KIT | KIT-Bibliothek | Impressum | Datenschutz
DOI: 10.1016/S0920-3796(03)00143-1
Zitationen: 12
Web of Science
Zitationen: 8

3-D simulation of macroscopic erosion of CFC under ITER off-normal heat loads

Pestchanyi, S.; Würz, H.

Because of their high heat conductivity carbon fiber composites (CFC) are considered as armour material for the vertical target in the divertor strike point region where high heat loads are expected during off-normal heat loads. The newly developed CFCs have a complex 3-D framework from ex-PAN and ex-pitch carbon fibers. The framework is filled with a carbon matrix. Both fibers are anisotropic materials. The linear thermal expansion coefficient, the heat conductivity and the Young’s modulus along and across the fiber direction are 10-50 times different. This anisotropy and the difference of the linear thermal expansion coefficient of the matrix and the fibers cause larger internal thermostress in CFC as compared to graphite. The thermostress concentrates at the interfaces between fibers and matrix, especially close to the sites of the perpendicular intersection of the fibers. There is experimental evidence of formation of large macroscopic pits at such intersections under high heat loads [1] and if those pits combine there occurs large macroscopic erosion by brittle destruction [2]. Indeed first experimental results for CFC samples ... mehr

Zugehörige Institution(en) am KIT Institut für Hochleistungsimpuls- und Mikrowellentechnik (IHM)
Publikationstyp Zeitschriftenaufsatz
Jahr 2003
Sprache Englisch
Identifikator ISSN: 0272-3921, 0748-1896
KITopen ID: 110051732
HGF-Programm 31.02.03; LK 01
Erschienen in Fusion technology
Band 66-68
Seiten 271-276
URLs Abstract (HTML)
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page