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Abstract 

In this paper the investigation of bubble-induced turbulence using direct numerical simulation (DNS) of 

bubbly two-phase flow is reported. DNS computations are performed for a bubble-driven liquid motion induced by a 

regular train of ellipsoidal bubbles rising through an initially stagnant liquid within a plane vertical channel. DNS 

data are used to evaluate balance terms in the balance equation for the liquid phase turbulence kinetic energy. The 

evaluation comprises single-phase-like terms (diffusion, dissipation and production) as well as the interfacial term. 

Special emphasis is placed on the procedure for evaluation of interfacial quantities. Quantitative analysis of the 

balance equation for the liquid phase turbulence kinetic energy shows the importance of the interfacial term which is 

the only source term. The DNS results are further used to validate closure assumptions employed in modelling of the 

liquid phase turbulence kinetic energy transport in gas-liquid bubbly flows. In this context, the performance of 

respective closure relations in the transport equation for liquid turbulence kinetic energy within the two-phase k- 

and the two-phase k-l model is evaluated. 

KEYWORDS: bubble-induced turbulence, turbulence kinetic energy, direct numerical simulation, bubble-train 

flow, turbulence modelling  
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I. Introduction 

While the modelling of turbulent single phase flows has already reached a certain level of maturity, models 

for the turbulence in bubbly flows are still under development. In approaches currently used turbulence of gas phase 

is commonly neglected and only the one in the liquid is modelled. For this purpose the respective transport 

equations of the well-established single-phase turbulence models are extended with more or less empirically 

established closure terms that account for interfacial effects (more details are given in section V). As it is not clear 

whether / how far the closure assumptions originally developed for single phase flows can retain their validity when 

the dispersed phase is present, such an approach might be argued as highly uncertain.  

Most of the difficulties faced in the development of improved turbulence models for bubbly flows concern 

the pure understanding of mechanisms in which bubbles alter turbulence generation, redistribution and dissipation in 

the liquid phase. Analytically, these mechanisms were rigorously formulated by the derivation of basic balance 

equations for turbulence kinetic energy7) and Reynolds stresses8) in gas-liquid flows. Although known for more than 

a decade these equations could not be exposed to an appropriate quantitative analysis, because highly resolved data 

on the flow field and phase interface structure required for such an analysis have not been available.  

Recent improvements in computer performances and positive experience from single phase flows suggest 

use of direct numerical simulations (DNS) for solving these problems. Based on computational grids fine enough to 

resolve all flow scales and auxiliary algorithms to track the gas-liquid interface, DNS of bubbly flow provides the 

full information on instantaneous three-dimensional flow field and phase interface topology. In spite of serious 

limitations concerning the magnitude of Reynolds number of the liquid flow and number of bubbles that can be 

tracked, DNS opens a new promising way to get a detailed insight into mechanisms governing the turbulence in 

bubbly flows. Namely, in various industrial processes involving slow dispersed two-phase flows no shear turbulence 

occurs and the main flow features such as phase distribution and mixing are controlled only by agitation of the 

liquid phase by moving bubbles. This agitation is called bubble-induced turbulence (BIT). Important information on 

the phenomenon of BIT can be obtained monitoring the effects of the dispersed phase on well investigated single 

phase flows with low Reynolds numbers. Among these, the simplest case concerns studying fluctuations of the 

liquid phase quantities induced by injection of gas bubble(s) into originally stagnant liquid. 

This paper reports the use of DNS in statistical analysis of BIT. DNS are performed for a bubble-driven liquid 

motion induced by a regular train of ellipsoidal bubbles rising within a plane channel. Based on results of the DNS a 

quantitative analysis for the balance equation of liquid phase turbulence kinetic energy (kL) is performed. The paper 

is organised as follows. In section II an outline of the methodology employed to perform DNS of the bubble-train 

flow is presented. Further, geometrical and physical parameters of the present numerical experiment are given. 
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Section III deals with theoretical considerations of the exact kL equation. The methodology used for the evaluation 

of balance terms in this equation and corresponding results obtained using DNS data on the bubble-train flow are 

presented in section IV. In section V the validity of closure assumptions in modelled form of kL equation employed 

in both the two-phase k- and the two-phase k-l model is tested against respective balance terms in the exact kL 

equation. The paper is completed by conclusions. 

II. Direct Numerical Simulation of Bubble-train Flow 

1. Governing Equations 

The direct numerical simulations are performed with our in-house computer code TURBIT-VoF15). The code 

is based on a single set of balance equations that express the conservation of mass (equation 1) and momentum 

(equation 2) for an incompressible isothermal flow of two immiscible Newtonian fluids19):  
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The above equations are given in non-dimensional form. The following scaling applies: distance, * */ refLx x , 

velocity, * */ refUu u , time, * * */ref reft t U L , density, * */ L   , viscosity, * */ L    and pressure, 

* * * * * *2( ) /( )L L refp p U   g x . The superscript * indicates a dimensional variable, while *

refL  and *

refU  are reference 

length and velocity, respectively. As a result of scaling reference Reynolds number, * * * */ref L ref ref LRe U L  , 

reference Weber number, * * *2 */ref L ref refWe L U  , and reference Eötvös number, * * * *2 *( ) /ref L G refEö Lg    , 

appear in the momentum equation. In equation (2)  is the stress tensor given by  T   u u . Subscripts L 

and G indicate the liquid and gas phase, respectively. Surface tension is denoted with  * and gravity with g*. The 

last term in equation (2) expresses the contribution of the surface tension force. There,  is twice the mean interface 

curvature, n=nG=-nL is the unit normal vector to the interface pointing from the gas into the liquid and ain is the 

interfacial area concentration.  

To distinguish between phases the liquid volumetric fraction, f, is introduced. Therefore, a cell is filled with 

liquid when 1f   or with gas when 0f  . If 0 1f  , an interface exists within a cell. In such cells the model of 

a homogeneous two-phase mixture is employed, i.e. the equality of phase velocities and pressures is assumed.  The 

density and viscosity are expressed as: * *1 (1 ) G Lf      and * *1 (1 ) G Lf     , respectively.  

Phase interface evolution is tracked employing the transport equation for the liquid volumetric fraction:  
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The equation (3) is solved employing a Volume-of-Fluid procedure15). This procedure involves two steps. In the first 

one the interface orientation and location within each mesh cell is reconstructed using PLIC (Piecewise Linear 

Interface Calculation) method EPIRA that locally approximates the interface by a plane. In the second step the 

liquid fluxes across the faces of the mesh cell are computed. The methodology is verified comparing numerical 

results with experimental data for the rise of an ellipsoidal bubble (EöB=3.07, M=3.110-6) and an oblate ellipsoidal 

cap bubble (EöB=243, M=266). 

 2. Numerical Setup 

Direct numerical simulations are performed for a two-phase mixture with a simple flow pattern that is called 

‘regular bubble train’. The term regular bubble train indicates a quasi-steady flow where bubbles rise with the same 

velocity through the channel whose length is much larger than its hydraulic diameter. Bubbles have an identical 

shape and are uniformly distributed along the channel. In such a situation a unit cell containing one bubble can be 

extracted (Figure 1), that fully characterises the entire bubble-train flow. Taking the dimensions of the 

computational domain equal to the size of the unit cell, the simulation of the bubble-train flow can successfully be 

performed keeping the domain fixed and letting bubbles move through it. 

 

 (Appropriate place for Figure 1) 

 

The computational domain in our DNS is prescribed to be a cube of non-dimensional size 111. The domain 

is discretized by 643 uniform mesh cells. Boundary conditions are no-slip ones at the lateral rigid walls (x3=0 and 

x3=1) and periodic ones in vertical (x1) and span-wise (x2) direction. In this way an infinite number of bubble-trains 

shifted in lateral direction is simulated. The following parameters are specified: reference length *

refL =4m, reference 

velocity *

refU =1m/s, density ratio G
*/L

*=0.5, viscosity ratio G
*/L

*=1, bubble Eötvös number EöB=3.065, and 

Morton number M=3.0610-6. According to these values reference dimensionless numbers are: Eöref=49.05, 

Weref=2.5 and Reref=100. 

Initially a spherical bubble with the diameter Db=0.25 is positioned in the middle of the channel filled with 

stagnant liquid. Using the time step width t=0.0001 in total 65,000 time steps are computed. Within this time the 

gas-liquid system has reached a quasi-steady state, where the mean velocity of the liquid phase and the bubble rise 

velocity can be considered as approximately constant. The shape of the bubble is steady, an axisymmetric ellipsoid 

with the axis aspect ratio 1.635 (see Figure 2). Bubbles rise along an almost rectilinear path. 
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 (Appropriate place for Figure 2) 

 

III. Balance Equation of Liquid Turbulence Kinetic Energy  

Among various turbulence quantities we chose to deal with the liquid phase turbulence kinetic energy because 

this quantity plays an important role in turbulence models for bubbly flows (see section V). Under the assumption of 

incompressibility the non-dimensional liquid phase turbulence kinetic energy is defined as:  

2'2

L Lk  u . 

For gas-liquid flows, liquid phase turbulence kinetic energy generation, dissipation and transport as well as its 

interplay with flow parameters such as velocity field, phase distribution and interfacial structures is mathematically 

described by the following balance equation7): 
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The following notation is used. Subscript in denotes liquid phase quantities at the gas-liquid interface and L is 

mean liquid volumetric fraction defined via the characteristic function of the liquid phase, 
L L  . The single 

overbar indicates averaging. The double overbar denotes so-called phase-weighted averaging. For an arbitrary 

physical quantity AL, this averaging is defined as /L L L LA A   . Fluctuating parts of physical quantities are 

evaluated as 
LLL AAA '  and 

LLinLin AAA ' .  

On the right-hand-side of equation (4) two distinctive groups of terms appear. The first one is the group of 

terms associated with the mean liquid volumetric fraction, L. Except for being multiplied with L, these terms are 

basically of the same form as the ones involved in the single-phase turbulence kinetic energy equation, i.e. the 

diffusion, production and dissipation term can be recognized. For this reason these terms are called single-phase-like 

terms. The last term, that is associated with the interfacial area concentration ain, represents a source of liquid 

turbulence attributed to the presence of bubble interfaces and is called interfacial term.  

Equation (4) is derived based on the local instant formulation of the mass and momentum conservation laws 

for two-phase flow, i.e. no model assumptions are made. In this context, equation (4) is called ‘exact’ kL equation in 

order to distinguish it from the modelled kL equation employed in turbulence models. 
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IV. Evaluation of Balance Terms in the Exact kL Equation 

1. Averaging Procedure 

In evaluation of the mean and fluctuating quantities only the part of time signals representing the developed 

flow regime is of interest. As in this regime the bubble velocity changes slightly, the time interval T=5.5-6.35 

during which the bubble passed the computational domain five times is considered when the time averaging is 

concerned. Since the procedure of time averaging requires that respective quantities are available for all mesh cells 

at every time instant, a problem of data storage appears. Namely, for the time averaging within the time interval 

T=5.5-6.3 in total 8,400 full data sets should be stored. In order to check if this problem can be avoided, the 

relationship that exists between temporal and spatial averaging is examined in detail. This examination has shown 

that the ergodic theorem is valid in vertical (x1) direction and that the time averaging can successfully be replaced 

with the averaging along vertical (x1) lines. In the context of equation (4) the line averaging corresponds to the 

variables denoted with single overbar. Note that the characteristic function of the liquid phase, L, is taken to be 

equal to the local liquid volumetric fraction, f.  In principle, for the line averaging it is sufficient to consider a single 

instant in time within the fully developed flow regime. However, with the goal of getting smoother profiles 

evaluations are performed for every 200th time step. In total 42 sets of results based on line averaging are evaluated 

within the considered time interval T and then the arithmetic mean of these profiles is computed.  

2. Evaluation of Liquid-phase Interfacial Quantities  

While the raw data obtained by DNS of the bubble-train flow are sufficient to evaluate the single-phase-like 

terms, the evaluation of the interfacial term requires some additional information. Namely, since the model of the 

homogeneous mixture is employed in cells containing interface, corresponding DNS data on the velocity and 

pressure cannot be used as representative liquid phase interfacial quantities. 

The problem of determining the liquid interfacial pressure, pLin, is solved assuming that it is equal to the 

pressure in an adjacent cell which is fully occupied with liquid phase.  

The procedure used for the evaluation of the velocity on the liquid side of the interface, uLin, is more 

complicated and is shortly outlined here. Since no phase change is considered, the phase interfacial velocities are 

equal: 
Lin Gin in u u u . The velocity uin can be split into its tangential, uin,t, and normal, uin,n, component:  

, ,in in t in nu u u  .          (5) 

The tangential component, uin,t, is defined to be equal to the tangential velocity of a fluid particle lying at the 

interface4). As in our case interfacial cells contain two-phase mixture, uin,t is assumed to be equal to the tangential 
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component of the mixture velocity, 
, ( )in t t L L   u u u u n n . The normal component of the interfacial velocity is 

defined as6): 

,in n L
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,           (6) 

where F(x,t) = 0 is the equation of the interfacial surface. In TURBIT-VoF gas-liquid interface is for any time 

instant, t, defined via the unit normal vector, nL, and a point lying on the interface M(b):  

( , ) ( 0LF t )x b x n    .          (7) 

Since function F(x,t) given by equation (7) is not explicit with respect to time, the problem of determining F t   

arises. The procedure applied for solving this problem is as follows. Consider two subsequent instants in time t0 and 

t0+t in which the interfacial surface passes through the point M0(b0) and M1(b0+x), respectively, i.e. the surface 

equation satisfies: F(b0, t0) = 0 and F(b0+x, t0+t) = 0. If the distance between M0 and M1 is small, the function 

F(b0+x, t0+t) can be expanded into a Taylor series. Neglecting terms of the second and higher order in this 

expansion and after some simple mathematical rearrangements, one obtains 

0
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n x
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 
,          (8) 

where nL0 is the unit normal vector at the time instant t0.  

3. Balance of the Exact kL Equation for Bubble-train Flow 

In Figure 3 wall-normal profiles of the balance terms on the right-hand-side of equation (4) and of the 

volumetric gas fraction, 1G L   , are presented for two span-wise positions. The following can be observed.  

Profiles of all the terms are symmetric with respect to the channel axis. Non-zero values are noticed only in 

the central part of the channel, i.e. in the domain where bubbles rise. Strong gradients of the liquid phase quantities  

in the region between the part of the channel through which bubbles move and the one permanently occupied with 

the liquid phase cause sharp peaks of all the terms at such locations. These peaks are especially remarkable for the 

diffusion term. As it is seen in Figure 3, profiles of the mean gas volumetric fraction, G, are in the case of the 

bubble-train flow continuous, but not continuously differentiable. Therefore, the peaks of the balance terms are 

expected to be reduced in a bubbly flow with smoother profiles of G, e.g. when the case of a bubble-swarm flow is 

considered.  

The term that is called production, and in shear flows is always positive, is negative here. Although this result 

may seem surprising and bring into discussion the name of this term, the physics lying behind it is easy to 

understand taking into account that the motion of the liquid phase is driven by rising bubbles, i.e. that the energy in 

the liquid flow is transferred from the fluctuating velocity field caused by moving bubbles to the mean flow.  
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Since the diffusion has no net contribution, but represents the redistribution of turbulence kinetic energy over  

the flow domain, the following can be stated. In the case of the bubble driven liquid motion considered here the 

turbulence kinetic energy of the liquid phase is gained only by the interfacial term, while it is lost not only through 

the dissipation, but also through the production term. This conclusion gives rise to the importance of studying the 

interfacial term. 

 

( Appropriate place for Figure 3) 

 

V. Exact versus Modelled kL Equation 

In engineering applications liquid phase turbulence in bubbly flows is calculated using various statistical 

models. Among these two approaches involve a modelled form of the liquid phase turbulence kinetic energy 

equation: the two-phase k- model1-3,11-14,17,18) and the two-phase k-l model10). Modelled kL equation is in these 

models derived by an extension of the respective single phase equation with a model term that accounts for the 

existence of gas-liquid interfaces. The objective of this section is to perform scrutiny and validation of closure 

assumptions adopted in the modelled form of the kL equation employed in the two-phase k-  as well as in the two-

phase k-l model. In this context, both single-phase-like and interfacial terms are evaluated using DNS data on 

bubble-train flow and results are compared with respective balance terms from the exact kL equation. 

1. Validation of Closure Assumptions for Single-phase-like Terms 

The commonly used model for the production term is based on the assumption that turbulent stresses are 

proportional to the mean strain rate in the liquid phase: 

  :
T
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L L LL L u u u 
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where eff

L  denotes so-called effective viscosity. When the two-phase k-  model is concerned, approaches used to 

evaluate eff

L  can be classified into the following three groups: 

-  Only eddy viscosity evaluated by two-phase k-  model, k

L

 , is considered1, 3, 12, 13, 18): 
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L

  molecular viscosity of the liquid phase, 
L , is taken into account2, 14, 17): 
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- In addition to k

L

  bubble-induced eddy viscosity, B

L , evaluated by model of Sato et al.16) is taken into 

consideration11): 

2 0.6

Bk
LL
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RL L L G b= C k D







   u .         

In the above expressions for eff

L  the value of the coefficient C is 0.09 and R G Lu u u   represents the mean 

relative velocity between phases.  

In two-phase k-l model10) effective viscosity, eff

L , is using coefficient 1=0.56 related to the two-phase 

mixing length, lTP: 

1

kl
L

eff

L TP Ll k



  .           

In this model lTP, defined as a sum of single phase mixing length, lSP, and bubble-induced mixing length, lB, is used. 

However, for our case of slow bubble-driven liquid motion it was reasonable to neglect lSP. Further on, as bubbles 

move in the central part of the channel, relation / 3B G bl D  proposed for the core region of bubbly flow10) is 

considered. 

The common closure relation for the diffusion term is, like in single phase flows, based on the assumption that 

the diffusion flux of kL is proportional to the gradient of kL. 

D

L L LDIFF k     
.          

While in all two-phase k- approaches1-3,11-14,17,18) the diffusion coefficient is taken to be equal to the effective 

viscosity, D eff

L L  , in two-phase k-l model10) it is given as: 1

20.5

kl
L L

D

L ref TP LRe l k

 

   , where 2=0.38. 

Since the dissipation of the liquid turbulence kinetic energy, L, is in the two-phase k-  model evaluated by 

a separate transport equation, we considered only the closure assumption adopted in the two-phase k-l model10):  

3/ 2

1L L L TPk l   ,  

where the coefficient 1=0.18.  

Using DNS data on the bubble-train flow single-phase-like terms are evaluated employing the closure 

assumptions presented in the text above and the results are presented in Figure 4. The following can be seen. 

According to all closure assumptions for the effective viscosity, eff

L , positive values of production term are 

evaluated, that is opposite to the exact one which is always negative. The diffusion term is strongly underestimated 

when conventional single-phase approaches for estimation of the diffusion coefficient ( D k

L L

  , D k

L L L

     and 
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D kl

L L  ) are applied. One more argument for this statement can be drawn from an analysis of the dissipation term. 

Namely, although the two-phase k-l model underestimated the dissipation, this underestimation is not so pronounced 

as in the case of the diffusion. This means that not only the mixing length in bubbly flows, lTP, should be corrected, 

but also the way in which it is related to the eddy viscosity, kl

L . Implementation of Sato’s eddy viscosity, B

L , in the 

diffusion coefficient did not improve modelling of the diffusion term significantly.  

 

(Appropriate place for Figure 4) 

 

2. Validation of Closure Assumptions for Interfacial Term 

In contrast to the modelling of single-phase-like terms, where practically no specific two-phase closure 

assumptions have been developed, various models for interfacial term are proposed in the literature. An overview of 

these models is given in Table 1. The following can be observed. In the development of closure assumptions for 

interfacial term bubbly flows are generally considered to be drag dominated. Namely, as it can be seen in Table 1, 

work of the drag force, WD, is included in all models, while in models 2, 3 and 5 it is even considered to be the only 

contribution. The evaluation of WD is in models 2-5 based on the mean relative velocity, Ru , but in model 1 the 

terminal velocity of a single bubble, 0.25 0.51.41T ref refU Eö We , is used. The drag coefficient in models 1-4 is evaluated 

via: 
2

1.3
1 2

1.5

2 1 17.67

3 18.67

L
D B

L

C Eö




 
  

 

,while the constant value CD=0.44 is used in the model 5. Van Driest’s function, 

fw, used in model 1 is formulated in the same way as in single phase flows. For the definition of the coefficient Ct 

see corresponding reference3). Non-drag contributions, WND, are in model 1 included through an additional term that 

accounts for absorption of liquid phase turbulence by bubbles, while in model 4 the work of the added-mass force is 

considered. 

 

(Appropriate place for Table 1) 

 

The performance of closure assumptions presented in Table 1 for the case of bubble-train flow is illustrated 

in Figure 5 for two span-wise positions. Encouraging results concerning modelling of interfacial term are obtained. 

Namely, when the profiles of these terms evaluated from the model 4 are compared with the ones obtained 

according to the exact expression, great discrepancies are not observed. All other closure assumptions 

underestimated the magnitude of the interfacial term. Comparison of forms of the model 4 and model 5 revealed the 

importance of the proper choice of the drag coefficient, CD. Namely, although the ‘standard’ definition of the work 
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of the drag force used in model 4 is in model 5 multiplied with 1.44L (what is here greater than 1), due to 

inappropriate correlation for CD (valid for particulate Reynolds number higher than 1000) this model underestimated 

interfacial term. Since the terminal bubble velocity, UT, is of the same order of magnitude as the mean relative 

velocity, Ru , the underestimation of interfacial term by the model 1 can be attributed to multiplication factor 

0.075fw. Introduction of this correction for the work of the drag force is not documented10), but surprisingly when the 

closure assumptions in the modelled kL equation are derived by the same group of authors9), it is not taken into 

account. Our calculations confirm that the assumption of the drag dominance is correct. Namely, both non-drag 

contributions, WND, given in Table 1 turned out to be an order of magnitude lower than the corresponding drag ones, 

WD. However, one should keep in mind that we considered fully developed steady bubble motion. In the case of 

non-steady bubble rise the contribution of the work of added-mass force might become important. 

 

(Appropriate place for Figure 5) 

 

VI. Conclusions 

The present paper deals with the quantitative analysis of the balance equation for the liquid phase turbulence 

kinetic energy (kL equation) in gas-liquid bubbly flows. According to this equation there are two governing 

mechanisms which determine the turbulence characteristics. The first group of terms is associated with liquid phase 

volumetric fraction and includes turbulence energy diffusion, dissipation and production. The other group is 

associated with the interfacial area concentration and is peculiar to two-phase flow systems. 

To provide the data for the analysis of the kL equation, direct numerical simulations of a regular train of 

ellipsoidal bubbles rising through an initially stagnant liquid are performed.  

The analysis of the budget of the liquid phase turbulence kinetic energy reveals the importance of the 

interfacial term. Namely, since the production term is found to be negative, this term is the only source of turbulence 

kinetic energy. In the diffusive term the contribution of the pressure correlation is dominant.  

The information on balance terms in the exact kL equation is further used for scrutiny and validation of closure 

assumptions employed in the kL equation of two-phase k- and k-l models. As concerns the case of the bubble-train 

flow studied here, the conventional modelling of production and diffusion terms totally fails: the production term 

predicted by models is positive, while it should be negative and the diffusive term is strongly underestimated. 

Taking into account bubble-induced eddy viscosity by the model of Sato et al.16) did not result in significantly better 

results. The interfacial term evaluated using the model of Morel13) showed rather good agreement with the exact one, 

while closure assumptions used by other authors did not perform well.  
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Finally, one can argue that the case of regular bubble train considered in this paper is somewhat academic and 

that this can be the reason why certain models do not perform well. However, this flow configuration is convenient 

for developing the computational tool to perform the quantitative analysis of the exact kL equation and the validation 

of closure relationships employed in its modelled form. In future work we intend to apply the presented 

methodology to the case of liquid motion induced by a rising bubble swarm. 
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List of Figure Captions 

Figure 1. Geometry of the computational domain. 

 

Figure 2. Visualisation of instantaneous bubble shape and velocity field for plane x2=0.5.  In vertical direction 

velocity vectors are shown for every third mesh cell. 

Figure 3. Wall-normal profiles of balance terms in equation (4) for two span-wise positions, x2. 

Figure 4. Wall-normal profiles of single-phase-like terms at span-wise position x2=0.492. 

Figure 5. Wall-normal profiles of interfacial term at two span-wise positions, x2. 
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Figure 1. Geometry of the computational domain. 
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Figure 2. Visualisation of instantaneous bubble shape and velocity field for plane x2=0.5. Velocity vectors are 

shown for every third mesh cell in vertical (x1) direction. 
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Figure 3. Wall-normal profiles of balance terms in equation (4) for two span-wise positions, x2.  

Legend: diffusion , production , dissipation , interfacial term . Dashed line represents out-of-balance. Solid 

line represents mean gas volumetric fraction, G. 
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Figure 4. Wall-normal profiles of single-phase-like 

terms at span-wise position x2=0.492. Legend: 

exact term , k- models with effective viscosity 

defined as: 
L

k , 
L L

k   ,  B

L L

k    and k-l 

model . Solid line represents mean gas 

volumetric fraction, G. 
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Figure 5. Wall-normal profiles of interfacial term at two span-wise positions, x2.  

Legend: exact terms , model 1 , model 2 , model 3 , model 4  and model 5  (see Table 1). Solid line 

represents mean gas volumetric fraction, G. 
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List of Table Captions 

Table 1. Closure assumptions for interfacial term in modelled kL equation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 21 

Table 1. Closure assumptions for interfacial term in modelled kL equation 

 

Reference 

 

Interfacial term (-) 

Work of drag force, WD  Other contributions, WND  

Model 1 10) 
33

0.075
4

D
G T w

b

C
U f

D

 
 
 

 
3/2

L
G

b

k

D
  

Model 2 3) 
3

2 ( 1)
4 0.3

RG D G
R L t

b ref L G

C
k C

D Re

 

 

  
  

  

u
u  

None 

Model 3 11)  

3

4 30.25 1
R

L D G

b

C
D

u
   

None 

Model 4 13) 
33

4

D
RG

b

C

D
u

 
 
 

 1 2

2

G LG G L
RG

L

D D

Dt Dt






   
  

  

u u
u  

Model 5 14) 
33

1.44
4

D
RL G

b

C

D
u 

 
 
 

 
None 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


