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Further progress is reported on the implementation of the configuration-selecting multi-refer-
ence configuration interaction method for massively parallel architectures with distributed 
memory which allows calculations with Hilbert spaces in excess of 10 11 configurations, 
2 x 107 ofwhich can now be included in the variational subspace. This code makes it possible 
to elucidate the importance oftbe correlated treatment oftriple and quadruple excitations into 
the (3s3p) shell ofthe oxygen molecule, to account quantitatively for its electron affinity. Also 
included are extensive calculations to elucidate the reaction patbways of members of the 
enediyne family. 

1. Introduction
In the development of quantum chemical methods for 

complex molecules, a consensus has emerged that two 
important effects must be taken into account in a 
balanced and accurate fashion in order to arrive at 
quantitatively correct results. First, dynamic correla-
tions, i.e. the mutual influence two electrons exercise 
on each other when they pass at a close distance, must 
be accounted for. Second, one must be able to accom-
modate the multi-reference nature of the electronic 
states in many complex molecules. This effect is particu-
larly significant when one wants to describe an entire 
potential energy surface, where bond breaking or bond 
rearrangements can occur. An adequa e treatment of 
multi-reference effects is mandatory for the quantitative 
treatment of electronically excited states. 

For many years the multi-reference configuration 
interaction method (MRCI) has been one of the bench-
mark tools for accurate calculations of the electronic 
structure of atoms and molecules [1-3]. Ever since the 
development of the direct CI algorithm [1], which obvi-
ates the explicit storage of the CI matrix, highly effi.cient 
implementations [4] have been used for a wide variety of 
molecules. The generic lack of extensivity of the MRCI 
method has been at least partially addressed with a 
number of a posteriori [5, 6] corrections and through 
direct modification of the CI energy functional [7-11]. 

Due to the high computational cost, however, appli-
cations of the MRCI method remain constrained to 
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relatively small systems. For this reason the configura-
tion-selecting version of the MRCI-method (MRD-Cl), 
introduced by Buenker and Peyerimhoff [12-14], has 
arguably become one of its most widely used versions. 
In this variant only the most important configurations 
of the interacting space of a given set of primary con-
figurations are chosen for the variational wavefunction, 
while the energy contributions of the remaining config-
urations are estimated on the basis of second-order Ray-
leigh-Schrödinger perturbation theory [15, 16]. A 
configuration is selected for the variational wavefunc-
tion if its perturbative energy contribution or coeffi.cient 
is above a given threshold -X and the total energy (the 
sum of the variational and the perturbative contribu-
tions) is extrapolated to the limit -X-+ 0. While this 
extrapolation is known to fail in isolated instances, it 
gives remarkably good resolution of relative energies 
across the potential energy surface (PES) in the over-
whelming majority of applications. Since the variation-
ally treated subspace of the problem consists of only a 
fraction of the overall Hilbert space, the determination 
of eigenstates in the truncated space requires far less 
computational effort. Indeed, for typical applications 
the overwhelming majority of the computational effort 
is concentrated in the expansion loop, where the energy 
contribution of candidate configurations is computed. 

Even within this approximation, the cost of MRCI 
calculations remains rather high. The development of 
efficient configuration-selecting CI codes [16--21] is 
inherently complicated by the sparseness and the lack 
of structure of the selected state-vector. In order to 
further extend the applicability of the method, it is 
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thus desirable to employ the most powerful computa-
tional architectures available for such calculations. Here 
we report on the progress of the massively parallel 
implementation of the MRD-CI method for distributed 
memory architecture. In our implementation the diffi.-
culty in the construction of the subset of nonzero 
matrix elements is overcome by the use of a residue-
based representation of the matrix elements that was 
developed originally for the distributed memory imple-
mentation ofMR-SDCI [22). This approach allows us to 
evaluate the matrix elements efficiently both in the 
expansion loop and during the variational improvement 
of the coeffi.cients of the selected vectors. 

In this report we briefly document the recent improve-
ments in the massively parallel MRD-CI implementa-
tion that permit the treatment of larger Hilbert spaces, 
i.e. the correlation of a larger number of electrons in 
larger basis sets. We then use this method to elucidate 
the applicability and limitations of various formulations 
of MRD-CI in applications to two very sensitive chemi-
cal problems: the ring-closure reaction of enediynes and 
the electronic structure of benzofuroxanes. 

2. Technical improvements
As reported previously, matrix elements between two 

configurations are computed using a residue tree such 
that each matrix element between two determinants (or 
configuration state functions 14>1) and 14>2) is associated 
with the subset of orbitals that occur in both the target 
and the source determinant. This unique subset of orbi-
tals is called the 'transition residue' mediating the matrix 
element, and serves as a sorting criterion to facilitate the 
matrix element evaluation on distributed memory archi-
tectures. For a given many-body state, we consider a 
tree of all possible transition residues, as illustrated in 
figure 1. For each such residue we build a list of residue 
entries, composed of the orbital pairs (or orbital for a 
single-particle residue) that combine with the residue to 
yield a selected configuration and a pointer to that con-
figuration. While the number of transition residues is 
comparatively small, the overall number of residue 
entries grows rapidly (as Nselected n;) with the number 
of configurations Nselected and the number of electrons 
ne . 

Once the residue tree is available the evaluation of the 
matrix elements is very efficient, but its size limits the 
number of configurations in the variational subspace. In 
order to increase the size of the variational subspace we 
have removed all transition residues containing two 
external orbitals from the residue tree. Matrix elements 
mediated by such transition residues can be computed 
by gathering all the elements of the coefficient vector 
that contain a particular extemal pair on a single node 
of the machine. We have then implemented a scheme 

Figure 1. Schematic representation of the two-particle resi-
due tree. For each element of the configuration !ist (A) all 
possible two-particle residues are constructed. In the con-
figuration illustrated in (B) each box represents one occu-
pied orbital: the shaded region corresponds to the residue 
and the two white boxes to the orbital pair. The (ne - 2)-
electron residue configuration is looked up in the residue 
tree (C), where an element (D) is added that encodes the 
orbitals that were removed, with information regarding 
the permutation required and the index of the original 
configuration in the configuration !ist. Solid arrows in 
the figure indicate logical relationships, and dashed 
arrows indicate pointers incorporated in the data struc-
ture. The residue !ist, along with all elements, must be 
rebuilt once after each expansion loop. The effort to do 
so is proportional to the product of n  and the number of 
configurations. The number of matrix elements encoded 
in a single element of the residue tree is proportional to 
the square of the number of entries of type (D). 

that efficiently evaluates the orbital difference map of 
the internal part oftwo such configurations to determine 
if any matrix element between the two configurations 
exists. In a MR-SDCI calculation the value of this 
matrix element is obtained readily from the table of all 
integrals with only internal indices that can be replicated 
on all nodes. Implementing this change reduces the size 
of the residue tree significantly, and lets us increase the 
size of the variational subspace by a factor of almost ten, 
to about 40 million configurations. The state vectors for 
the Davidson iterations may be split across the nodes, 
such that only two copies of the total state vector are 
required on each node for the evaluation of the matrix 
elements. 

Once the residue tree has been constructed, its 'heads', 
i.e. the information regarding the transition residue 
itself, can be discarded. During the matrix evaluation, 
only the orbital lists are required. The space freed by 
eliminating the information pertaining to the content 
of the individual residues can be reused to address 
those orbital lists that contain a particular orbital pair. 
Once a set of integrals in the physicist's notation
(i1 i2 li3i4) = J dx1 dx2 xi (x1 )xi (x2)r1z1 X3 (x1 )x4(x2) with a
given orbital pair, e.g. i1 i2 , is served to the node, this 
information can be used to identify all orbital lists that 
generate nonzero matrix elements for this integral list. 
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Using this information, an integral driven matrix ele-
ment evaluation scheme can be implemented, during 
which all integral lists (i 1 i2 I ... ) are distributed across
the nodes and rotated in a cyclic fashion until every 
integral list has visited every node. Since MPI permits 
very fast cyclic data exchange and no search operations 
are required to identify nonzero matrix elements for a 
given set of integrals, this mechanism allows for the 
efficient integral driven evaluation of all matrix elements 
not mediated by double external transition residues. 

3. Benchmark calculations
3.1. Oxygen 

Previous work has established that the accurate cal-
culation of the electron affinity of 0 2 remains a formid-
able challenge even for present day quantum chemical 
techniques. At the level of a CAS-SCF description the 
adiabatic electron affinity of the oxygen molecule is pre-
dicted with the wrong sign even in the basis set limit. A 
careful study [23] concluded that strong differential 
dynamic correlation effects are most probably entirely 
responsible for the source ofthis discrepancy. In MRCI-
SD calculations the correct sign for the electron affinity 
can barely be reached using augmented quadruple-zeta 
quality basis sets. A semiquantitative agreement be-
tween experiment and theory was reached when the 
multi-reference generalization of the Davidson correc-
tion [6] was applied to estimate the effect of higher exci-
tations. 

0 2 is therefore one of the simplest molecules that 
challenges one of the central paradigms of modern 
quantum chemical correlation methods that rest on the 
assumption that the explicit treatment of single and 
double excitations of a chemically motivated reference 
set is sufficient to account quantitatively for dynamic 
correlation effects. This observation, as well as the 
desire to explicitly test approximations for extensivity 
corrections to MR-SDCI [7-10] motivated the develop-
ment of the present code. Since the CAS + SDTQ Hil-
bert space ofO2 in an aug-cc-pVDZ basis has dimension 
32 x 109 , this problem cannot be treated with any of the 
presently available MR-SDCI or MRD-CI implementa-
tions, but provides a suitable challenge for our parallel 
implementation. 

Figure 2 demonstrates that the energies of both the 
neutral molecule and the anion converge smoothly with 
the threshold to their respective MRCI values. Treating 
single and double excitations alone (table 1) in calcula-
tions using up to cc-pV5Z basis sets we find in agree-
ment with earlier results that the electron affinity of 0 2 
saturates at approximately -0.03 eV at the basis set limit 
for füll valence (2s2p) CAS-MRD-CI calculations. Thus 
the experimental electron affinity of 0.42 e V ( corrected 
for vibrational and other non-electronic effects) cannot 
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Figure 2. Convergence ofthe (2s2p) CAS MRD-CI energy of 
the oxygen molecule and its anion in an augmented cc-
p VQZ basis set in BW-MRPT approximate natural orbi-
tals as a function of the coefficient threshold. 

Table 1. Adiabatic electron affinity (in mH) of the oxygen 
molecule in MRD-CI in approximate BW-MRPT natural 
orbitals in a (2s2p) active space, i.e. the space of the nat-
ural orbital dominated by atomic 2s and 2p functions, and 
with correlated triple and quadruple excitations into the 
(3s3p) space, respectively. Inclusion of correlated triples 
and quadruples into the (4s4p) has no significant impact 
on the results. We report results without and with 
Davidson corrections (in mH). 

Basis Mode EA EA (Dav) 

aug-cc-pVTZ (SD) -3.6 15.6 
aug-cc-pVQZ (SD) -3.4 15.8 
aug-cc-p5QZ (SD) -3.2 15.7 
aug-cc-p VTZ (SD) + (3s3p)TQ 9.0 12.6 
aug-cc-p VQZ (SD) + (3s3p )TQ 9.7 133 
aug-cc-pV5Z (SD) + (3s3p )TQ 103 
aug-cc-p VTZ (SD) + (3s3p 4s4p)TQ 9.7 109 

be reproduced at this level of calculation. We have 
incorporated a special mode into our program that 
allows the selective treatment of triple and quadruple 
excitations into the (3s3p) space and correlations there-
fore. Table 1 demonstrates that the inclusion of these 
terms accounts qualitatively, and for large basis sets 
quantitatively, for the remaining difference in the experi-
mental result. lt  appears that the correlation of excita-
tions into the (3s3p) Rydberg orbitals have an important 
stabilizing effect on the oxygen anion. Preliminary cal-
culations on B 0  [24] and NO [25] demonstrate similarly 
important effects for the electron affinities of these mol-
ecules. 

3.2. Enediynes 
Enediynes have been investigated for some time 

because of their propensity to undergo a cyclization 
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Table 2. Electronic differences between the energies ofenediyne (en), dihydro-p-benzene (pb) and its forward transition state (ts) in 
cc-pVDZ and cc-pVTZ basis sets in B3LYP optimized geometries. Absolute energies are reported in au and relative energies 
(A) in kcal mo1- 1• The values at c = 0 are extrapolated from various thresholds. 

e = 5 X 10- 5 e = 2 X 10- 5 e = 0
MRCI A A+Dav MRCI A A+Dav MRCI A A+Dav 

cc-pVDZ 
en - 230.086 830 -230.085 833 -230.085 825 
ts - 230.036 549 31.6 293 -230.034981 31.9 29.8 -230.034208 32.4 305 
pb - 230.074 551 7.7 6.9 - 230.073 750 7.7 69 -230.073 618 7.7 6.8 

cc-pVTZ 
en - 230256 606 -230.248 273 
ts -230.211104 28.6 283 - 230203 850 
pb - 230243 537 82 112 - 230.237 112 

reaction to para-dihydrobenzene derivatives that are 
capable of lysing cellular DNA and hence cause cell 
death [26). This property, if selectively activated in dis-
eased or cancerous cells, offers the possihility of applica-
tions in cell-specific drugs against such diseases. The 
ultimate goal is to design a compound that in cancerous 
cells will spontaneously undergo cyclization under phy-
siological conditions and thus kill the cell. In order to 
predict the effectiveness of specific compounds it is im-
portant to understand the electronic structure of educt 
and product of the cyclization reaction as well as the 
height of its barrier. However, the quantum chemical 
description of the cyclization reaction proves difficult 
and interesting because of the strong change in the elec-
tronic structure of the molecule during the reaction. 

We have therefore undertaken a set of MRD-CI 
benchmark calculations into the Bergman cyclization 
of the simplest member of the enediyne family. As 
figure 3 illustrates, the reaction is strongly endothermic 
at the Hartree-Fock level of theory (results produced 
with our code), in contrast to experimental evidence. 
This indicates that dynamic correlation is very import-
ant for the description of this reaction. CCSD calcula-
tions [27, 28) significantly reduce deviation from 
experiment (black bars in the figure), but fail to account 
quantitatively for the ring-closure energy. Only 
CCSD(T) calculations, which account partially for 
triple excitations and thus non-dynamic correlation 
effects, yield quantitative agreement between experiment 
and theory. These observations indicate that a balanced 
treatment ofboth dynamic and non-dynamic correlation 
effects is required to account quantitatively for the reac-
tion energetics of these compounds. 

Our own calculations were motivated by two observa-
tions. An earlier MRCI [29) study failed to reach even 
qualitative agreement with the experiment, presumably 
because the hasis set employed (DZ only) was too small 
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Figure 3. Schematic representation of the energetics (electro-
nic contribution only) of the cyclization reaction of ene-
diyne to para-dihydrobenzene in a cc-pVDZ basis set 
computed by a variety of methods (SCF, - - ;  CCSD, 
- - - - ;  CCSD (T), · · · ·; and MRD-Cl, - · - · - · -). For 
details see the discussion in the main text. All energies are 
in kcal mo1- 1 relative to the educt. 

to account for the dynamic correlation effects These are 
strongest in the educt, and hence MCSCF leads to sta-
hilization of the product with respect to the educt. 
Second, no calculations employing !arger basis sets 
than DZP have been reported in the literature so far. 
Considering the N7 scaling of the computational cost of 
CCSD(T), the application of this method poses signifi-
cant challenges hoth for !arger basis sets and com-
pounds !arger than the model considered here. Thus 
our goal was (i) to establish that MRD-CI as a quanti-
tative benchmark method for the model compound at 
the cc-pVDZ level, and (ii) to explore !arger basis sets 
with this method to ensure that the agreement obtained 
at that level of theory is not fortuitous. 

As summarized in table 3 we have been successful in 
establishing that MRD-CI reproduces the CCSD(T) 
results in the cc-p VDZ hasis set. The transition state 
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Table 3. Electronic differences between the energies of ene-
diyne, p-dihydrobenzene and its forward transition state 
calculated with various methods in cc-pVDZ and cc-
pVTZ basis sets in B3L YP optimized geometries. 
Relative energies are reported in kcal mo1- 1• The experi-
mental values are taken from [30] and are corrected to the 
energies of O K according to [31]. 

Transition Dihydro-
Method Basis state benzene 
MRD-CI aug-cc-pVDZ 32.4 7.7 
MRD-CI+Dav aug-cc-pVDZ 30.5 6.8 
CCSD aug-cc-pVDZ 37.0 28.0 
CCSD(T) aug-cc-pVDZ 29.0 62 
MRD-CI aug-cc-pVDZ 285 6.1 
MRD-CI+Dav aug-cc-pVDZ 28.0 7.7 
Experimental 30.1 ±0.5 7.8 ± 1.0 

(using the CCSD geometry) is predicted to be 15 kcal 
mo1-1 higher than by CCSD(T): the product lies 6.8 kcal 
mo1-1 above the educt when the multi-reference David-
son correction is applied in the MRD-CI calculation. 
This is comparable with the values of the CCSD(T) 
calculation. 

We have performed configuration selecting MRCI 
calculations on product, educt and transition state in 
OFT (B3L YP) optimized geometries [28] using cc-
p VDZ and cc-pVTZ basis sets. As indicated in table 3 
no significant differences in the relative energies of prod-
uct and educt appear between the double- and triple-
zeta quality basis sets. Taking the difference in zero-
point vibrational energy into account, the triple-zeta 
results are in quantitative agreement with the best avail-
able experimental data [30, 31]. 

4. Conclusion 
Accurate benchmark methods for the treatment of 

dynamic correlation effects, such as MRCI, have made 
a significant impact on the development of quantum 
chemistry. Since their computational effort rises rapidly 
(as n ) with the number of electrons, only the use of the 
most powerful computational architectures ensures their 
continued relevance to the field. Because massively par-
allel architectures with distributed memory will yield the 
highest computational throughput in the foreseeable 
future, it is worthwhile to pursue the use of these 
machines for quantum chemical benchmark calcula-
tions. The development of our scalable implementation 
of one of the most popular variants of the MRCI 
method family on such architectures is one important 
step in this direction. The present implementation allows 
the treatment of Hilbert spaces, and systems that are 
!arger than those that can be treated on traditional

architectures, while significantly reducing the turn-
around time for more moderate applications. With the 
ability to routinely treat Hilbert space exceeding 10 12 

determinants (107 in the variational subspace) many 
questions that require a delicate balance of dynamic 
and non-dynamic correlation effects, e.g. in transition 
meta! chemistry, become amenable to the MRCI 
method. 
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