are usually described by the following di�erential algebraic equation1

_q = rpH ; _p = �rqH � ��rq�� ; ��(q) = 0 (1)

with multipliers �. Di�erentiating � leads to the momentum constraints

 �(q;p) = _��(q) = rq�� � rpH = f��;Hg (2)

with the canonical Poisson bracket fF;Gg = rqF �rpG�rpF � rqG [8, Chapt. VIII].

Di�erentiating  yields an algebraic system for �

f �; ��g�� = fH; �g : (3)

One more di�erentiation gives di�erential equations for �; hence (1) has index 3.

Analytically, (1) can be treated as follows: solve (3) for �, enter the result into (1),

choose initial values satisfying all constraints and integrate the di�erential part of (1).

Any such computed solution stays on the constraint manifold. The constraints are con-

sidered only when choosing the initial data. Numerically, this approach has two disadvan-

tages. Firstly, the underlying di�erential equation obtained by entering the multipliers

� This work was supported by Deutsche Forschungsgemeinschaft.
1We use the Einstein convention that a summation over repeated indices is always implied, i. e. we write

shortly ���� instead of
P
K

�=1
����.
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into (1) is not Hamiltonian. This excludes for example the use of symplectic integrators.

Secondly, in general the numerical solution drifts o� the constraint manifold.

Projection methods are a popular cure against the drift [7]. In the simplest form,

following a step with a conventional numerical scheme, one projects the computed

point (~qn; ~pn) onto the constraint manifold to obtain the �nal approximation (qn;pn).

We may distinguish position projections where only ~qn is modi�ed so that �(qn) = 0 and

momentum projections where only ~pn is changed so that  (qn;pn) = 0 (with qn = ~qn).

As (qn;pn) should be close to (~qn; ~pn), one prefers orthogonal projections. Thus

a scalar product must be chosen. Systems where the kinetic energy is a quadratic form

in p are called natural, i. e. for them H(q;p) = 1
2
ptM�1(q)p + V (q) with a symmetric

and positive de�nite mass matrixM (q). This form induces the scalar product

hp1 jp2iM = pt1M
�1(q)p2 : (4)

Two vectors for which (4) vanishes are called mass-orthogonal.

Our main result is that momentum projections are not only cheaper than position

projections, as they require only the solution of a linear system, but that they yield

better results, too. The absolute values and the growth rates of all relevant errors

(energy and constraint residuals) are smaller. Especially the energy error is much less

a�ected by momentum projections. This will be demonstrated analytically for general

(natural) systems and numerically for the speci�c example of the planar pendulum. Such

considerations are of considerable interest for applications like molecular dynamics where

computational e�ciency is more important than accuracy.

Note that these results essentially apply also to non-Hamiltonian formulations.

Usually, the equations of motion are derived as Euler-Lagrange equations. For the nu-

merical integration they are rewritten as a �rst order system by introducing the velocities

v = _q. But for a natural system p =Mv and this linear transformation should not dras-

tically alter the behaviour of the errors. We mainly use the Hamiltonian formalism, as

it o�ers a wider range of techniques like e. g. canonical transformations. For this reason

we consider only conventional numerical methods and no symplectic ones.

The basic idea behind our analysis is the construction of two underlying Hamil-

tonian systems: one di�ering from (1) only by terms proportional to �; the other one

by terms proportional to  . If we apply now the corresponding projection, it makes no

di�erence2 whether we integrate numerically (1) or the respective Hamiltonian system.

In order to compare the two kind of projections we can thus study the stability of the

constraint manifold for the two underlying systems.

One possibility for an underlying Hamiltonian system are the equations of motion

for the total Hamiltonian Ht = H + ���� with � the solution of (3):

_q = rpH + (rp�
�)�� ; _p = �rqH �rq(�

���) : (5)

They di�er from (1) only by terms proportional to the position constraints �.

Another possibility consists of using the Dirac bracket instead of the canonical

Poisson bracket [15]. Denoting all constraints jointly by �a, it is de�ned by

fF;Gg� = fF;Gg� fF; �ag(C�1)abf�b; Gg (6)

2 This holds strictly only, if we project each time before we evaluate the equations of motion which is

usually not true. But as our numerical example shows, we can neglect this small error.
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where Cab = f�a; �bg is a skew-symmetric matrix. As equations of motion we take now

the Hamilton-Dirac equations

_q = fq;Hg� ; _p = fp;Hg� : (7)

Evaluating the brackets, it is straightforward to show that they di�er from (1) only by

terms proportional to the momentum constraints  .

2. Hamiltonian Perturbation Analysis

A coordinate transformation (q;p)$ (Q;P) is called canonical, if it preserves the

Poisson bracket. The transformation implicitly de�ned by

q = rpS(Q;p) ; P = rQS(Q;p) (8)

is canonical for any function S with regular Hessian. S is called the generating function

[8, Chapt. VIII] and (assuming thatQ and pmay be considered as independent variables)

every canonical transformation can be derived in this way [6, xx97{99].

Proposition 1. The equations ��(q) = ��;  �(q;p) = �� de�ne for �xed but arbitrary

values �;� a 2(N�K)-dimensional submanifoldM�;� of the full phase space. Let f
i(�; �)

be N functions such that ��
�
f (�; �)

�
= �� and that the matrix

�
r�f

(rq�)t

�
is regular. Then

the equations

qi = f i(�; �) ;
@f i

@�a
pi = �a ;

@��

@qi
pi = �� (9)

implicitly de�ne coordinates (�;�) on M�;�. The restriction of the canonical two-form

of the full phase space to M�;� is the canonical two-form in the coordinates (�;�).

Proof. This is a generalisation of a similar proposition in [11]. The existence of f follows

from the implicit function theorem. Let the symplectic two-form be 
 = !ijdz
i ^ dzj

in some coordinate system zi on the phase space. If a submanifold M is described

parametrically by zi = zi(ya), 
 induces onM the two-form ~
 = ~!abdy
a^dyb de�ned by

~!ab = !ij
@z

i

@ya
@z

j

@yb
[10]. In our case 
 = dqi^dpi and thus ~
 =

�
@q

i

@�a
@pi

@�b
� @pi

@�a
@q

i

@�b

�
d�a^d�b.

Entering (9) and noting that @f
i

@�a
@pi

@�b
= �ba we obtain ~
 = d�a ^ d�a.

On M�;� we may consider (9) as implicitly de�ning a coordinate transformation

��;� : (q;p) 7! (�;�). According to Proposition 1 ��;� is canonical and it is easy

to see that its generating function is S(�;p) = f (�; �)p. A function F (q;p) on M�;�

can be transformed into a function ~F (�;�) satisfying F = ~F � ��;�. The transformed

Hamiltonian ~H for a natural system with M = I is given by

~H(�;�) =
1

2
�t
�
(r�f )

tr�f
�
�1
� +

1

2
�t
�
rq�(rq�)

t
�
�1
� + V � f ; (10)

as (rq�)(r�f ) = 0 by de�nition of f and p =
�

r�f

(rq�)t

�
�1 �

�

�

�
by (9).
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We can now introduce perturbed Hamiltonian state space forms where �;� model

the constraint residuals. For the Hamilton-Dirac equations (7) we get

_� = f�; ~Hg ; _� = f�; ~Hg : (11)

For (5) we must use ~Ht = ~H + ~���� leading to a di�erent perturbed state space form.

But the unperturbed state space form obtained by setting � = � = 0 is identical.

The position constraint residuals � appear in ~H only via the functions f ; in ~Ht we

get an extra term ~� ��. The momentumconstraint residuals � appear in (10) also in form

of an extra term, a quadratic form. Extra terms in the Hamiltonian lead to extra terms

in the equations of motion which may change their qualitative properties profoundly.

But if momentum projections are used, i. e. � = 0, no extra terms appear.

We can re�ne the perturbation analysis by considering �;� as time-dependent. This

does not change the canonical transformation ��;�, but we must subtract from ~H the

time derivative of the generating function [8]

@S

@t
= _�

t
(r�f )p : (12)

Applying ��;� with time-dependent residuals �;� to (5) or (7) yields di�erential equations

for �;�; �;�. Those for _� and _� are the corresponding state space form; those for _�; _�

are in general not Hamiltonian. The origin � = � = 0 is a �xed point for the latter

equations and its stability determines the drift o� the constraint manifold.

For the Hamilton-Dirac equations _� = _� = 0 [15]. Based on this result we can anal-

yse the use of momentum projections in the numerical integration of (1). The dynamics

themselves do not lead to any growth of the constraint residuals. Following Alishenas [1]

we use a continuous model for the error propagation and assume that because of numer-

ical errors _q = fq;Hg� + �(t) with jj�(t)jj < �̂ in the integration interval. Then _� = �(t)

and the position constraint residual can grow at most linearly.

For (5) one cannot make such general statements. But the following simple argu-

ment for K = 1 shows that we must expect a worse behaviour. In the coordinates (q;p)

the growth of the constraint residuals is determined by _� = f�;Htg = f�; �g�+  and
_ = f ;Htg = f ; �g�. Linearising at the origin yields _� = 2a�+  , _ = b� with some

time-dependent coe�cients a; b. The eigenvalues of this system are a�
p
a2 + b. Thus in

general the origin is (linearly) unstable. Assuming that because of position projections

�(t) � �0 � 1, we still �nd from the equation for _ that already the dynamics lead to

an at least linear growth of the momentum constraint residual.

3. The Planar Pendulum

The planar pendulum represents a simple example of a constrained natural system.

It is described by the Hamiltonian H = 1
2
(p2x + p2y) + y. The position constraint is

�(x; y) = 1
2
(x2+y2�1) = 0 and the momentumconstraint  (x; y; px; py) = xpx+ypy = 0.

For the multiplier one obtains � =
p
2

x
+p2

y
�y

x2+y2
. The classical equations of motion (1) are

_x = px ; _y = py ; _px = ��x ; _py = ��y � 1 : (13)
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The underlying Hamiltonian system (5) de�ned by Ht = H + �� is

_x = px +
2px

x2 + y2
� ; _y = py +

2py

x2 + y2
� ;

_px = ��x+
2x�

x2 + y2
� ; _py = ��y � 1 +

2y�+ 1

x2 + y2
� :

(14)

The Dirac bracket is fF;Gg� = fF;Gg � 1
x2+y2

�
fF; �gf ;Gg � fF;  gf�;Gg

�
and the

Hamilton-Dirac equations (7) yield the underlying system

_x = px �
x

x2 + y2
 ; _y = py �

y

x2 + y2
 ;

_px = ��x+
px

x2 + y2
 ; _py = ��y � 1 +

py

x2 + y2
 :

(15)

Obviously, on the constraint manifold (13), (14) and (15) are identical.

The canonical transformation (9) can be written explicitly as

��;� :

8<
:
x =

p
2� + 1 sin � ; y =

p
2� + 1cos � ;

px =
� cos � + � sin �p

2� + 1
; py =

�� sin � + � cos �p
2� + 1

:
(16)

This yields for the transformed Hamiltonian

~H(�; �) =
1

2

�2 + �2

2� + 1
+
p
2� + 1cos � �

� _�

2� + 1
(17)

where the last term is the time derivative (12) of the generating function.

Notice that for this special system the extra terms in ~H do not depend on the

dynamical variables (�; �). Thus they a�ect only the energy error but do not lead to

extra terms in the perturbed state space forms. These are for (14)

_� =
(4� + 1)

(2� + 1)2
� ; _� =

� + 1p
2� + 1

sin � (18)

and for the Hamilton-Dirac equations (15)

_� =
1

2� + 1
� ; _� =

p
2� + 1 sin � : (19)

Now we must analyse the growth of the constraint residuals �; �. Applying the

transformation (16) to (14) yields the following system for them

_� =
4� + 1

2� + 1
� ; _� = 4

�(�2 + �2)

(2� + 1)2
�

� cos �p
2� + 1

: (20)

The eigenvalues of the linearised system are �� with � =
p
4�2 � cos �. Thus whenever

� is real, the origin is unstable for (20).

If we assume that due to position projections � � �0 � 1, we obtain for � the

Riccati equation _� = �0(�
2 + 4�2). For the initial data �(0) = �0 it has the solution

�

2
tan

�
2��0t+ arctan(2�0

�
)
�
� �0 + �0(�

2 + 4�20)t+O(�20t
2). Thus for small t already the

dynamics yield an almost linear growth of the momentum constraint residual and it even

blows up after a �nite time t1 � ��10 . Note that this still holds, if �0 = 0.
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4. Projections and Canonical Transformations

Proposition 2. A mass-orthogonal momentum projection is a canonical transformation

for natural systems.

Proof. For natural systems the momentumconstraint manifold is the hyperplane de�ned

by hrq�� jpiM = 0. Thus rq�� are normal vectors and a mass-orthogonal projection

has the form P = p + (rq�)
t�. The multipliers � are determined by the condition

that for a given point p� the transformed point P� lies on the constraint manifold.

This yields a linear system for �: hrq�� jp� + ��rq��iM = 0. Its coe�cient matrix

R = (rq�)
tM�1(rq�) is symmetric and positive de�nite; thus a unique solution exists.

Consider the family of generating functions S�(Q;p) = Qp+ ����(Q) with arbi-

trary constants �. It de�nes the canonical transformation q = Q, P = p + (rq�)
t�.

Choosing � = � we recover the mass-orthogonal momentum projection.

Proposition 2 holds only for natural systems where a natural scalar product exists.

But one can generalise it with a more operational point of view. The projection requires

for general Hamiltonians the solution of a non-linear system. Similarly, we must solve a

non-linear system in � for the construction of the canonical transformation mapping p�

on the momentum constraint manifold. If both systems are treated in a certain way by

Newton's method, the results are identical at each iteration step [14].

Proposition 3. A non-trivial position projection is never canonical.

Proof. One can show that all possible extensions of a point transformation q = F(Q) to

a canonical one can be described by generating functions of the form S = F(Q)p+G(Q)

with some scalar function G [6, xx105{108]. Hence the momenta transform according to

p = (rQF)P+rQG. Since they remain unchanged in a position projection, rQF must

be the identity matrix and G must vanish.

For an integration method of order r, the (local) constraint residuals are of or-

der O(hr+1) [9]. Thus we may expect a projection to change the energy also in this

order. However, for momentum projections the situation is much more favourable.

Proposition 4. If an integration method of order r is used, a mass-orthogonal momen-

tum projection changes the energy in O(h2r+2).

Proof. The projection may be considered as the 
ow of the HamiltonianH� = ����(q)

given by q(t) = q0, p(t) = p0 � t[rq�(q0)]
t�. The energy error is determined by the

change of H along an integral curve of H�. At t = 1 in �rst order �E � _H = fH;H�g =
�� � . In the proof of Proposition 2 we saw that � = �R�1 and thus �E �  tR�1 .

As  = O(hr+1), the projection changes the energy in O(h2r+2).

5. An Analytical Example

We apply one step of the Euler method zn+1 = zn+hf(t; zn) to the classical equa-

tions of motion (13) of the pendulum. Let the initial point be A = (x; y; px; py), the result
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B = (x̂; ŷ; p̂x; p̂y). Projecting B on the position constraint manifold leads to the point

B(p) = (x̂(p); ŷ(p); p̂x; p̂y); momentum projection to the point B(m) = (x̂; ŷ; p̂
(m)
x ; p̂

(m)
y ).

We compare the constraint residuals and the energy error at B, B(p), and B(m).

If � = �(x; y) and 	 =  (x; y; px; py) denote the constraint residuals at A, we

obtain at B (abbreviating unimportant but lengthy coe�cients by dots)

�(x̂; ŷ) = � + 	h+ 1
2
(p2

x
+ p2

y
)h2 ; (21a)

 (x̂; ŷ; p̂x; p̂y) = 	� [(: : :)	 + py]h
2 : (21b)

Obviously, the zeroth order terms are just the residuals at A and we obtain residuals

of O(h2), if A satis�es both constraints, i. e. � = 	 = 0. Note that in the case of the

momentum constraint residual 	 = 0 su�ces to obtain this order.

The di�erence �E of the energies at A and B is

�E = (: : :)	h+ (: : :)h2 : (21c)

Thus �E = O(h) for a general pointA and O(h2), ifA satis�es the momentumconstraint.

The position constraint residual � does not appear here.

The position projection requires the solution of a non-linear system. We assume that

the step size h is so small that one Newton step su�ces to get the position constraint

residual below some prescribed tolerance. Then the projection has the simple form

x̂(p) = (1��)x̂ and ŷ(p) = (1��)ŷ where the multiplier is given by � = �(x̂; ŷ)=(x̂2+ ŷ2).

We expand the constraint residuals and the energy error in series in h.

�
�
x̂(p); ŷ(p)

�
= (: : :)�2 + (: : :)�	h+

�
(: : :)� + (: : :)	2

�
h2 + O(h3) ; (22a)

 
�
x̂(p); ŷ(p); p̂x; p̂y

�
= (: : :)	 + (: : :)	2h+

�
(: : :)	� (: : :)

�
h2 +O(h3) ; (22b)

�E(p) = (: : :)� +
�
(: : :)	 + (: : :)�

�
h+ O(h2) : (22c)

The energy error has now a zeroth order term for a general point A. If we assume that

A satis�es both constraints, these expressions simplify considerably and we obtain

�
�
x̂(p); ŷ(p)

�
= 1

8
(p2

x
+ p2

y
)2h4 +O(h6) ; (23a)

 
�
x̂(p); ŷ(p); p̂x; p̂y

�
= �pyh2 + 1

2
py(p

2
x + p2y)h

4 +O(h6) ; (23b)

�E(p) = 1
2

h
px(xpy � ypx) + x2 + (p2x + p2y)

2
i
h2 +O(h3) : (23c)

The vanishing of both, position and momentum, constraint residuals at A is necessary

to achieve the improved orders. This can be seen from the last terms in (22a) and (22c).

The analysis of the momentum projection is simpler, as  is linear. One easily �nds

p̂
(m)
x = p̂x � �x̂ and p̂

(m)
y = p̂y � �ŷ with � =  (x̂; ŷ; p̂x; p̂y)=(x̂

2 + ŷ2). The position

constraint residual is again given by (21a). The momentum constraint residual always

vanishes, as we perform an exact projection. The energy error is

�E(m) = (: : :)	2 + (: : :)	h +
�
(: : :)	 + (: : :)

�
h2 +O(h3) : (24)

If A satis�es the momentum constraint, then �E � �E(m) = O(h4). This was

to be expected by Proposition 4, as the Euler method is of order r = 1. In contrast,

�E��E(p) = 1
2
y(p2x+p

2
y)h

2+O(h3) for A on the constraint manifold. Whenever y < 0

position projections enlarge the energy error in leading order in h.
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Figure 1. Integration and energy error for the planar pendulum

One can do the same calculations for the second order Runge-Kutta method

zn+1=2 = zn + hf
�
t; zn

�
=2, zn+1 = zn + hf

�
t + h=2; zn+1=2

�
. The results do not di�er

much. The residuals and the energy error are of higher order, but the qualitative picture

remains the same. We �nd �E ��E(m) = O(h6) in agreement with Proposition 4; but

�E ��E(p) = O(h3). Position projections enlarge the energy error whenever ypy > 0,

i. e. whenever the pendulum approaches an equilibrium.

6. A Numerical Example

We integrated the equations of motion (13) of the pendulum for the initial data

(x0; y0; p0x; p
0
y) = (1; 0; 0;�2) until t = 1023 with the classical fourth-order Runge-Kutta

method using the step size h = 0:025. For these data the pendulum rotates clockwise

with the period T = 3:31. We projected, when a residual exceeded � = 10�6. Figure 1

(upper part) shows the integration error (estimated by comparing with an integration

of the state-space form with step size h=10) without (w/o), with momentum (mom) and

with position projections (pos).

Position projections hardly improve the results. They yield the same energy error

as without, whereas momentum projections signi�cantly reduce it (Figure 1, lower part).

Position projections have no e�ect on the momentum constraint residual. In contrast,

momentum projections improve the position constraint residual by more than two orders

of magnitude compared to without projections. In the end it is 5 � 10�4.
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Momentum projections also yield smaller error growth rates. Without projections

the integration error grows cubically, the energy error and the position constraint resid-

ual quadratically and the momentum constraint residual linearly. These rates are not

changed by position projections. Momentum projections lead to a quadratic growth of

the integration error and a linear growth of energy error and position constraint residual.

This can be partially explained by our results in Sections 2 and 3 where e. g. the

linear growth of the remaining residual after projection on one constraint was predicted.

The growth rates of the energy errors come from the perturbed Hamiltonian ~H. The

momentum constraint residual � grows linearly after position projections. As it appears

quadratically in (17), we can expect an at least quadratic growth of the energy error. For

the error after momentum projections the dependency of ~H on the position constraint

residual � is decisive. The series expansion contains a linear term that dominates the

higher order terms because of the smallness of � in our integration interval. As � grows

linearly, so does the energy error.

In order to check the periodicity of the solutions we computed a periodogram from

the values at t = 0; 1; 2; : : :; 1023. With momentum projections it hardly di�ers from the

one obtained from the state space form and consists essentially of one spike at f = 0:302

with amplitude 0:39. Since f = 1=T , the periodicity is very well maintained. Without

projections the spike is smeared over the range 0:3 � 0:37 with a maximal amplitude

of 0:05. Position projections yield only a small improvement.

The most striking result is that these considerable improvements have been achieved

with only 155 momentum projections, i. e. on average after 260 integration steps. In

contrast, position projections were needed after almost every step. With a tighter error

tolerance the results for momentum projections further improve, whereas this makes

hardly any di�erence for position projections. With � = 10�8 one needs on average after

3 integration steps a momentum projection, the maximal value of the integration error

is about 3 �10�3, of the energy error 3 �10�5 and of the position constraint residual 10�5.

Other numerical methods yield similar results. Hairer and Wanner [9, p. 472]

applied the Dormand-Prince 5(4) pair to the pendulum and observed that the integration

error became even worse, when position projections were used. They also noted that

adding position projections to momentum projections hardly changes the results.

7. Conclusions

Alishenas [1,2] showed already that in Lagrangian systems it is better to preserve

the velocity constraints than the position constraints. We provided further evidence

within the Hamiltonian formalism: momentum constraint residuals yield a quadratic

extra term in the perturbed Hamiltonian and momentum projections are a canonical

transformation and a�ect thus the energy error less than position projections.

The importance of the momentum constraints  = 0 is easily understood geomet-

rically. They represent a tangency condition for the position constraints � = 0. Their

preservation leads thus also to a stabilisation of the position constraints. But the preser-

vation of � = 0 does not in
uence the momentum constraints. This di�erence can be

observed clearly in our numerical example.

We considered only simple projection methods, but our results can also be used in

other ways. Substituting in the equations of motion (1) the position constraints � = 0
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by the momentum ones  = 0 reduces the index to 2 and the system can be rather

e�ciently treated by standard methods [16]. Or one incorporates the momentum pro-

jections into a numerical method; examples are the half-explicit Runge-Kutta methods

of Brasey and Hairer [3,4]. Or one performs the projections within the equations of

motion. Several mass-orthogonal formulations have been derived by Brauchli [5,17]; for

Hamiltonian systems this leads to the impetus-striction formalism [14].

Propositions 2 and 3 imply that mass-orthogonal momentum projections do not

destroy the symplectic nature of a numerical method in contrast to position projections.

However, the naive symplectic integration of underlying Hamiltonian systems becomes

rather expensive, as these are usually no longer separable and implicit methods must be

used. One the other hand, the canonical transformation used in the proof of Proposition 2

(and thus momentum projection) is the basis of Reich's symplectic composition methods

for constrained systems [13] which include the popular Rattle scheme [12].
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