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Abstract
The development of simulation techniques that can elucidate the function of 
biomolecular nanodevices is still in its infancy. In this paper we summarize 
our approach to the investigation of structural properties of biomolecular 
systems with stochastic optimization methods. We briefly review the 
stochastic tunnelling method and summarize applications in two important 
areas of biomolecular structure prediction: protein folding and
protein–ligand association.

1. Introduction

Biomolecular structure prediction remains one of the
main outstanding problems of theoretical biophysical
chemistry [1]. In particular, with application to problems
in nanotechnology [2, 3], where biomaterials interface with
inorganic substrates [4], few theoretical methods to elucidate
structure and dynamics with atomic resolution are currently
available [5]. The direct simulation of association processes
or functioning nanoscale devices is complicated by the fact that
interesting processes in these systems often occur at timescales
that are very long compared with a typical time step of the
simulation [6].

For systems in thermodynamic equilibrium with their
environment, however, there are often alternatives to the direct
simulation of the process, provided a free-energy functional
of the system is known. If this is the case, structural
questions can be addressed orders of magnitude faster by
sacrificing the information about the process by which the
thermodynamically stable conformation is reached [7]. Using
stochastic optimization methods [8–10], one can determine the
global optimum of the free-energy surface (FES) of the system
without recourse to the folding dynamics.

Even dynamic questions can be addressed if the low-
energy local minima of the FES can be resolved [11].
An (adiabatic) functioning nanomachine typically switches
between such low-energy minima [3], which change their

respective energies as a function of an external field that
triggers the switch of the machine.

This approach requires the development of (i) accurate
force fields for the system in question and (ii) efficient
optimization methods to resolve the low-energy minima of the
FES. Here we review recent progress we have made regarding
both points in the context of two important applications of
biomolecular structure prediction.

First we address the prediction of the three-dimensional,
tertiary structure of proteins on the basis of their amino acid
sequence (protein structure prediction—PSP). Experimental
methods to determine the sequence of a particular protein
have made enormous progress, resulting in a pool of several
hundred thousand sequenced proteins for various organisms.
Experimental methods for protein structure determination are
orders of magnitude more involved and more expensive than
sequencing techniques. Although their number is steadily
growing, the protein database (PDB), currently contains about
20 000 spatially resolved structures [12]. Theoretical methods
for PSP may be helpful to close this gap, but accurate
theoretical methods that would permit a routine prediction
of this structure remain elusive, in particular at the ab initio
level [13]. In particular for application in the area of
nanobiotechnology, where peptides and proteins often do
not occur in their natural but in a technologically altered
environment, theoretical methods to describe their structure
may be valuable.
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In the following we review our strategy for developing
an all-atom protein force field with an implicit solvent
model to describe such molecules and stochastic optimization
methods that are particularly well suited to determine their
low-energy configuration. While the former is directly
relevant for applications dealing with proteins or peptides,
complex optimization problems play a role in many areas of
nanotechnology and the methods reviewed below may be of
use for such problems.

Secondly we report on the application of stochastic
optimization methods to biomolecular switching with
pharmaceutical applications. The goal here is to develop
new lead candidates for drug development through virtual
screening of chemical databases to targets of known three-
dimensional structure [14]. Similar techniques have recently
been applied to the design of receptor and sensor proteins of
novel function [15] and may be useful in the engineering of
interfaces between biological and artificial nanomaterials [16].

2. Biomolecular structure prediction

2.1. Optimization methods

Stochastic optimization methods are now being used in a
multitude of applications, ranging from circuit design on
silicon wafers to airline flight schedules. In these and
many other applications the objective is to minimize a given
cost function that depends on a large number of discrete or
continuous variables [11, 17, 18]. In analogy to physical
problems, the cost function describes a potential energy
surface (PES) in the parameter space and its global minimum
optimizes the desired objective. Stochastic optimization
methods are applied when enumerative methods are too costly.
This is generically the case in high-dimensional optimization
problems, where the total number of possible configurations
grows exponentially with the number of variables.

Stochastic optimization methods successively improve
one or several configurations of the underlying model to obtain
an approximation of the global optimum of the PES. The
optimization process thus maps onto a fictitious dynamical
process of one or several configurations that move in the
configuration space. The process stops when either a certain
previously defined amount of computational resources have
been used or when the dynamical process terminates in a
stable configuration. In either case there is no guarantee that
the stochastic process has found the global optimum of the
PES. The computational difficulty in stochastic optimization
methods depends strongly on the number of degrees of freedom
and the complexity of the PES.

The simplest stochastic optimization method, repeated
local optimization starting from random initial conditions, will
therefore also require an exponentially large number of steps
for N P-incomplete problems. To significantly reduce the
computational effort, stochastic optimization methods must
therefore also move uphill. In simulated annealing (SA) [8]
this is achieved by simulating the finite temperature dynamics
of the system. Starting from a configuration r with energy
E(r) one generates a new configuration r ′ with energy E(r ′)

which replaces the original configuration with probability:

P =
{

exp(−β[E(r ′) − E(r)]) if E(r ′) > E(r)

1 otherwise,
(1)

where β = 1/kT is the fictitious inverse temperature. At any
given temperature such an (ergodic) Monte Carlo process [19]
samples the configurations r of the PES according to their
thermodynamic probability. Thus, at high temperature moves
with or against the gradient are accepted with almost equal
probability. At low temperature only downhill moves are
accepted. In SA one thus starts with high-temperature
simulation and gradually cools the system to zero temperature.
If ergodicity is not lost during the cooling schedule, the
simulation will stop in the global minimum of the PES with
probability 1. However, for rugged PES, such as those
encountered in PSP, SA routinely fails.

As one approach to circumvent this problem, we have
recently developed the stochastic tunnelling (STUN) method
[10], which incorporates the ability to escape metastable states
by letting the particle in the minimization process ‘tunnel’
forbidden regions of the PES. As in SA we retain the idea of a
biased random walk, but apply a non-linear transformation to
the PES:

ESTUN(x) = 1 − exp[−γ (E(x) − E0)] (2)

where E0 is the lowest minimum encountered by the dynamical
process so far. Alternatively a suitable upper bound for the
global minimum can be used for E0. This effective potential
preserves the locations of all minima, but maps the entire
energy space from E0 to the maximum of the potential onto
the interval [0, 1].

At a given finite temperature of O(1), the dynamical
process can therefore pass through energy barriers of arbitrary
height, while the low-energy region is resolved even better than
in the original potential. The degree of steepness of the cut-
off is controlled by the tunnelling parameter γ . Figure 1(b)
illustrates the STUN PES for a 1D model potential (see below)
at a hypothetical point in the simulation where the minimum
indicated by the arrow has been found as the present best
estimate for the ground state.

2.2. Biomolecular force field

Over the last decades many classical force fields [20–23]
have been developed to investigate numerous phenomena in
physical, organic and inorganic chemistry. The difficulties
encountered in PSP justify the development of specific force
fields for the following reason: their molecular building blocks,
i.e. the amino acids, are well defined and limited in number.
The chemical complexity associated with the design of a force
field specific to peptides and proteins is therefore less than
that of generic organic substances. By exploiting the fact that
only a limited number of building blocks will occur, their
ingredients may be specifically adapted to provide a more
accurate description of the system. Also, we are interested only
in the low-energy conformations of the model. As a result,
many degrees of freedom that are associated with covalent
interactions, e.g. bond stretching, may be neglected in the
description of the system.



Figure 1. Schematic one-dimensional PES and its transformations
under the STUN procedure, provided that the local minima
indicated by the arrows have been found [10]. Part (a) shows the
original PES, parts (b) and (c) the transformed PES under the
assumption that the minima indicated by the arrow are the best
configurations found so far in the simulation, respectively.

Figure 2. Overlay of the crystal structure of a 13-residue helical
fragment of 1HRC (residues 92–105) with the structure obtained in
the simulation.

The PFF01 force field [7] represents all atoms except
apolar CHn individually. CHn groups are approximated by
a single sphere comprising both the carbon and the hydrogen
atoms (united atom approach). We have fitted the Lennard-
Jones (LJ) radii in PFF01 to a subset of 134 proteins of the PDB
database. The associated LJ interaction strength was taken
from the OPLS force field [22]. We note that in simulations
with explicit solvent molecules there are LJ interactions
between peptide and solvent atoms. This atom-dependent
effect has been incorporated into the implicit solvent model.
Coulomb interactions in proteins are complicated, in particular
regarding screening effects of the solvent. In the PPF01
force field we have implemented an approach which models
this effect with group-dependent and interaction-dependent
effective dielectric constants [24]. For the implicit solvent
model, the simplest conceivable choice assigns a free energy
of solvation proportional to the effective contact area each atom
of the protein/peptide has with the solvent. We have subdivided
the atom types of the force field into suitable subgroups and
fitted the resulting model to the available experimental Gly–
X–Gly data [25].

(a)

(b)

Figure 3. Application of the STUN to the folding of a
13-amino-acid helix fragment of 1HRC (residues 92–105). Part (a)
shows the total energy of the system as a function of the number of
simulation steps. Part (b) shows the effective energy, its moving
average (dashed) and the effective temperature (bottom) of the
STUN procedure. Both tunnelling and local search phases are
relevant to determine the native structure of the peptide; note that
tunnelling phases with relatively high effective energy correspond to
large fluctuations of the original energy in (a).

2.3. Applications

We first investigated the folding of small peptide fragments
that are believed to assume a unique three-dimensional
structure even when removed from their environment in
the protein. Figure 2 shows the overlay of the crystal
structure of a helical 13-amino-acid residue fragment of the
1HRC protein with the structure we have obtained in STUN
simulations. Encouragingly, the backbone configurations of
these two structures are identical to better than experimental
resolution. Figure 3(a) shows the evolution of the total
energy of the structure from an unfolded configuration to the
folded configuration as a function of the number of energy
evaluations. Figure 3(b) shows the effective energy and the
effective temperature. Several heating and cooling cycles were
required to fold the helix fragment, and ‘tunnelling phases’ that
occur when the effective energy is relatively high significantly



Figure 4. Overlay of the crystal structure of a helical bend in 1UBQ
with the simulated structure.

aided the search process. In these phases the original energy
of the system undergoes significant fluctuations that are much
larger in magnitude than the difference in energy of two
successive metastable states. Circumnavigating these energy
barriers in a traditional simulation would significantly slow the
optimization process. We conducted several dozen STUN runs
for this, as well as for other fragments that were investigated,
to verify that the structure we had obtained corresponds to
the global optimum of the system. We noted that in SA
the helix could not be folded even with a tenfold increase
in computational effort. Hence STUN appears to present a
viable and efficient optimization strategy to optimize peptide
fragments of this length. Helical segments are stabilized by
the short-range hydrogen bonds. We found that it is possible
to artificially destabilize the helical structure if the prefactor of
the solvent interactions is increased to unphysical values.

An example for a non-helical 12-amino-acid fragment
of the 1UBQ protein is shown in figure 4. In this structure
hydrogen bonding interactions that attempt to stabilize a helix
compete with longer-range hydrogen bonding and solvent
interactions to form a structure that is part helix part bend.
The figure again illustrates the good overlap that was found in
our STUN simulations for the simulated configuration and the
corresponding crystal structure. A prerequisite for this success
is a good balance between hydrogen bonding terms and solvent
interactions in the force field.

We have also investigated the 36-residue headpiece of
the villin protein that was recently simulated with molecular
dynamics [23, 26]. The best configuration obtained with
about a CPU week on a single PC is shown in figure 5(b)
in comparison with the NMR structure. The fraction of native
contacts was similar in both studies, although more than 85
years of CPU time were invested in the molecular dynamics
(MD) simulation on a 256-node CRAY-T3E supercomputer.
This comparison illustrates the increase in efficiency that
can be obtained through the use of stochastic optimization
methods, even though both simulations failed to reach the
NMR structure. We find, however, that the structure obtained
in our simulation has a lower (free) energy that that of the NMR
structure, indicating that this failure is not due to a failure of
the optimization strategy, but is attributable to a shortcoming
of the force field.

This suggests a rational decoy strategy to systematically
improve the force field that we will now implement. We

(a)

(b)

Figure 5. Comparison of the (a) NMR structure and the (b)
simulated structure of 1VII.

generate a large set of ‘good’ candidates that compete with the
NMR structure. As long as one of these decoys has a better
energy than the native configuration, the force field must be
modified to stabilize the native configuration in comparison
to all other decoys. When this is achieved we generate new
decoys by refolding the peptide, generating new configurations
that are either yet again better in energy than the NMR structure
or ultimately folding the peptide. In the following we report
the preliminary results of this project.

We have created a set of decoys starting either with
stretched configurations or the NMR configuration. Some
of the latter runs were modified with an additional harmonic
constraint that limited the deviation of the simulated structure
from the NMR structure to 2–3 Å. The adjustable force field
parameters were the surface free energies that enter the implicit
solvent model, which were permitted to vary by 20% around
their original values. The rationale behind this approach was
that these parameters are relatively uncertain, as they are
transferred from small-molecule data to very large systems.
We finally arrived at a decoy set containing about 11 000 entries
that each had a backbone root mean square deviation (RMSD)
of at least 3 Å with every other decoy. This decoy set yields
an approximate representation of the local minima of the FES
of the peptide.

The main results of this analysis can be summarized as
follows: (i) The lowest conformation (figure 6(N)) had a
backbone deviation of only 3.5 Å from the NMR structure.
The optimized force field is therefore the first to correctly
predict the tertiary structure of HP36 at the all-atom level.
(ii) There are only very few distinct low-lying minima of the
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Figure 6. Representatives of the best decoy families of HP36/1VII.

FES in our model. Three of these structures (figures 6(A),
(B), (D)) correspond to three-helix structures never seen in
previous investigations [23, 26], while others have only two
helices. Overall this picture is consistent with the existence of
a complex folding funnel in the FES. From the standpoint of
secondary structure analysis the low-energy structures of this
funnel contain only three-helix structures. Within the folding
funnel the configuration explores a subspace of the full FES
in which helix length and position vary. Surprisingly there is
almost no correlation in the RMSD between these structures.
We note that only configurations with a deviation of more
than 1 Å were counted as individual decoys. With backbone
RMSDs in excess of 7 Å, the families of low-lying structures
differ as much among one another as they differ with a random
configuration of the decoy set.

3. Receptor–ligand docking

The goal of receptor–ligand docking is to assist the synthetic
process of drug discovery through the suggestions of suitable
starting candidates, so-called leads. These leads are obtained
by ranking a database of candidates, which should ultimately
comprise all synthesizable, non-toxic molecules, according to
their affinity to a structurally resolved protein receptor. To
obtain this estimate, the best position and conformation of
each molecule of the database has to be determined with a
suitable docking method. The best conformation/position of
the molecule is obtained as the global optimum of a suitably
defined scoring function. In the following we illustrate the
applicability of the STUN method to this problem with two
screening runs in which a methotrexate (MTX) and a set of
10 known thymidine kinase (TK) inhibitors were mixed into
a database of 10 000 ligands of a database used for drug-
development (nicopen). We then docked all ligands against
the crystal structures of the receptor and were able to identify
the known ligands on the basis of the screening run.

3.1. Force field

To test the applicability of the STUN method to receptor–
ligand docking [27] we prepared a subset of the open part of

the NCI database (nciopen.mol), which had been processed
to generate the three-dimensional structures with the help
of Corina [28, 29] (nciopen3d.mol). We identified rotatable
bonds with a simple algorithm which searched for single bonds,
excluding ring structures, trivial single-atom end groups and
atoms with sp2 hybrid orbitals. Among 125 000 compounds
available, the first 10 000 were selected which satisfied the
conditions of having not more than 100 atoms and not more
than 10 rotatable bonds.

The protein coordinates were taken from the x-ray
structure of Escherichia coli dihydrofolate reductase (DH)
with MTX (pdb entry: 4dfr, monomer B) [30] and the x-ray
structure of TK (pdb entry: 1kim) respectively. Hydrogen
atoms and partial charges were attached using InsightII with
the esff force field. The binding site was defined with the
docked ligand in the x-ray structure: a volume of 5 Å radius
was defined around the centre of mass position of the docked
complex. If the global minimum on the PES of any ligand
was located such that either the centre of mass of this ligand or
more than 20 ligand atoms were inside this volume, the ligand
was regarded as docked.

For the simulations discussed below we used the following
scoring function:

S =
∑

Protein

∑
Ligand

(
Ri j

r 12
i j

− Ai j

r 6
i j

+
qi q j

εri j

)

+
∑

H-bonds

cos �i j

(
R̃i j

r 12
i j

− Ãi j

r 10
i j

)
, (3)

which contains the empirical Pauli repulsion (first term),
the van der Waals attraction (second term), the electrostatic
Coulomb potential (third term) and the angular-dependent
hydrogen bond potential (terms four and five) [31].

3.2. Applications

For dihydrofolate reductase 6100 ligands, out of 10 000
compounds, reached configurations where the ligand was
embedded in the cavity and the external binding energy, scored
with equation (3), was below −50 kJ mol−1 [31]. It is
well known that scoring functions as the one used here are
too inaccurate to yield a quantitatively approximate natural
affinity of the ligand. Nevertheless they often provide a
useful relative ranking of leads when docked under identical
conditions. Figure 7 (left panel) shows the external binding
energies of the docked compounds. Among them, the
natural ligand MTX clearly scored best, with a minimum
energy conformation which differed by only 1.4 Å from the
x-ray crystal structure (figure 8). This figure shows that both
conformations essentially differ in the positions of only one
of their carboxylate groups. In the minimal conformation
of the scoring function this group is turned around to
create an extra hydrogen bond to Lys-32 which is absent
in the crystallographic conformation. In the experimental
configuration a conserved water molecule (Wat-672) mediates
competing hydrogen bonds in the natural environment, an
effect which cannot be accounted for with the present scoring
function.

For the TK inhibitors seven of ten docked in the receptor,
but only three inhibitors were ranked with a high affinity (see
table 1). The degree of database enrichment, i.e. the fraction
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Figure 7. Histogram of the affinities of 10 000 ligands docked to dihydrofolate reductase (left) (see [31]) and thymidine kinase (TK) (right).
For the 4dfr docking run, the natural ligand (MTX) was scoring best by a wide margin, for TK, 7 of 10 known inhibitors docked
successfully. The inhibitors associated with the labels shown in the figure are shown in [32].

Figure 8. MTX in its crystallographic x-ray conformation (black)
and the global minimum found with STUN (grey). Both
conformations differ in the positions of their carboxylate groups.

of well-scoring ligands versus the total number of ligands, is
thus comparable to other recent studies of the same model
system [32]. We have verified, by repetition of the docking
runs, that the affinity of the individual inhibitors is accurately
computed in the model, deficiencies in the ranking of the
known inhibitors thus result from inadequacies of the scoring
function.

4. Summary and conclusions

We have proposed the use of stochastic optimization methods
to predict the structure of complicated biomolecules. To
implement this approach, we have developed STUN as
a suitable optimization algorithm to deal with the very
rugged PESs that often occur in biomolecular/nanomaterial
simulations.

Table 1. Value of the scoring function (affinity) and rank of the 10
thymidine kinase inhibitors in a scoring run against 10 000
molecules from the nciopen database. The structures associated
with the inhibitors are given in [32].

Inhibitor Affinity Rank

dhbt −120.584 4
dt −120.422 5
hpt −119.079 6
idu −76.918 515
acv −72.550 719
gcv −36.632 3351
pcv −18.970 4845
ahiu NA NA
hmtt NA NA
mct NA NA

We developed a biomolecular force field (PFF01) that
parametrizes the free energy of the underlying system with an
implicit representation of the interactions of the biomolecule
with the solvent. We have argued that there is a rational, decoy-
based strategy to adapt such force fields that can be used to
predict the structure of peptides and proteins using stochastic
optimization techniques such as the STUN. We have illustrated
this approach in the folding of short peptide fragments and
presented an analysis of the difficulties encountered in the
folding of the 36 head residues of 1VII.

Secondly we have given an overview of an automated
virtual screening of 10 000 compounds to the active site
of Escherichia coli dihydrofolate reductase (4dfr) and to
the active site of TK. The global optimization technique
STUN, which has already been successful in the rigid ligand
approximation, also proved reliable and efficient for the more
demanding application to flexible ligands. It was able to match
the natural ligand MTX (which contains nine rotatable bonds)
to an accuracy of 1.4 Å with the x-ray structure. The scoring
function ranked this ligand as the best among the 10 000
screened molecules, validating both the optimization method
and scoring function. In a similar screen, three of the ten
known inhibitors of TK were correctly identified among the
best-scoring ligands in the screening procedure, while three
other ligands docked, but were badly ranked. The failure
to correctly estimate their binding affinity could be traced to



deficiencies in the scoring function (force field) rather than to
the optimization method.

These applications illustrate both the success and the
limitations of the use of stochastic optimization methods for the
de novo simulation of biomolecular nanomaterials. Both free-
energy force fields and simulation/optimization techniques
must be continuously developed to be able to contribute to our
understanding of the often complex mechanisms governing the
behaviours of these systems.
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