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receptor ligand docking
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Abstract

We compare the efficiency of three stochastic optimization methods, simulated annealing, parallel tempering and
stochastic tunneling to locate the global minima of complex and rugged potential energy surfaces arising from atomistic
models for receptor ligand docking. The stochastic tunneling method proves to be the most efficient generic approach

for atomistic receptor ligand docking in the rigid ligand
All rights reserved.

1. Introduction

The development of methods to efficiently de-
termine the global minima of complex and rugged
energy landscapes remains a challenging problem
with applications in many scientific and techno-
logical areas.

In particular for NP-hard [1,2] problems,
straightforward enumerative as well as sophisti-
cated branch-and-bound techniques become pro-
hibitively expensive and stochastic methods offer
the only acceptable compromise between the
computational cost of the method and its reli-
ability. In such techniques the global minimization
is accomplished by the simulation of a fictitious
dynamical process for a ‘particle’ on the multi-di-
mensional potential energy surface (PES). This
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particle explores the potential energy surface in a
biased random walk that is designed to guide it to
low-energy regions.

In one of the most widely used methods, the
simulated annealing technique (SA) [3], the PES is
explored in a Monte Carlo simulation with grad-
ually decreasing temperature. The final tempera-
ture is chosen small enough to constrain the
dynamics of the particle to the immediate vicinity
of the nearest local minimum of the PES, while the
largest temperature must be sufficiently high to
allow an essentially random search of the PES. On
rugged PES this strategy routinely fails, because
transition states between adjacent local minima are
too high to be overcome at temperatures suffi-
ciently small to resolve the energy differences be-
tween them.

Here we investigate a family of methods that
have sought to address this generic deficiency of
SA by allowing the dynamical process to pass
through thermodynamically inaccessible regions of
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the PES [4]. Generalized ensemble techniques such
as simulated tempering [5,6], parallel tempering
(PT) [7] and multi-canonical algorithms [8,9], have
been proposed to address this problem. In a pre-
vious report, we have introduced the stochastic
tunneling method [10] (STUN) as an alternate
approach that avoids both the numerical cost of
multiple simulations as well as the estimation of
auxiliary control fields. STUN was successfully
applied to peptide folding [11], as were PT [12] or
SA [13]. Here we compare this method with PT
and SA in application to the receptor ligand
docking (RLD) problem in an atomistic model.
We find STUN to be an efficient and reliable
docking procedure, that succeeded even in cases
where neither PT nor SA were able to locate the
global minimum in repeated simulations.

2. Receptor-ligand docking

In the RLD problem, suitable ligands must be
selected for a given, structurally characterized re-
ceptor [14,15]. One approach is to screen large
chemical databases in-silico for suitable ligands.
For each ligand the best possible fit between ligand
and receptor must be determined. Even in the most
simple atomistic model, where both protein and
ligand are treated as inflexible molecules, efficient
numerical techniques to screen large databases in
any reasonable timeframe are still lacking. The
reason for this difficulty lies in the competition
between two vastly different energy scales in the
problem, where steric repulsion competes with
attractive electrostatic forces and hydrogen bond-
ing to determine the global minimum of the PES.
The tight fit between receptor and ligand (key
lock-principle) complicates the optimization
problem significantly because it is almost impos-
sible to reorient the ligand within the receptor,
while there are few specific interactions between
ligand and receptor outside the receptor pocket.
For the simulations discussed below we used a
scoring function:
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which contains the empirical Pauli repulsion (first
term), the Van de Waals attraction (second term)
and the electrostatic Coulomb potential (third
term). Neither solvation effects nor dielectric
screening were used in the simulations because
such terms alter the specifics of the affinity of a
given ligand to the receptor, but not the nature of
the optimization problem. We note, however, that
the inclusion of such terms generally leads to
nondifferentiable potentials, which are not ame-
nable to optimization methods such as basin
hopping [16]. The ligands are simulated as rigid
bodies, there are six degrees of freedom in the
simulations. In cases where rotatable bonds exist,
the X-ray crystallographic structures of the docked
ligands were taken from the PDB database. The
force field parameters R;; and 4;; are taken from
the OPLSAA force field [17] and the scoring
function is pre-calculated on grids. The atomic
affinity grids are interpolated using a logarithmic
interpolation technique [18].

3. Methods

In SA the PES is explored in a stochastic pro-
cess, where a given configuration with energy E| is
modified and the new configuration with energy E,
is accepted with probability:

p =exp(—p(E — Ez)), (2)

where § = 1/k,T is an inverse fictious temperature.
For fixed f the simulation samples the configura-
tion space with a thermodynamic equilibrium
distribution corresponding to this temperature. In
SA, the temperature is gradually reduced to zero
according to a cooling schedule, so that the system
should end in principle in its ground state, or
global energy minimum at the end of the simula-
tion. For rugged or glassy PES, however, ergod-
icity is routinely lost in the cooling process, which
‘freezes’ in some metastable state.

For such PES, the freezing problem may be
circumvented by allowing a trapped particle to
escape from a local minimum by increasing the
temperature of its simulation. Following this idea
the parallel tempering method replaces the unidi-
rectional cooling of SA by a set of concurrent
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simulations at different temperatures {7;|i=
1...n}, which occasionally exchange configura-
tions with probability:

p = exp(—(B, — B>)(E1 — E2)), 3)

where B; and E; (i = 1,2) are the inverse temper-
atures and energies of the two simulations/config-
urations, respectively. This mechanism permits
each particle to alternate between low-temperature
simulations where only the closest local minimum
is explored and high-temperature simulations
where it diffuses freely across potential barriers.
The specific choice in Eq. (3) allows all simulations
to remain in thermal equilibrium so that thermal
averages can be computed at a variety of temper-
atures simultaneously (detailed balance). Com-
pared to straightforward SA, PT incurs an n-fold
increase in cost for a given total simulation length.
On rugged or glassy PES, however, where the es-
cape time from a given local minium can be ex-
ponentially long, this overhead may be more than
compensated for. Recently a number of methods
have been proposed that provide similar mecha-
nisms by generalizing the Monte Carlo method
[5,6,12] to simulate ensembles other than the ca-
nonical. However, the efficiency of at least some of
these techniques has been questioned for glassy
PES [19].

The stochastic tunneling method [10] incorpo-
rates this ability by letting the particle in the
minimization process ‘tunnel’ forbidden regions of
the PES. As in MC and SA, we retain the idea of a
biased random walk, but apply a non-linear
transformation to the potential energy surface:

ESTUN(x) =1- exp[—y(E(x) —Eo)], (4)

where E; is the lowest minimum encountered by
the dynamical process so far. Alternately a suitable
upper bound for the global minimum can be used
for E,. This effective potential preserves the loca-
tions of all minima, but maps the entire energy
space from E, to the maximum of the potential
onto the interval [0, 1]. At a given finite tempera-
ture of O(1), the dynamical process can therefore
pass through energy barriers of arbitrary height,
while the low-energy region is resolved even better
than in the original potential. The degree of
steepness of the cutoff is controlled by the tun-

neling parameter y. Figs. 1b and c illustrate the
STUN potential energy surface for a 1D model
potential at a hypothetical point in the simulation
where the minima indicated by the arrows have
been found as the present best estimate for the
ground state.

While the transformation in Eq. (4) is not the
only possible functional, we believe that there are a
number of features that constrain its construction.
(i) The transformation must be strongly nonlinear
in the high-energy regime, as only such a trans-
formation will lead to a nearly constant effective
PES for high energies and true ‘tunneling’. (ii)
There must be a parameter that modulates the
degree of compression (y), since the ratio of
the energy differences of adjacent local minima to
the transition state energy separating them varies
from problem to problem. (iii) Requiring an es-
sentially flat PES at high energy (for typically
unbounded PES) requires a transformation that
maps the interval [Ey, co] onto some finite interval,
which can be chosen as [0, 1] without loss of gen-
erality. (iv) It is possible to use a fixed inverse
temperature f as a second parameter and to
quench the configuration whenever a configura-
tion with an energy lower than E, is encountered.
The optimization of this additional parameter can
be avoided, when one adopts the self-adjusting
cooling schedule introduced previously [10].
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Fig. 1. Sample rugged one dimennsional PES (a) and STUN
effective potentials ((b) and (c)) for two hypothetical snapshots
where the local minima indicated by the arrows have been lo
cated as the best estimate for the global minimum.
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4. Results

RLD simulations were carried out for three
representative natural ligands, benzamidine, met-
hotrexate and retinol in their natural receptors, f-
trypsin (3 ptb), dihydrofolate reductase (4 dfr),
and retinol binding protein (1 rbp), respectively. In
general RLD simulations are complicated by the
fact that (a) not much is known a priori about the
center of mass location of the ligand with respect
to the receptor pocket and (b) a large fraction of
the search space is sterically forbidden.

To succeed in this scenario we optimized the
dynamics of the underlying random walks as fol-
lows: the ligand is embedded into a symmetrical
ellipsoid, where analytical expressions for the
friction coefficients f; (translation), f, (rotation
around long axis a) and f; (rotation around short
axis b) exist [20]. The Brownian dynamics tech-
nique in the diffusive regime is based on the update
scheme [21]

r(t+0t) =x(t) + F(t)ot/ fi + X, (5)

where F is a drift term and X is the random dis-
placement sampled from a Gaussian with zero
mean and width (X?) = 2kpTdt/f,. Analogous
equations exist for the rotational updates dw, and
ow, around axes a and b, respectively. Taking
retinol, the ratio a/b ~ 4.5 is reflected in the dif-
ferent friction coefficients f; which determine the
values for the angular shifts, leading to a ratio
0wy /dw, ~ 2.4, Similarly, the translational update
is physically related to the rotational updates and
adapted to the specific shape of the ligand. In
contrast to Brownian dynamics, the time step o¢
has no physical counterpart but can be used as a
free parameter to adjust the acceptance rate.

For the drift term we introduce a point p
somewhere inside the cavity of the receptor. The
drift force ofy ~ —k¢T(r —p) defines an addi-
tional, systematic contribution to the dynamics.
The strength of the drift is proportional to the
distance |r — p| as it were in a harmonic oscillator
field. If there were no further external forces, this
drift would lead to a Gaussian localization of the
center of mass coordinates of the ligand [22]. The
advantage of this approach over the introduction
of a penalty function is that the structure of the

potential surface remains unchanged. No more
than a bias in the sampling procedure is added to
the random displacements. The ligand is localized
in a way that its probability distribution fills the
cavity of the receptor and is significantly reduced
far outside the cavity. The localization volume
does not depend on the step size ¢ and the tem-
perature 7.

In all simulations ligands were placed in a
random position outside the cavity and we aver-
aged the results of 50 runs of predescribed step
number. A ligand was defined as ‘docked’ if the
average RMS deviation of the atoms from the
global minimum was less than 0.1 nm. The po-
tential values were pre-calculated on cubic grids
with a grid constant of 0.04 nm and a dimension of
3 x 3 x 3 nm®. Generally, a grid whose size is well
adapted to the cavity dimension can improve the
efficiency of the simulation, but in the presence of
the drift term the actual size and shape of the grid
becomes secondary. As a drift center we have
chosen the actual center of mass of the docked li-
gand, but due to the diffuseness of the localization
volume there is no need for an accurate estimate
for that. Any drift term which is centered near the
cavity and whose delocalization allows the ligand
to probe the entire cavity allows for the desired
docking.

The optimum cooling schedule for SA was to
start with an initial temperature of 3000 K and
then cooling down to 300 K toward the end of the
run. In PT, we face the problem that n simulta-
neous simulations produce an n-fold increase of
the number of steps for a given simulation length.
A certain minimum simulation length, however, is
mandatory for the ligands to find their way into
the cavity. This imposes the upper limit of three
configurations for PT to be competitive with
STUN and SA, a number too low to exploit the
full potential of this technique. The temperatures
were found to be best at 1000, 1500 and 2250 K for
the three configurations.

4.1. Benzamidine docking
Benzamidine is an oblate shaped ligand which,

in the ellipsoidal approximation, has an axial ratio
of a/b =11, i.e., it is a flat discus. The docking to
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p-trypsin is straightforward, since the cavity is
easily accessible and there is no potential barrier to
be tunneled. It has been observed that even a
simple random dynamics reliably docked after 10°
steps [18]. The potential minimum is quite flat with
respect to rotations of the docked ligand around
its short axis, which may be an artefact of the in-
accurate treatment of hydrogen bonds. We there-
fore relaxed the docking criteria in this particular
case and regarded configurations with energies not
more than 5% higher than the global minimum as
docked.

The performance of STUN (tunnel parameter
y = 0.05) and PT compared to SA is displayed in
Fig. 2 which shows the success rate as a function
of the number of energy evaluations. The data are
averaged over 50 independent runs and indicate
that all methods perform almost equally well. The
success of SA appears surprising, but is entirely
due to the drift term which was absent in the
simulations reported by Diller [18]. The present
simulations confirm the observation made by
other groups that this system is too simple to
differentiate competing global optimization tech-
niques with respect to their efficiency. Neverthe-
less, it has been pointed out that in a database of
small molecules to be docked, many compounds
fall into this category, and therefore any algorithm
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Fig. 2. Sucess rate of SA (full line), PT (dotted line) and STUN
(dashed line) in docking benzamidine versus the number of
steps.

to be applied to the RLD problem should pass this
test efficiently.

4.2. Methotrexate docking

Methotrexate is a prolate shaped ligand with a
axial ratio of a/b = 2.5 in the ellipsoidal approxi-
mation, i.e., a fat cigar. This system presents sev-
eral problems: the ligand features plenty of
polarized endgroups and tends to dock wherever
there are residues with partial electric charges. This
leads to a rugged potential surface with a large
number of local minima. To make things worse,
there exists a very deep local minimum just at the
entrance of the cavity. The global minimum, the
energy of which is only a few percent lower, is
separated from the metastable state by a barrier of
hundreds kJ/mol. The ligand has to tunnel through
the barrier, which requires a high temperature, and
then to localize the minimum to an accuracy of a
few percent in order to distinguish it from the local
minimum in front of the barrier.

Fig. 3 shows the success distribution, where
STUN reached a reliability of 0.5 after 50.000
steps, PT required 150.000 while SA required
200.000 steps. In previous work [23], SA was re-
ported to fail completely for this system in the
absence of a drift term. During the simulations we
observed frequently that the ligand reached the
inner region of the docking site in early stages of
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Fig. 3. Sucess rate of SA (full line), PT (dotted line) and STUN
(dashed line) in docking methotrexate versus the number of
steps.
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the simulation, when the temperature was still too
high to probe the potential minimum so that
shortly afterwards a better score was found again
in the low-energy region in front of the cavity. This
effect was less pronounced for STUN (tunnel pa-
rameter y = 0.05), where the temperature is regu-
lated by an automatic mechanism. The energy
difference between the minima is resolved much
earlier in the simulation.

4.3. Retinol docking

As mentioned above, retinol is a prolate shaped
ligand with an axial ratio of a/b = 4.5, i.e., a slim
cigar. There exists only one polarized endgroup in
retinol. In the rigid receptor approximation the
binding site is almost completely enclosed and the
molecule has to tunnel through a barrier of several
thousands kJ/mol to reach the global minimum.
On the other hand, this system presents no low-
energy secondary minima. Since the cavity is quite
elongated (length 1.65 nm) only a weak drift term
was applied.

In agreement with previous studies [18], SA
completely failed to pass the ligand through the
barrier, the same held true for PT. Among 50 runs
there was no successful docking. The success dis-
tribution for STUN (y = 0.002) (Fig. 4) demon-
strates that this technique is capable for a fast and
reliable docking of retinol, reaching a success rate
of 0.5 after about 40000 energy evaluations.
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Fig. 4. Success rate of docking retinol with STUN.

5. Discussion

In this investigation we have compared three
stochastic optimization strategies for rugged low-
dimensional potential energy surfaces that arise in
RLD. For this problem STUN proved to be a
generic reliable approach superior to both PT and
SA. SAS, a close cousin of the DEM, was inves-
tigated in a previous study [18] and located the
minimum with 10000 and 8000 energy/gradient
evaluations for the Benzamidine and retinol, re-
spectively. The success of the SAS docking pro-
cedure depends strongly on the definition of the
binding pocket. In applications of computational
high throughput screening little can be said a pri-
ori about the location of the center of mass of the
ligand with respect to the receptor. If one allows
for the possibility that the CM of the ligand re-
mains outside the cavity, it is clear that the global
minimum at large diffusion times must always lie
outside the protein. In this scenario the DEM-like
methods must rely on finding the branching point
of the potential when the weak attractive potential
inside the binding area splits from the large mini-
mal area outside the protein.

We want to point out that the three optimiza-
tion methods are not necessarily exclusive. For
example both, PT and STUN, yield lower energies
if a short SA (optimization) run with low tem-
perature is appended to the ordinary (search) run.
Other combinations like using PT to sample the
STUN energy landscape are worth to be investi-
gated.
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