


the active site of dihydrofolate reductase (4dfr).

For this target, a highly optimized inhibitor is

known (methotrexate, MTX), including the crys-

tallographic X-ray structure of its docked confor-

mation. MTX emerges by far as the top scoring

ligand in the screened database, validating both
docking approach and the choice of the scoring

function. It is shown that MTX and other top

scoring database leads coordinate with preferred

amino acids for the creation of hydrogen bonds

inside the cavity. We discuss how this observation

could be employed to identify hot-spots in the

active site of the protein and thus support the

creation of pharmacophore models.

2. Computational methods

2.1. Preparation of the three-dimensional database

The ligands were taken from the open part of

the NCI database (nciopen.mol), which had been
processed to generate the three-dimensional

structures with the help of Corina [19,20] (nci-

open3d.mol). Hydrogen atoms and partial charges

were added using the InsightII software package

and its esff forcefield. Rotatable bonds were iden-

tified with a simple algorithm which searched for

single bonds, excluding ring-structures, trivial

single-atom end-groups and atoms with sp2 hybrid
orbitals. Among 125 000 compounds available, the

first 10 000 were selected which satisfied the con-

ditions of having not more than 100 atoms and not

more than 10 rotatable bonds.

2.2. Preparation of the protein coordinates and

definition of the active sites

The protein coordinates were taken from the

X-ray structure of Escherichia coli dihydrofolate

reductase with MTX (pdb entry: 4dfr, monomer

B) [21]. Hydrogen atoms and partial charges were

attached using InsightII with esff force field. The

binding site was defined with the docked ligand in

the X-ray structure: A volume of 5 �AA radius was
defined around the center of mass position of the
docked MTX. If the global minimum on the PES

of any ligand was located such that either the

center of mass of this ligand or more than 20 li-

gand atoms were inside this volume, the ligand was

regarded as docked.

2.3. Scoring function

For the simulations discussed below we used the

following scoring function

S ¼
X
Protein

X
Ligand

Rij

r12ij
� Aij

r6ij
þ qiqj

�rij

!

þ
X

H-bonds

cosHij

~RRij

r12ij
�

~AAij

r10ij

!
; ð1Þ

which contains the empirical Pauli repulsion (first
term), the Van de Waals attraction (second term),

the electrostatic Coulomb potential (third term)

and the angular dependent hydrogen bond po-

tential (term four and five). The Lennard Jones

parameters Rij and Aij were taken from OPLSAA

[22], the partial charges qi were computed with
InsightII and esff force field, and the hydrogen

bond parameters ~RRij, ~AAij were taken from Auto-
Dock [10]. The electrostatic potential was pre-

calculated on a grid. The other contributions,

however, turned out to be too rapidly varying to

be reliably stored on a grid and interpolated. In-

stead we exploited the short-range character of

these interactions. We stored a list of atoms next to

each grid point and computed the short-range

potentials on the fly. This procedure obviates the
need for interpolation of rapidly changing terms

and permits a straightforward implementation of

the angle dependence of the hydrogen bond po-

tentials. With these changes the accuracy of the

evaluation of the scoring function could be sig-

nificantly increased over an earlier entirely grid-

based implementation [18].

2.4. Optimization method

Many stochastic optimization methods get

routinely trapped in metastable minima of the

potential energy surface. This problem is particu-

larly acute in receptor ligand docking, where there

is little specificity between ligand and receptor

outside the receptor pocket and little room for



reorientation inside. The degree of affinity between

receptor and ligand is discernable only where close

to the ideal docking position, in particular because

of the short-range nature of stabilizing hydrogen

bonds. In the proximity of typical docked posi-

tions, however, the ligand cannot be significantly
rotated or distorted without clashing with receptor

atoms.

The STUN method [16] avoids this problem by

letting the particle in the minimization process

�tunnel� forbidden regions of the PES. As in sim-
ulated annealing [23] we retain the idea of a biased

random walk, but apply a non-linear transforma-

tion to the potential energy surface

ESTUNðxÞ ¼ 1� exp½�cðEðxÞ � E0Þ�; ð2Þ
where E0 is the lowest minimum encountered by

the dynamical process so far. Alternately a suitable

upper bound for the global minimum can be used

for E0. This effective potential preserves the loca-
tions of all minima, but maps the entire energy

space from E0 to the maximum of the potential

onto the interval [0,1]. At a given finite tempera-

ture of O(1), the dynamical process can therefore

pass through energy barriers of arbitrary height,

while the low energy-region is resolved even better

than in the original potential. The degree of

steepness of the cutoff is controlled by the tun-
neling parameter c.

2.5. Computation

The electrostatic potentials were stored on a

30� 30� 30 �AA
3
grid with grid spacing of 0.5 �AA,

which was positioned around the center of mass of

the X-ray structure of MTX. Each of the 10 000

ligands was shifted into the cavity and, if required,

moved so that heavy clashes of the initial config-

uration were avoided. We then performed 10

STUN simulations, comprising 3� 105 energy

evaluations each. Only the repetition of the dock-
ing procedure ensured that weakly bound ligands

are reliably docked. The (non-physical) simulation

temperature was fixed to 5 K, the STUN param-

eter c was chosen as 0.01 for all ligands. A drift

term was applied in order to increase the sampling

rate inside the cavity with respect to peripheral

regions [18]. The size of the displacements in the

conformational updates was automatically ad-

justed during the simulation to keep the accep-

tance rate around 0.5. In average, each ligand

consumed about 20 seconds of CPU time for 105

updates on a PC (AMD Athlon 1.2 GHz).

3. Results

6100 ligands, out of 10 000 compounds, reached

configurations where the ligand was embedded in

the cavity and the external binding energy, scored

with Eq. (1), was below )50 kJ/mol. It is well
known that scoring functions as the one used here
are too inaccurate to yield quantitatively approx-

imate the natural affinity of the ligand. Neverthe-

less they often provide a useful relative ranking of

leads when docked under identical conditions.

Fig. 1 shows the external binding energies of the

docked compounds. Among them, the natural li-

gand MTX clearly scored best, with a minimum

energy conformation which differed only 1.4 �AA
from the X-ray crystal structure (Fig. 2). This

figure shows that both conformations essentially

differ in the positions of only one of their car-

boxylate groups. In the minimal conformation of

the scoring function this group is turned around to

Fig. 1. The affinities of 6100 ligands docked to 4dfr. The nat

ural ligand (MTX) was scoring best. The five top ranking

database leads are denoted as a; . . . ; e.



create an extra hydrogen bond to Lys-32 which is
absent in the crystallographic conformation. In the

experimental configuration a conserved water

molecule (Wat-672) mediates competing hydrogen

bonds in the natural environment, an effect which

cannot be accounted for with the present scoring

function.

The results of the screening process were en-

couraging not only because the natural ligand was
selected with high specificity, but also because

other high ranking ligands showed significant

similarities in the binding mechanism. This ob-

servation, more than the exact ranking in the

binding affinity, suggests that virtual screening

methods can aid rational drug design. In Table 1

we compare some of the relevant features of MTX

with the five ligands which scored next. It is ob-

vious that no other ligand could create as many

hydrogen bonds with the protein as MTX. On the

other hand, it appears that there exist certain res-

idues inside the cavity which serve as preferred
binding sites, in particular Arg-52 and Asp-27.

One may hypothesize that these residues, along

with the general shape of the receptor pocket, are

responsible for the specificity of the receptor li-

gand interaction. We therefore replaced both

amino acids with valine, which cannot act as a

hydrogen bond donor/acceptor. The resulting af-

finities of a repeated screening process are shown
in Fig. 3. Not surprisingly, the binding energies are

now generally reduced and those ligands which

had originally scored well have lost their top

ranking positions. This exercise demonstrates how

virtual screening can be employed to identify hot-

spots inside the active site of the protein to support

the creation of pharmacophore models.

Finally, the reliability of docking MTX and the
top ranking leads was investigated. The docking

cycle was defined as successful if the lowest mini-

mum led to a ligand conformation which was

closer than 2 �AA to the best known minimum which

Fig. 3. The affinities of the ligands after docking to a modified

4dfr, in which Arg 52 and Asp 27 are replaced by Valine.

Ligands which originally scored best have now lost their top

ranking positions, including MTX.

Fig. 2. MTX in its crystallographic X ray conformation (black)

and the global minimum found with STUN (color). Both

conformations differ in the positions of their carboxylate

groups.

Table 1

Properties of ligand MTX and the 5 top ranking leads of the

database, denoted as a e

Lead #Atoms #Rot. Affinity Hydrogen bonds to

(kJ/mol)

MTX 54 9 233 Arg 52, Asp 27, Arg 57,

Lys 32, Ile 5

a 46 10 173 Arg 52, Ile 14, Ala 7

b 28 8 169 Asp 27, Trp 22, Leu 24

c 38 7 164 Arg 52, Ile 50, Ala 7,

Ile 94

d 29 4 163 Arg 52, Asp 27, Trp 22

e 37 9 156 Arg 52, Asp 27, Trp 22

#Rot. means the number of rotatable bonds, i.e. the number

of internal degrees of freedom in the simulation.



satisfied the docking criteria of Section 2.2. Fig. 4
plots the average docking rates as a function of

energy evaluations. We observe that after 106

scorings none of the ligands were able to reach its

minimum conformation with more than 50%

probability, but that significant docking rates were

reached already after 105 energy evaluations. Gi-

ven a finite amount of computational resources it

is therefore advantageous to perform several
shorter docking runs instead of few long cycles to

localize the global minimum. One exception is lead

a: Here, a docking position outside the cavity ex-

ists which is 20 kJ/mol lower than the best con-

formation inside the cavity. As a result the rate of

docking inside the cavity remained very low, in-

dependent on the length of the cycle. Interesting is

the fact that lead e was docking even faster and
more reliable than MTX. After only 104 scorings a

docking rate of 25% was reached. This may indi-

cate that the configuration space of this particular

receptor ligand system is especially favorable for

reaching the global minimum.

4. Summary

In this investigation we have performed an au-

tomated virtual screening of 10 000 compounds,

which were taken from the openly available data-

base nciopen3D, to the active site of E. coli dihy-

drofolate reductase (4dfr). The global optimization

technique STUN, which was already successful in

the rigid ligand approximation, proved reliable and

efficient also for the more demanding application

to flexible ligands. It was able to match the natural
ligand MTX (which contains 9 rotatable bonds) to

an accuracy of 1.4 �AA with the X-ray structure. The
scoring function Eq. (1) was ranking this ligand as

the best among the 10 000 screened molecules.

We have further demonstrated how a virtual

database screening may serve as a tool for phar-

macophore modeling, because the top ranking

leads are useful probes to identify hot spots inside
the cavity. Despite the fact that there appear to

exist leads that docked faster and more reliable

than MTX, none of them reached a similarly high

affinity. We hope this study contributes to the

search of new powerful techniques for virtual

screening especially under the perspective of future

projects which ask for additional degrees of free-

dom by means of rotatable groups in the receptor
and the inclusion of solvent molecules. Our results

motivate further investigations which employ

STUN as a global optimization technique in such

applications.
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