
PASCAL{XSC

New Concepts for Scienti�c Computation

and Numerical Data Processing

R. Hammer, M. Neaga, and D. Ratz

Scienti�c Computing with Copyright c
 1993 by Academic Press, Inc.
Automatic Result Veri�cation All rights of reproduction in any form reserved.

ISBN 0-12-044210-8

The new programming language PASCAL{XSC is presented with an emphasis on

the new concepts for scienti�c computation and numerical data processing of the

PASCAL{XSC compiler. PASCAL{XSC is a universal PASCAL extension with

extensive standard modules for scienti�c computation. It is available for personal

computers, workstations, mainframes and supercomputers by means of an imple-

mentation in C.

By using the mathematical modules of PASCAL{XSC, numerical algorithms which

deliver highly accurate and automatically veri�ed results can be programmed easily.

PASCAL{XSC simpli�es the design of programs in engineering scienti�c compu-

tation by modular program structure, user-de�ned operators, overloading of func-

tions, procedures, and operators, functions and operators with arbitrary result type,

dynamic arrays, arithmetic standard modules for additional numerical data types

with operators of highest accuracy, standard functions of high accuracy and exact

evaluation of expressions.

The most important advantage of the new language is that programs written in

PASCAL{XSC are easily readable. This is due to the fact that all operations, even

those in the higher mathematical spaces, have been realized as operators and can

be used in conventional mathematical notation.

In addition to PASCAL{XSC a large number of numerical problem-solving rou-

tines with automatic result veri�cation are available. The language supports the

development of such routines.

1 Introduction

These days, the elementary arithmetic operations on electronic computers are usu-

ally approximated by
oating-point operations of highest accuracy. In particular,

for any choice of operands this means that the computed result coincides with the

rounded exact result of the operation. See the IEEE Arithmetic Standard [3] as an

example. This arithmetical standard also requires the four basic arithmetic opera-

tions +;�; �; and = with directed roundings. A large number of processors already

on the market provide these operations. So far, however, no common programming

language allows access to them.

On the other hand, there has been a noticeable shift in scienti�c computation

from general purpose computers to vector and parallel computers. These so-called

15

16 R. Hammer, M. Neaga, and D. Ratz

super-computers provide additional arithmetic operations such as \multiply and

add" and \accumulate" or \multiply and accumulate" (see [10]). These hardware

operations should always deliver a result of highest accuracy, but as of yet, no

processor which ful�lls this requirement is available. In some cases, the results of

numerical algorithms computed on vector computers are totally di�erent from the

results computed on a scalar processor (see [13],[31]).

Continuous e�orts have been made to enhance the power of programming languages.

New powerful languages such as ADA have been designed, and enhancement of

existing languages such as FORTRAN is in constant progress. However, since

these languages still lack a precise de�nition of their arithmetic, the same program

may produce di�erent results on di�erent processors.

PASCAL{XSC is the result of a long-term venture by a team of scientists to pro-

duce a powerful tool for solving scienti�c problems. The mathematical de�nition

of the arithmetic is an intrinsic part of the language, including optimal arithmetic

operations with directed roundings which are directly accessable in the language.

Further arithmetic operations for intervals and complex numbers and even vec-

tor/matrix operations provided by precompiled arithmetical modules are de�ned

with maximum accuracy according to the rules of semimorphism (see [25]).

2 The Language PASCAL{XSC

PASCAL{XSC is an eXtension of the programming language PASCAL for Scienti�c

Computation. A �rst approach to such an extension (PASCAL{SC) has been avail-

able since 1980. The speci�cation of the extensions has been continuously improved

in recent years by means of essential language concepts, and the new language

PASCAL{XSC [20],[21] was developed. It is now available for personal computers,

workstations, mainframes, and supercomputers by means of an implementation in

C. PASCAL{XSC contains the following features:

� Standard PASCAL

� Universal operator concept (user-de�ned operators)

� Functions and Operators with arbitrary result type

� Overloading of procedures, functions and operators

� Module concept

� Dynamic arrays

� Access to subarrays

� String concept

� Controlled rounding

� Optimal (exact) scalar product

PASCAL XSC New Concepts for Scienti�c Computation 17

� Standard type dotprecision (a �xed point format to cover the whole range of

oating-point products)

� Additional arithmetic standard types such as complex, interval, rvector,

rmatrix etc.

� Highly accurate arithmetic for all standard types

� Highly accurate standard functions

� Exact evaluation of expressions (#-expressions)

The new language features, developed as an extension of PASCAL, will be discussed

in the following sections.

2.1 Standard Data Types, Prede�ned Operators, and Func-

tions

In addition to the data types of standard PASCAL, the following numerical data

types are available in PASCAL{XSC:

interval complex cinterval
rvector cvector ivector civector
rmatrix cmatrix imatrix cimatrix

where the pre�x letters r, i, and c are abbreviations for real, interval, and complex.
So cinterval means complex interval and, for example, cimatrix denotes complex

interval matrices, whereas rvector speci�es real vectors. The vector and matrix

types are de�ned as dynamic arrays and can be used with arbitrary index ranges.

A large number of operators are prede�ned for theses types in the arithmetic mod-

ules of PASCAL{XSC (see section 2.8). All of these operators deliver results with

maximum accuracy. In Table 1 the 29 prede�ned standard operators of PASCAL{

XSC are listed according to priority.

Type Priority Operators

monadic 3 monadic +, monadic �, not

(highest)

multiplicative 2 and, div, mod

�; �<; �>; =; =<; =>; ��

additive 1 or

+;+<;+>;�;�<;�>;+�

relational 0 in

(lowest) =; <>;<=; <;>=; >;><

Table 1: Precedence of the Built-in Operators

18 R. Hammer, M. Neaga, and D. Ratz

Compared to standard PASCAL, there are 11 new operator symbols. These are the

operators �< and �>; � 2 f+;�; �; =g for operations with downwardly and upwardly
directed rounding and the operators ��;+�; >< needed in interval computations

for the intersection, the convex hull, and the disconnectivity test.

Tables 2 and 3 show all prede�ned arithmetic and relational operators in connection

with the possible combinations of operand types.

Q
Q
Q
Q
Q
Q
QQ

left

operand

right

operand
integer

real

complex

interval

cinterval

rvector

cvector

ivector

civector

rmatrix

cmatrix

imatrix

cimatrix

monadic
1) +;� +;� +;� +;� +;� +;�

integer

real

complex

2)
�; �<; �>;

+�

+;�; �; =;

+�
�; �<; �> � �; �<; �> �

interval

cinterval

+;�; �; =;

+�

+;�; �; =;

+�; ��
� � � �

rvector

cvector

�; �<; �>;

=; =<; =>
�; =

3)
�; �<; �>;

+�

4)
+;�; �;

+�

ivector

civector
�; = �; =

4)
+;�; �;

+�

4)
+;�; �;

+�; ��

rmatrix

cmatrix

�; �<; �>;

=; =<; =>
�; = �; �<; �> �

3)
�; �<; �>;

+�

4)
+;�; �;

+�

imatrix

cimatrix
�; = �; = � �

4)
+;�; �;

+�

4)
+;�; �;

+�; ��

1) The operators of this row are monadic (i.e. there is no left operand).

2) � 2 f+;�; �; =g

3) � 2 f+;�; �g, where � denotes the scalar or matrix product.

4) � denotes the scalar or matrix product.

+� : Interval hull

�� : Interval intersection

Table 2: Prede�ned Arithmetical Operators

PASCAL XSC New Concepts for Scienti�c Computation 19

Compared with standard PASCAL, PASCAL{XSC provides an extended set of

mathematical standard functions (see table 4). These functions are available for

the types real, complex, interval, and cinterval with a generic name and deliver a

result of maximum accuracy. The functions for the types complex, interval, and

cinterval are provided in the arithmetic modules of PASCAL{XSC.

Q
Q
Q
Q
Q
Q
QQ

left

operand

right

operand
integer

real

complex

interval

cinterval

rvector

cvector

ivector

civector

rmatrix

cmatrix

imatrix

cimatrix

integer

real

complex

=; <>;

<=; <;

>=; >

in

=; <>

interval

cinterval
=; <>

1)
in; ><;

=; <>;

<=; <;

>=; >

rvector

cvector

=; <>;

<=; <;

>=; >

in

=; <>

ivector

civector
=; <>

1)
in; ><;

=; <>;

<=; <;

>=; >

rmatrix

cmatrix

=; <>;

<=; <;

>=; >

in

=; <>

imatrix

cimatrix
=; <>

1)
in; ><;

=; <>;

<=; <;

>=; >

1) The operators <= and < denote the \subset" relations,
>= and > denote the \superset" relations.

>< : Test on disconnectivity for intervals

in :
Test on membership of a point in an interval or test on
strict enclosure of an interval in the interior of an interval

Table 3: Prede�ned Relational Operators

20 R. Hammer, M. Neaga, and D. Ratz

Function Generic Name Argument Type

1 Absolute Value abs �

2 Arc Cosine arccos �

3 Arc Cotangent arccot �

4 Inverse Hyperbolic Cosine arcosh �

5 Inverse Hyperbolic Cotangent arcoth �

6 Arc Sine arcsin �

7 Arc Tangent arctan �

8 Inverse Hyperbolic Sine arsinh �

9 Inverse Hyperbolic Tangent artanh �

10 Cosine cos �

11 Cotangent cot �

12 Hyperbolic Cosine cosh �

13 Hyperbolic Cotangent coth �

14 Exponential Function exp �

15 Power Function (Base 2) exp2 �

16 Power Function (Base 10) exp10 �

17 Natural Logarithm (Base e) ln �

18 Logarithm (Base 2) log2 �

19 Logarithm (Base 10) log10 �

20 Sine sin �

21 Hyperbolic Sine sinh �

22 Square sqr �

23 Square Root sqrt �

24 Tangent tan �

25 Hyperbolic Tangent tanh �

Table 4: Mathematical Standard Functions (� includes the types

integer, real, complex, interval, and cinterval)

Besides the mathematical standard functions, PASCAL{XSC provides the nec-

essary type transfer functions intval, inf, sup, compl, re, and im for conversion

between the numerical data types (for scalar and array types).

PASCAL XSC New Concepts for Scienti�c Computation 21

2.2 The General Operator Concept

By a simple example of interval addition, the advantages of a general operator

concept are demonstrated. In the absence of userde�ned operators, there are two

ways to implement the addition of two variables of type interval declared by

type interval = record inf, sup: real; end;

One can use a procedure declaration

procedure intadd(a,b: interval; var c: interval);

begin

c:inf :=a:inf +<b:inf;

c:sup :=a:sup+>b:sup

end;

mathematical notation corresponding program statements

z := a+ b+ c+ d
intadd(a,b,z);

intadd(z,c,z);

intadd(z,d,z);

or a function declaration (only possible in PASCAL{XSC, not in standard PAS-

CAL)

function intadd(a,b: interval): interval;

begin

intadd:inf := a:inf +<b:inf;

intadd:sup := a:sup+>b:sup

end;

mathematical notation corresponding program statement

z := a+ b+ c+ d z := intadd(intadd(intadd(a,b),c),d);

In both cases the description of the mathematical formulas looks rather compli-

cated. By comparison, if one implements an operator in PASCAL{XSC

operator + (a,b: interval) intadd: interval;

begin

intadd:inf := a:inf +<b:inf;

intadd:sup := a:sup+>b:sup

end;

22 R. Hammer, M. Neaga, and D. Ratz

mathematical notation corresponding program statement

z := a+ b+ c+ d z := a + b + c + d;

then a multiple addition of intervals is described in the traditional mathematical

notation. Besides the possibility of overloading operator symbols, one is allowed to

use named operators. Such operators must be preceded by a priority declaration.

There exist four di�erent levels of priority, each represented by its own symbol:

� monadic : " level 3 (highest priority)

� multiplicative : � level 2

� additive : + level 1

� relational : = level 0

For example, an operator for the calculation of the binomial coe�cient
�
n

k

�
can be

de�ned in the following manner

priority choose = �; fpriority declarationg

operator choose (n,k: integer) binomial: integer;

var i,r : integer;

begin

if k > n div 2 then k := n�k;

r := 1;

for i := 1 to k do

r := r � (n � i + 1) div i;

binomial := r;

end;

mathematical notation corresponding program statement

c :=
�
n

k

�
c := n choose k

The operator concept realized in PASCAL{XSC o�ers the possibilities of

� de�ning an arbitrary number of operators

� overloading operator symbols or operator names arbitrarily many times

� implementing recursively de�ned operators

The identi�cation of the suitable operator depends on both the number and the

type of the operands according to the following weighting -rule:

If the actual list of parameters matches the formal list of parameters

of two di�erent operators, then the one which is chosen has the �rst

\better matching" parameter. \Better matching" means that the types

of the operands must be consistent and not only conforming.

PASCAL XSC New Concepts for Scienti�c Computation 23

Example:

operator +� (a: integer; b: real) irres: real;

...

operator +� (a: real; b: integer) rires: real;

...

var x : integer;

y, z : real;

...

z := x +� y; =) 1. operator

z := y +� x; =) 2. operator

z := x +� x; =) 1. operator

z := y +� y; =) impossible !

Also, PASCAL{XSC o�ers the possibility to overload the assignment operator :=.

Due to this, the mathematical notation may also be used for assignments:

Example:

var

c : complex;

r : real;

...

operator := (var c: complex; r: real);

begin

c.re := r;

c.im := 0;

end;

...

r := 1.5;

c := r; fcomplex number with real part 1.5 and imaginary part 0g

2.3 Overloading of Subroutines

Standard PASCAL provides the mathematical standard functions

sin, cos, arctan, exp, ln, sqr, and sqrt

24 R. Hammer, M. Neaga, and D. Ratz

for numbers of type real only. In order to implement the sine function for interval

arguments, a new function name like isin(: : :)must be used, because the overloading

of the standard function name sin is not allowed in standard PASCAL.

By contrast, PASCAL{XSC allows overloading of function and procedure names,

whereby a generic symbol concept is introduced into the language. So the symbols

sin, cos, arctan, exp, ln, sqr, and sqrt

can be used not only for numbers of type real, but also for intervals, complex num-

bers, and other mathematical spaces. To distinguish between overloaded functions

or procedures with the same name, the number, type, and weighting of their ar-

guments are used, similar to the method for operators. The type of the result,

however, is not used.

Example:

procedure rotate (var a,b: real);

procedure rotate (var a,b,c: complex);

procedure rotate (var a,b,c: interval);

The overloading concept also applies to the standard procedures read and write
in a slightly modi�ed way. The �rst parameter of a new declared input/output

procedure must be a var-parameter of �le type and the second parameter represents

the quantity that is to be input or output. All following parameters are interpreted

as format speci�cations.

Example:

procedure write (var f: text; c: complex; w: integer);

begin

write (f, '(', c.re : w, ',', c.im : w, ')');

end

Calling an overloaded input/output procedure the �le parameter may be omitted

corresponding to a call with the standard �les input or output. The format parame-

ters must be introduced and seperated by colons. Moreover, several input or output

statements can be combined to a single statement just as in standard PASCAL.

Example:

var

r: real;

c: complex;
...

write (r : 10, c : 5, r/5);

PASCAL XSC New Concepts for Scienti�c Computation 25

2.4 The Module Concept

Standard PASCAL basically assumes that a program consists of a single program

text which must be prepared completely before it can be compiled and executed.

In many cases, it is more convenient to prepare a program in several parts, called

modules, which can then be developed and compiled independently of each other.

Moreover, several other programs may use the components of a module without

their being copied into the source code and recompiled.

For this purpose, a module concept has been introduced in PASCAL{XSC. This

new concept o�ers the possibilities of

� modular programming

� syntax check and semantic analysis beyond the bounds of modules

� implementation of arithmetic packages as standard modules

Three new keywords have been added to the language:

module : starts a new module

global : indicates items to be passed to the outside

use : indicates imported modules

A module is introduced by the keyword module followed by a name and a semi-

colon. The body is built up quite similarly to that of a normal program with the

exception that the word symbol global can be used directly in front of the key-

words const, type, var, procedure, function, and operator and directly after

use and the equality sign in type declarations.

Thus it is possible to declare private types as well as non-private types. The struc-

ture of a private type is not known outside the declaration module and can only

be in
uenced by subroutine calls. If, for example, the internal structure as well as

the name of a type is to be made global, then the word symbol global must be

repeated after the equality sign. By means of the declaration

global type complex = global record re, im : real end;

the type complex and its internal structure as a record with components re and

im is made global.

A private type complex could be declared by

global type complex = record re, im: real end;

The user who has imported a module with this private de�nition cannot refer to the

record components, because the structure of the type is hidden inside the module.

26 R. Hammer, M. Neaga, and D. Ratz

A module is built up according to the following pattern:

module m1;

use < other modules>;

< global and local declarations>

begin

< initialization of the module>

end.

For importing modules with use or use global the following transitivity rules hold

M1 use M2 and M2 use global M3) M1 use M3.

but

M1 use M2 and M2 use M3 6) M1 use M3,

Example: Let a module hierarchy be built up by

X Y STANDARDS

A B C

main program

�
�
��

@
@

@@

Q
Q
Q
QQ

�
�
�
��

��
��
��
�

HH
HH

HH
H

All global objects of the modules A, B, and C are visible in the main program unit,

but there is no access to the global objects of X, Y and STANDARDS. There are

two possibilities to make them visible in the main program, too:

1. to write

use X, Y, STANDARDS

in the main program

2. to write

use global X, Y

in module A and

use global STANDARDS

in module B or C.

PASCAL XSC New Concepts for Scienti�c Computation 27

2.5 Dynamic Arrays

In standard PASCAL there is no way to declare dynamic types or variables. For

instance, program packages with vector and matrix operations can be implemented

with only �xed (maximum) dimension. For this reason, only a part of the allocated

memory is used if the user wants to solve problems with lower dimension only. The

concept of dynamic arrays removes this limitation. In particular, the new concept

can be described by the following characteristics:

� Dynamics within procedures and functions

� Automatic allocation and deallocation of local dynamic variables

� Economical employment of storage space

� Row access and column access to dynamic arrays

� Compatibility of static and dynamic arrays

Dynamic arrays must be marked with the word symbol dynamic. The great dis-

advantage of the conformant array schemes available in standard PASCAL is that

they can only be used for parameters and not for variables or function results. So,

this standard feature is not fully dynamic.

In PASCAL{XSC, dynamic and static arrays can be used in the same manner. At

the moment, dynamic arrays may not be components of other data structures. The

syntactical meaning of this is that the word symbol dynamic may only be used

directly following the equality sign in a type de�nition or directly following the

colon in a variable declaration. For instance, dynamic arrays may not be record

components.

A two-dimensional array type can be declared in the following manner:

type matrix = dynamic array[�,�] of real;

It is also possible to de�ne di�erent dynamic types with corresponding syntactical

structures. For example, it might be useful in some situations to identify the

coe�cients of a polynomial with the components of a vector or vice versa. Since

PASCAL is strictly a type-oriented language, such structurally equivalent arrays

may only be combined if their types have been previously adapted. The following

example shows the de�nition of a polynomial and of a vector type (note that the

type adaptation functions polynomial(: : :) and vector(: : :) are de�ned implicitly):

type vector = dynamic array[�] of real;

type polynomial = dynamic array[�] of real;

operator + (a,b: vector) res: vector[lbound(a)..ubound(a)];

...

28 R. Hammer, M. Neaga, and D. Ratz

var v : vector[1..n];

p : polynomial[0..n-1];

...

v := vector(p);

p := polynomial(v);

v := v + v;

v := vector(p) + v; f but not v := p + v; g

Access to the lower and upper index limits is made possible by the new standard

functions lbound(: : :) and ubound(: : :), which are available with an optional ar-

gument for the index �eld of the designated dynamic variable. Employing these

functions, the operator mentioned above can be written as

operator + (a,b: vector) res: vector[lbound(a)..ubound(a)];

var i : integer;

begin

for i := lbound(a) to ubound(a) do

res[i] := a[i] + b[lbound(b) + i { lbound(a)]

end;

Introduction of dynamic types requires an extension of the compatibility prerequi-

sites. Just as in standard PASCAL, two array types are not compatible unless they

are of the same type. Consequently, a dynamic array type is not compatible with

a static type. In PASCAL{XSC value assignments are always possible in the cases

listed in Table 5.

Type of Left Side Type of Right Side Assignment Permitted

anonymous dynamic arbitrary array type if structurally equivalent

known dynamic known dynamic if types are the same

anonymous static arbitrary array type if structurally equivalent

known static known static if types are the same

Table 5: Assignment Compatibilities

In the remaining cases, an assignment is possible only for an equivalent quali�cation

of the right side (see [20] or [21] for details).

In addition to access to each component variable, PASCAL{XSC o�ers the possi-

bility of access to entire subarrays. If a component variable contains an � instead of

an index expression, it refers to the subarray with the entire index range in the cor-

responding dimension, e. g. via m[�, j] the j-th column of a two-dimensional array

m is accessed. This example demonstrates access to rows or columns of dynamic

arrays:

PASCAL XSC New Concepts for Scienti�c Computation 29

type vector = dynamic array[�] of real;

type matrix = dynamic array[�] of vector;
...

var v : vector[1..n];

m : matrix[1..n,1..n];

...

v := m[i];

m[i] := vector(m[�, j]);

In the �rst assignment it is not necessary to use a type adaptation function, since

both the left and the right side are of known dynamic type. A di�erent case is

demonstrated in the second assignment. The left-hand side is of known dynamic

type, but the right-hand side is of anonymous dynamic type, so it is necessary to

use the intrinsic adaptation function vector(: : :).

A PASCAL{XSC program which uses dynamic arrays should be built up according

to the following scheme:

program dynprog (input,output);

type

vector = dynamic array[�] of real;

<di�erent dynamic declarations>

var n : integer;

f - g

procedure main (dim: integer);

var a,b,c : vector[1..dim];

...

begin

< I/O depending on the value of dim>
...

c := a + b;
...

end;

f - g

begin fmain programg

read(n);

main(n);

end. fmain programg

30 R. Hammer, M. Neaga, and D. Ratz

It is necessary to frame only the original main program by a procedure (here:

main), which is refered to with the dimension of the dynamic arrays as a transfer

parameter.

2.6 Accurate Expressions

The implementation of enclosure algorithms with automatic result veri�cation or

validation (see [17],[24],[28],[33]) makes extensive use of the accurate evaluation of

dot products with the property (see [25])

(RG) a
K

b :=

nX

i=1

ai � bi;
 2 f2;4;5g; n 2 IN :

To evaluate this kind of expression the new datatype dotprecision was introduced.

This datatype accomodates the full
oating-point range with double exponents (see

[25],[24]). Based upon this type, so-called accurate expressions (#-expressions), can

be formulated by an accurate symbol (#, #�, #<, #>, or ##) followed by an

exact expression enclosed in parentheses. The exact expression must have the form

of a dot product expression and is evaluated without any rounding error. The

following standard operations are available for dotprecision:

� conversion of real and integer values to dotprecision (#)

� rounding of dotprecision values to real ; in particular: downwardly directed

rounding (#<), upwardly directed rounding (#>), and rounding to the near-

est (#�)

� rounding of a dotprecision expression to the smallest enclosing interval (##)

� addition of a real number or the product of two real numbers to a variable

of type dotprecision

� addition of a dot product to a variable of type dotprecision

� addition and subtraction of dotprecision numbers

� monadic minus of a dotprecision number

� the standard function sign returns �1, 0, or +1, depending on the sign of the

dotprecision number

To obtain the unrounded or correctly rounded result of a dot product expression,

the user needs to parenthesize the expression and precede it by the symbol # which

may optionally be followed by a symbol for the rounding mode. Table 6 shows the

possible rounding modes with respect to the dot product expression form (see the

appendix on page 41 for details).

PASCAL XSC New Concepts for Scienti�c Computation 31

Symbol Expression Form Rounding Mode

#� scalar, vector or matrix nearest

#< scalar, vector or matrix downwards

#> scalar, vector or matrix upwards

scalar, vector or matrix smallest enclosing interval

scalar only exact, no rounding

Table 6: Rounding Modes for Accurate Expressions

In practice, dot product expressions may contain a large number of terms making

an explicit notation very cumbersome. To alleviate this di�culty in mathematics,

the symbol
P

is used. If for instance A and B are n-dimensional matrices, then

the evaluation of

nX

k=1

A(i; k) �B(k; j)

represents a dot product expression. PASCAL{XSC provides the equivalent short-

hand notation sum for this purpose. The corresponding PASCAL{XSC statement

for this expression is

D := #(for k:=1 to n sum (A[i,k]�B[k,j]))

where D is a dotprecision variable.

Dot product expressions or accurate expressions are used mainly in computing a

defect (or residual). In the case of a linear system Ax = b, A 2 IRn�n, x; b 2 IRn,

as an example Ay � b is considered. Then an enclosure of the defect is given by

}(b�Ay) which in PASCAL{XSC can be realized by means of

##(b � A�y);

then there is only one interval rounding operation per component. To get veri�ed

enclosures for linear systems of equations it is necessary to evaluate the defect

expression

}(E �RA)

where R � A�1 and E is the identity matrix. In PASCAL{XSC this expression

can be programmed as

##(id(A) � R�A);

where an interval matrix is computed with only one rounding operation per compo-

nent. The function id(: : :) is a part of the module for real matrix/vector arithmetic

generating an identity matrix of appropriate dimension according to the shape of

A (see section 2.8).

32 R. Hammer, M. Neaga, and D. Ratz

2.7 The String Concept

The tools provided for handling strings in standard PASCAL do not enable con-

venient text processing. For this reason, a string concept was integrated into the

language de�nition of PASCAL{XSC which admits a comfortable handling of tex-

tual information and even symbolic computation. With this new data type string,

the user can work with strings of up to 255 characters. In the declaration part the

user can specify a maximum string length less than 255. Thus a string s declared

by

var s: string[40];

can be up to 40 characters long. The following standard operations are available:

� concatenation

operator + (a,b: string) conc: string;

� actual length

function length(s: string): integer;

� conversion string ! real

function rval(s: string): real;

� conversion string ! integer

function ival(s: string): integer;

� conversion real ! string

function image(r: real; width,fracs,round: integer): string;

� conversion integer ! string

function image(i,len: integer): string;

� extraction of substrings

function substring(s: string; i,j: integer): string;

� position of �rst appearance

function pos(sub,s: string): integer;

� relational operators <=, <, >=, >, <>, =, and in

PASCAL XSC New Concepts for Scienti�c Computation 33

2.8 Standard Modules

The following standard modules are available:

� interval arithmetic (I ARI)

� complex arithmetic (C ARI)

� complex interval arithmetic (CI ARI)

� real matrix/vector arithmetic (MV ARI)

� interval matrix/vector arithmetic (MVI ARI)

� complex matrix/vector arithmetic (MVC ARI)

� complex interval matrix/vector arithmetic (MVCI ARI)

These modules may be incorporated via the use-statement described in section 2.4.

As an example, Table 7 exhibits the operators provided by the module for interval

matrix/vector arithmetic.

Q
Q
Q
Q
QQ

left
operand

right
operand integer

real
interval rvector ivector rmatrix imatrix

monadic +;� +;�

integer

real
� �

interval � � � �

rvector �; = +�

+�;

+;�; �;

in;=; <>

ivector �; = �; =

+�;

+;�; �;

=; <>

+�;��;

+;�; �;

in;=; <>; ><;

<=; <;>=; >

rmatrix �; = � +�

+�;

+;�; �;

in;=; <>

imatrix �; = �; = � �

+�;

+;�; �;

=; <>

+�;��;

+;�; �;

in;=; <>; ><;

<=; <;>=; >

Table 7: Prede�ned Arithmetical and Relational Operators of the

Module MVI ARI

In addition to these operators, the module MVI ARI provides the following gener-

ically named standard operators, functions, and procedures

intval, inf, sup, diam, mid, blow, transp, null, id, read, and write.

The function intval is used to generate interval vectors and matrices, whereas inf
and sup are selection functions for the in�mumand supremum of an interval object.

The diameter and the midpoint of interval vectors and matrices can be computed by

diam and mid, blow yields an interval in
ation, and transp delivers the transpose

of a matrix.

34 R. Hammer, M. Neaga, and D. Ratz

Zero vectors and matrices are generated by the function null, while id returns an

identity matrix of appropriate shape. Finally, there are the generic input/output-

procedures read and write, which may be used in connection with all matrix/vector

data types de�ned in the modules mentioned above.

2.9 Problem-Solving Routines

PASCAL{XSC routines for solving common numerical problems have been imple-

mented. The applied methods compute a highly accurate enclosure of the true

solution of the problem and, at the same time, prove the existence and the unique-

ness of the solution in the given interval. The advantages of these new routines are

listed in the following:

� The solution is computed with maximum or high, but always controlled ac-

curacy, even in many ill-conditioned cases.

� The correctness of the result is automatically veri�ed, i. e. an enclosing set

is computed which guarantees existence and uniqueness of the exact solution

contained in this set.

� In case, that no solution exists or that the problem is extremely ill-

conditioned, an error message is indicated.

Particularly, PASCAL{XSC routines cover the following subjects:

� linear systems of equations

{ full systems (real, complex, interval, cinterval)

{ matrix inversion (real, complex, interval, cinterval)

{ least squares problems (real, complex, interval, cinterval)

{ computation of pseudo inverses (real, complex, interval, cinterval)

{ band matrices (real)

{ sparse matrices (real)

� polynomial evaluation

{ in one variable (real, complex, interval, cinterval)

{ in several variables (real)

� zeros of polynomials (real, complex, interval, cinterval)

� eigenvalues and eigenvectors

{ symmetric matrices (real)

{ arbitrary matrices (real, complex, interval, cinterval)

� initial and boundary value problems of ordinary di�erential equations

{ linear

{ nonlinear

PASCAL XSC New Concepts for Scienti�c Computation 35

� evaluation of arithmetic expressions

� nonlinear systems of equations

� numerical quadrature

� integral equations

� automatic di�erentiation

� optimization

3 The Implementation of PASCAL{XSC

Since 1976, a PASCAL extension for scienti�c computation has been in the pro-

cess of being de�ned and developed at the Institute for Applied Mathematics at

the University of Karlsruhe. The PASCAL-SC compiler has been implemented on

several computers (Z80, 8088, and 68000 processors) under various operating sys-

tems. This compiler has already been on the market for the IBM PC/AT and the

ATARI-ST (see [22], [23]).

The new PASCAL{XSC compiler is now available for personal computers, work-

stations, mainframes, and supercomputers by means of an implementation in C.

Via a PASCAL{XSC-to-C precompiler and a runtime system implemented in C,

the language PASCAL{XSC may be used, among other systems, on all UNIX sys-

tems in an almost identical way. Thus, the user has the possibility to develop his

programs for example on a personal computer and afterwards get them running on

a mainframe via the same compiler.

A complete description of the language PASCAL{XSC and the arithmetic modules

as well as a collection of sample programs is given in [20] and [21].

4 PASCAL{XSC Sample Program

In the following, a complete PASCAL{XSC program is listed, which demonstrates

the use of some of the arithmetic modules. Employing the module LIN SOLV,

the solution of a system of linear equations is enclosed in an interval vector by

succecsive interval iterations.

The procedure main, which is called in the body of lin sys, is only used for reading

the dimension of the system and for allocation of the dynamic variables. The nu-

merical method itself is started by the call of procedure linear system solver de�ned
in module LIN SOLV. This procedure may be called with arbitrary dimension of

the employed arrays.

For detailed information on iteration methods with automatic result veri�cation

see [17], [24], [28], or [32], for example.

36 R. Hammer, M. Neaga, and D. Ratz

Main Program

program lin sys (input,output);

f Program for veri�ed solution of a linear system of equations. The g

f matrix A and the right-hand side b of the system are to be read in. g

f The program delivers either a veri�ed solution or a corresponding g

f failure message. g

use f lin solv : linear system solver g

lin solv, mv ari, mvi ari; f mv ari : matrix/vector arithmetic g

f mvi ari : matrix/vector interval arithmetic g

var

n : integer;

f- -g

procedure main (n : integer);

f The matrix A and the vectors b, x are allocated dynamically with g

f this subroutine being called. The matrix A and the right-hand side g

f b are read in and linear system solver is called. g

var

ok : boolean;

b : rvector[1..n];

x : ivector[1..n];

A : rmatrix[1..n,1..n];

begin

writeln('Please enter the matrix A:');

read(A);

writeln('Please enter the right-hand side b:');

read(b);

linear system solver(A,b,x,ok);

if ok then

begin

writeln('The given matrix A is non-singular and the solution ');

writeln('of the linear system is contained in:');

write(x);

end

PASCAL XSC New Concepts for Scienti�c Computation 37

else

writeln('No solution found !');

end; fprocedure maing

f- -g

begin

write('Please enter the dimension n of the linear system: ');

read(n);

main(n);

end. fprogram lin sysg

38 R. Hammer, M. Neaga, and D. Ratz

Module LIN SOLV

module lin solv;

f Veri�ed solution of the linear system of equations Ax = b. g

use f i ari : interval arithmetic g

i ari, mv ari, mvi ari; f mv ari : matrix/vector arithmetic g

f mvi ari : matrix/vector interval arithmetic g

priority

inflated = �; f priority level 2 g

f- -g

operator inflated (a : ivector; eps : real)infl: ivector[1..ubound(a)];

f Computes the so-called epsilon in
ation of an interval vector. g

var

i : integer;

x : interval;

begin

for i:= 1 to ubound(a) do

begin

x:= a[i];

if (diam(x) <> 0) then

a[i] := (1+eps)�x � eps�x

else

a[i] := intval(pred (inf(x)), succ (sup(x)));

end; fforg

infl := a;

end; foperator inflatedg

f- -g

PASCAL XSC New Concepts for Scienti�c Computation 39

function approximate inverse (A: rmatrix): rmatrix[1..ubound(A),1..ubound(A)];

f Computation of an approximate inverse of the (n,n)-matrix A g

f by application of the Gaussian elimination method. g

var

i, j, k, n : integer;

factor : real;

R, Inv, E : rmatrix[1..ubound(A),1..ubound(A)];

begin

n := ubound(A); f dimension of A g

E := id(E); f identity matrix g

R := A;

f Gaussian elimination step with unit vectors as g

f right-hand sides. Division by R[i,i]=0 indicates g

f a probably singular matrix A. g

for i:= 1 to n do

for j:= (i+1) to n do

begin

factor := R[j,i]/R[i,i];

for k:= i to n do R[j,k] := #�(R[j,k] � factor�R[i,k]);

E[j] := E[j] � factor�E[i];

end; ffor j:= ...g

f Backward substitution delivers the rows of the inverse of A. g

for i:= n downto 1 do

Inv[i] := #�(E[i] � for k:= (i+1) to n sum(R[i,k]�Inv[k]))/R[i,i];

approximate inverse := Inv;

end; ffunction approximate inverseg

f- -g

40 R. Hammer, M. Neaga, and D. Ratz

global procedure linear system solver (A : rmatrix; b : rvector;

var x : ivector; var ok : boolean);

f Computation of a veri�ed enclosure vector for the solution of the g

f linear system of equations. If an enclosure is not achieved after g

f a certain number of iteration steps the algorithm is stopped and g

f the parameter ok is set to false. g

const

epsilon = 0.25; f Constant for the epsilon in
ation g

max steps = 10; f Maximum number of iteration steps g

var

i : integer;

y, z : ivector[1..ubound(A)];

R : rmatrix[1..ubound(A),1..ubound(A)];

C : imatrix[1..ubound(A),1..ubound(A)];

begin

R := approximate inverse(A);

f R�b is an approximate solution of the linear system and z is an enclosure g

f of this vector. However, it does not usually enclose the true solution. g

z := ##(R�b);

f An enclosure of I � R�A is computed with maximum accuracy. g

f The (n,n) identity matrix is generated by the function call id(A). g

C := ##(id(A) � R�A);

x := z; i := 0;

repeat

i := i + 1;

y := x inflated epsilon; f To obtain a true enclosure, the interval g

f vector c is slightly enlarged. g

x := z + C�y; f The new iterate is computed. g

ok := x in y; f Is c contained in the interior of y? g

until ok or (i = max steps);

end; fprocedure linear system solverg

f- -g

end. fmodule lin solvg

PASCAL XSC New Concepts for Scienti�c Computation 41

Appendix

Review of Real and Complex #-Expressions

Syntax: #-Symbol (Exact Expression)

#-Symbol Result Type Summands Permitted in the Exact Expression

dotprecision

� variables, constants, and special function calls of
type integer, real, or dotprecision

� products of type integer or real

� scalar products of type real

real

� variables, constants, and special function calls of
type integer, real, or dotprecision

� products of type integer or real

� scalar products of type real

complex

� variables, constants, and special function calls of
type integer, real, complex, or dotprecision

� products of type integer, real, or complex

� scalar products of type real or complex

#�
#<
#>

rvector

� variables and special function calls of type rvector

� products of type rvector (e.g. rmatrix � rvector, real
� rvector etc.)

cvector

� variables and special function calls of type rvector

or cvector

� products of type rvector or cvector (e.g. cmatrix �
rvector, real � cvector etc.)

rmatrix

� variables and special function calls of type rmatrix

� products of type rmatrix

cmatrix

� variables and special function calls of type rmatrix

or cmatrix

� products of type rmatrix or cmatrix

42 R. Hammer, M. Neaga, and D. Ratz

Review of Real and Complex Interval #-Expressions

Syntax: ## (Exact Expression)

#-Symbol Result Type Summands Permitted in the Exact Expression

interval

� variables, constants, and special function calls of
type integer, real, interval, or dotprecision

� products of type integer, real, or interval

� scalar products of type real or interval

cinterval

� variables, constants, and special function calls of
type integer, real, complex, interval, cinterval, or
dotprecision

� products of type integer, real, complex, interval, or
cinterval

� scalar products of type real, complex, interval, or
cinterval

ivector

� variables and special function calls of type rvector

or ivector

� products of type rvector or ivector

civector

� variables and special function calls of type rvector,
cvector, ivector, or civector

� products of type rvector, cvector, ivector, or civector

imatrix

� variables and special function calls of type rmatrix

or imatrix

� products of type rmatrix or imatrix

cimatrix

� variables and special function calls of type rmatrix,
cmatrix, imatrix, or cimatrix

� products of type rmatrix, cmatrix, imatrix, or
cimatrix

PASCAL XSC New Concepts for Scienti�c Computation 43

References

[1] Allend�orfer, U., Shiriaev, D.: PASCAL{XSC to C { A Portable PASCAL{XSC Compiler.
In: [18], 91{104, 1991.

[2] Allend�orfer, U., Shiriaev, D.: PASCAL{XSC { A portable development system. In [9], 1992.

[3] American National Standards Institute / Institute of Electrical and Electronic Engineers: A
Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std. 754-1985, New York, 1985.

[4] Bleher, J. H., Rump, S. M., Kulisch, U., Metzger, M., Ullrich, Ch., and Walter, W.:
FORTRAN-SC: A Study of a FORTRAN Extension for Engineering/Scienti�c Computa-

tion with Access to ACRITH. Computing 39, 93 - 110, 1987.

[5] Bohlender, G., Gr�uner, K., Kaucher, E., Klatte, R., Kr�amer, W., Kulisch, U., Rump, S.,
Ullrich, Ch., Wol� von Gudenberg, J., and Miranker, W.: PASCAL-SC: A PASCAL for

Contemporary Scienti�c Computation. Research Report RC 9009, IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, 1981.

[6] Bohlender, G., Gr�uner, K., Kaucher, E., Klatte, R., Kulisch, U., Neaga, M., Ullrich, Ch., and
Wol� von Gudenberg, J.: PASCAL-SC Language De�nition. Internal Report of the Institute
for Applied Mathematics, University of Karlsruhe, 1985.

[7] Bohlender, G., Rall, L., Ullrich, Ch., and Wol� von Gudenberg, J.: PASCAL-SC: A Com-

puter Language for Scienti�c Computation. Academic Press, New York, 1987.

[8] Bohlender, G., Rall, L., Ullrich, Ch. und Wol� von Gudenberg, J.: PASCAL-SC {

Wirkungsvoll programmieren, kontrolliert rechnen. Bibliographisches Institut, Mannheim,
1986.

[9] Brezinsky, C. and Kulisch, U. (Eds): Computational and Applied Mathematics { Algorithms

and Theory. Proceedings of the 13th IMACS World Congress, Dublin, Ireland. Elsevier,
Science publishers B. V. To be published in 1992.

[10] Buchholz, W.: The IBM System/370 Vector Architecture. IBM Systems Journal 25/1, 1986.

[11] Cordes, D.: Runtime System for a PASCAL{XSC Compiler. In: [18], 151{160, 1991.

[12] D�a�ler, K. und Sommer, M.: PASCAL, Einf�uhrung in die Sprache. Norm Entwurf DIN
66256, Erl�auterungen. Springer, Berlin, 1983.

[13] Hammer, R.: How Reliable is the Arithmetic of Vector Computers? In: [33], 1990.

[14] Hammer, R., Neaga, M., Ratz, D., Shiriaev, D.: PASCAL{XSC { A new language for

scienti�c computing. (In Russian), Interval Computations 2, St. Petersburg, 1991,

[15] IBM High-Accuracy Arithmetic Subroutine Library (ACRITH). General InformationManual,
GC 33-6163-02, 3rd Edition, 1986.

[16] IBM High-Accuracy Arithmetic Subroutine Library (ACRITH). Program Description and
User's Guide, SC 33-6164-02, 3rd Edition, 1986.

[17] Kaucher, E., Kulisch, U., and Ullrich, Ch. (Eds.): Computer Arithmetic { Scienti�c Com-

putation and Programming Languages. Teubner, Stuttgart, 1987.

[18] Kaucher, E., Markov, S. M., Mayer, G. (Eds): Computer Arithmetic, Scienti�c Computation
and Mathematical Modelling. IMACS Annals on Computing and Applied Mathematics 12,
J.C. Baltzer, Basel, 1991.

[19] Kirchner, R. and Kulisch, U.: Accurate Arithmetic for Vector Processors. Journal of Parallel
and Distributed Computing 5, 250-270, 1988.

[20] Klatte, R., Kulisch, U., Neaga, M., Ratz, D. und Ullrich, Ch.: PASCAL{XSC Sprachbeschrei-

bung mit Beispielen. Springer, Heidelberg, 1991.

44 R. Hammer, M. Neaga, and D. Ratz

[21] Klatte, R., Kulisch, U., Neaga, M., Ratz, D. und Ullrich, Ch.: PASCAL{XSC Language

Reference with Examples. Springer, Heidelberg, 1992.

[22] Kulisch, U. (Ed.): PASCAL-SC: A PASCAL Extension for Scienti�c Computation, Infor-
mation Manual and Floppy Disks, Version ATARI ST. Teubner, Stuttgart, 1987.

[23] Kulisch, U. (Ed.): PASCAL-SC: A PASCAL Extension for Scienti�c Computation, Infor-
mation Manual and Floppy Disks, Version IBM PC/AT (DOS). Teubner, Stuttgart, 1987.

[24] Kulisch, U. (Hrsg.): Wissenschaftliches Rechnen mit Ergebnisveri�kation { Eine Einf�uhrung.
Akademie Verlag, Ost-Berlin, Vieweg, Wiesbaden, 1989.

[25] Kulisch, U. and Miranker, W. L.: Computer Arithmetic in Theory and Practice. Academic
Press, New York, 1981.

[26] Kulisch, U. and Miranker, W. L.: The Arithmetic of the Digital Computer: A New Approach.
SIAM Review, Vol. 28, No. 1, 1986.

[27] Kulisch, U. and Miranker, W. L. (Eds.): A New Approach to Scienti�c Computation. Aca-
demic Press, New York, 1983.

[28] Kulisch, U. and Stetter, H. J. (Eds.): Scienti�c Computation with Automatic Result Veri�-

cation. Computing Suppl. 6, Springer, Wien, 1988.

[29] Neaga, M.: Erweiterungen von Programmiersprachen f�ur wissenschaftliches Rechnen und

Er�orterung einer Implementierung. Dissertation, Universit�at Kaiserslautern, 1984.

[30] Neaga, M.: PASCAL-SC { Eine PASCAL-Erweiterung f�ur wissenschaftliches Rechnen. In:
[24], 1989.

[31] Ratz, D.: The E�ects of the Arithmetic of Vector Computers on Basic Numerical Methods.
In: [33], 1990.

[32] Rump, S. M.: Solving Algebraic Problems with High Accuracy. In: [27], 1983.

[33] Ullrich, Ch. (Ed.): Contributions to Computer Arithmetic and Self-Validating Numerical

Methods. J. C. Baltzer AG, Scienti�c Publishing Co., IMACS, 1990.

[34] Wol� von Gudenberg, J.: Einbettung allgemeiner Rechnerarithmetik in PASCAL mit-

tels eines Operatorkonzeptes und Implementierung der Standardfunktionen mit optimaler

Genauigkeit. Dissertation, Universit�at Karlsruhe, 1980.

