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We report on the progress of our implementation of the configuration-selecting multireference 
configuration interaction method on massively parallel architectures with distributed memory, which 
now permits the treatment of Hilbert spaces of dimension O(1012). Of these about 50 000 000 can 
be selected in the variational subspace. We provide scaling data for the running time of the code for 
the IBM/SP3 and the CRAY-T3E. We present benchmark results for two selected applications: the 
energetics of the isomers of dinitrosoethylene and the benchmark results for the ring closure reaction 
of enediyene.

I. INTRODUCTION

The multireference configuration interaction method
~MRCI! is one of the established benchmark methods that
offer a systematic approach for the calculation of the elec-
tronic structure of atoms and molecules.1–3 An accurate
quantum chemical treatment of complex molecules requires
a balanced account of both dynamical and nondynamical cor-
relation effects. The latter are particularly important when
one wants to describe an entire potential energy surface,
where bond breaking or bond rearrangements can occur. To
adequately describe these effects, as well as for the treatment
of electronically excited states, a wave function based
method must accommodate the multireference nature of the
electronic states. Dynamical correlation effects, i.e., the mu-
tual influence electrons exercise on each other when they
pass at close distance, are incorporated by considering exci-
tations of the set of relevant reference configurations. The
generic lack of extensivity of MRCI methods has at least
been partially addressed with a number ofa posteriori4,5 cor-
rections and through direct modification of the CI energy
functional.6–10

Due to its high computational cost applications of the
MRCI method remain constrained to relatively small sys-
tems. For this reason the configuration-selective MRCI
method~MRD-CI!,11–13 has become one of its most widely
used versions. In this variant only the most important con-
figurations of the interacting space of a given set of primary
configurations are chosen for the variational wave function,
while the energy contributions of the remaining configura-
tions are estimated on the basis of second-order Rayleigh–
Schrödinger perturbation theory.14,15 Even within this ap-
proximation, the cost of MRCI calculations remains rather
high. The development of efficient configuration-selecting CI
codes15–22 is inherently complicated by the sparseness and
the lack of structure of the selected state vector. In order to
extend the applicability of the method, it is desirable to em-
ploy the most powerful computational architectures available
for such calculations.

Here we report improvements of our massively parallel,
residue-driven implementation of the MRD-CI method for

distributed memory architectures.22 In this implementation
the difficulty of the construction of the subset of nonzero
matrix elements is overcome by the use of a residue-based
representation of the matrix elements that was originally de-
veloped for the distributed memory implementation of
MR-SDCI.21 This approach allows to efficiently evaluate the
matrix elements both in the expansion loop as well as during
the variational improvement of the coefficients of the se-
lected vectors.

This manuscript is organized as follows: In Sec. I we
report recent improvements of the massively parallel
MRD-CI implementation that permit the treatment of larger
Hilbert spaces, i.e., the correlation of a larger number of
electrons in larger basis sets. We demonstrate the scalability
of the integral driven version of the matrix element evalua-
tion routine on two widely available massively parallel archi-
tectures, the CRAY-T3E and the IBM-SP3/SMP. We then
elucidate applicability and limitations of MRD-CI in bench-
mark applications for two sensitive chemical problems: the
ring-closure reaction of enediyeneand the electronic structure
of benzofuroxan/dinitrosoethylene.

II. TECHNICAL IMPROVEMENTS

In the transition residue driven approach each matrix el-
ement between two determinants~or configuration state
functions uf1& and uf2&) is associated with the subset of
orbitals that occur in both the target and the source
determinants.21,22 This unique subset of orbitals called the
transition residueis mediating the matrix element and serves
as a sorting criterion to facilitate the matrix element evalua-
tion on distributed memory architectures. For a given many-
body state, we consider a tree of all possible transition resi-
dues as illustrated in Fig. 1. For each such residue we build
a list of residue entries, composed of the orbital pairs~or
orbital for a single-particle residue!, which combine with the
residue to yield a selected configuration and a pointer to that
configuration. While the number of transition residues is
comparatively small, the overall number of residue entries
grows rapidly~asNselectedne

2) with the number of configura-
tions Nselectedand the number of electronsne .



Once the residue tree is available the evaluation of the
matrix elements is very efficient. For each transition residue,
each pair of entries of type D in Fig. 1 generates a matrix
element. The indices of the right- and left-hand side configu-
rations are stored in the entries and the indices of the orbital
pair generate the matrix element. If all entries of the residue
tree are generated, its size limits the number of configura-
tions in the variational subspace. In order to increase the size
of the variational subspace we have removed all transition
residues containing two external orbitals from the residue
tree, reducing the size of the residue tree by more than an
order of magnitude. Matrix elements mediated by such tran-
sition residues can be computed by gathering all elements of
the coefficient vector that contain a particular external pair
on a single node of the machine. We have implemented a
scheme that efficiently evaluates the orbital difference map
of the internal part of two such configurations to determine if
a nonzero matrix element exists. The value of the associated
integral element is easily obtained from the~small! table of
all integrals with only internal indices which we replicate on
each node. Implementing this change reduces the size of the
residue tree significantly and allows to increase the size of
the variational subspace by almost a factor of 10, to about
203106 configurations.

Improving the previous implementation,23 we now split
the state vectors for the Davidson iteration across all nodes,
such that only two copies of the total state vector are re-
quired on each node for the evaluation of the matrix ele-
ments. For 503106 configurations, a 64-bit representation of
the state vector requires 400 MB storage per vector and re-
mains the last large undistributed data element in our imple-
mentation. Even these can be eliminated, at the expense of
locally increasing the residue tree. Instead of storing only the
configuration index in the residue tree, one may also store
the coefficient of the left- and right-hand side vectors of the
matrix element, scattering the former and gather in the latter
before and after the matrix element evaluation, respectively.

Requirements for the integral storage could also be dras-
tically reduced by splitting the integral file sorted in physics
notation across all nodes. Once the residue tree has been

constructed, its ‘‘heads,’’ i.e., the information regarding the
transition residue itself can be discarded. During the matrix
evaluation, only the orbital lists are required. The space freed
by eliminating the information pertaining to the content of
the individual residues can be reused to address those orbital
lists that contain a particular orbital pair. Once a set of inte-
grals^ i 1i 2u i 3i 4& with a given orbital pair, e.g.,i 1i 2 , is served
to the node, this information can be used to identify all or-
bital lists that generate nonzero matrix elements for this in-
tegral list. Using this information, anintegral drivenmatrix
element evaluation scheme can be implemented, during
which all integral lists^ i 1i 2u . . . & are distributed across the
nodes and rotated in a cyclic fashion until every integral list
has visited every node. Since MPI permits a very fast cyclic
data exchange and no search operations are required to iden-
tify nonzero matrix elements for a given set of integrals, this
mechanism allows for efficient integral driven evaluation of
all matrix elements not mediated by doubly external transi-
tion residues.

To demonstrate the performance of the improved code
we have performed model calculations on two common mas-
sively parallel architectures with distributed memory, the
CRAY T3E and the IBM-SP/SMP for a varying number of
nodes. We report the total CPU~wall clock! time of each
calculation and decompose it into several important, not nec-
essarily contiguous portions, comprising~a! the generation
of the integrals, self-consistent-field, four-index transforms;
~b! the generation and distribution of the residue tree;~c! the
iterative generation of approximate natural orbitals~NO! in
BW-MRPT Ref. 24~five iterations of the NO loop, which is
very similar to the MRD-CI selection step!; and~d! the sub-
sequent selection and iteration of a single state in the se-
lected Hilbert space~five iterations!. In an ideal massively
parallel implementation the total CPU time should be inde-
pendent of the number of nodes~scalability!and competitive
with a serial implementation~efficiency!. The numerical cost
of NO generation, expansion, and iteration is usually directly
proportional to the number of roots in one symmetry. The
‘‘logic’’ cost of generating the residue tree is proportional to
the number of configurations multiplied with the number of
electrons squared. The numerical cost of the iteration step
depends on the average of the square of the the number of
orbital pairs per transition residue, multiplied with the num-
ber of transition residues. In a nonselecting MR-SDCI calcu-
lation, this number would again scale as the number of or-
bitals squared. If comparatively few configurations of the
overall Hilbert space are selected, the residue tree can be
relatively sparse. In this case the numerical effort creating
the residue tree becomes comparable to the effort evaluating
the matrix elements.

Figure 2 shows a scaling plot for a calculation selecting
3.73106 of 23107 configurations running on 32–256 nodes
of the CRAY TE3 of the NIC Ju¨lich, which demonstrates that
the calculation scales well from 32–128 nodes, with a sig-
nificant loss of efficiency in the last doubling of the number
of processors to 256 nodes. The fourfold increase of the
number of nodes from 32 to 128 leads to total loss of effi-
ciency of about 24% for the total calculation or 18% for the
MRD-CI calculation alone. This reflects the fact that we have

FIG. 1. Schematic representation of the residue tree:~a! list of globally
indexed many-body configuration,~b! a specific many-body configuration
with 14 electrons. Each possibility to remove two orbitals from the configu-
ration ~white boxes!generates an entry in the residue table~c! and an asso-
ciated orbitals pair~d!, which is stored together with the index of the origi-
nal configurations. Solid arrows indicate the operations of building the
residue tree dashed arrows the logical connection between its elements. The
residue tree~c! is a list of transition residues. Associated with each residue
is a list of entries, consisting of the orbital pairs and the index of the con-
figuration that generated the entry.



focused our efforts mostly on the performance of the
MRD-CI code, rather than on the preceding calculations.
Among the components of the MRD-CI, the iteration loop
scales worst, with a total loss of 35% in its efficiency. This
results from the fact that the load balancing of the matrix
element evaluation in the integral driven mode becomes pro-
gressively difficult as the number of matrix elements is re-
duced. As the integrals are distributed cyclically in batches
among the nodes, the entire calculation must wait for the
slowest node to finish each integral batch. The size of the
calculation was chosen to make runs on relatively few nodes
possible. It is therefore not surprising that this calculation
does not perform well on 256 nodes, where about 80% of the
efficiency is lost. If the size of the selected space is in-
creased, the performance loss between 128 and 256 nodes is
reduced, but the calculation no longer runs on 32 nodes.

Figure 3 shows a scaling plot for a similar calculation for
dinitrosoethylene~DNE! on an IBM SMP/SP3 with 64 pro-
cessors. Quadrupling the number of processors here, results
only in a marginal loss of 12% of the overall efficiency of the
calculation, the iteration loop again scales worst~34% loss!.
The better performance of the IBM for this calculation is

largely attributable to its larger memory~1 GB/processor as
opposed of 513 kB on the T3E!. Overall these data demon-
strate a sufficient scalability of the code for a large range of
processors for two important massively parallel architectures
available today.

III. APPLICATIONS

A. Bergman cyclization reaction

The chemistry of enediyenes has been investigated for
some time because of their propensity to undergo a Bergman
cyclization reaction25,26 to paradidehydrobenzene derivatives
~see figure!that are capable of lysing cellular DNA and
hence cause cell death.27 This property, if selectively acti-
vated in diseased or cancerous cells, offers the possibility of
applications as cell-specific drugs against such diseases.28

The ultimate goals is to design a compound that in cancerous
cells will specifically and spontaneously undergo cyclization
at physiological conditions and thus kill diseased cells. In
order to predict the effectiveness of specific compounds it is
important to understand the electronic structure of educt and
product of the cyclization reaction as well as the height of its
barrier. However, the quantum chemical description of the
cyclization reaction proves difficult and interesting because
of the strong change in the electronic structure of the mol-
ecule during the reaction.28,29

We have therefore undertaken a set of MRD-CI bench-
mark calculations into the Bergman cyclization of the sim-
plest member of the enediyene family. In contrast to experi-
mental evidence this reaction is strongly endothermic at the
Hartree-Fock level of theory, which indicates that dynamic
correlation effects are very important for its description.
CCSD calculations,28,29 significantly reduce deviation from
experiment, but fail to account quantitatively for the ring-
closure energy. Only CCSD~T! calculations, which partially
account for triple excitations and thus nondynamics correla-
tion effects, yield a quantitative agreement between experi-
ment and theory. Taking a differential zero-point correction
of '4 kcal/mol into account, this level of theory yields quan-
titative agreement between theory and experiment. These ob-
servations indicate that a balanced treatment of both dynami-
cal and nondynamical correlation effects is required to
quantitatively account for the reaction energetics of these
compounds. Considering theN7 scaling of the computational
cost of CCSD~T!, the application of this method poses sig-
nificant challenges both for larger basis sets and compounds
larger than the model considered here.

This investigation was motivated by two observations:
An earlier MRCI ~Ref. 30!study failed to reach even quali-
tative agreement with the experiment, presumably because
the employed basis set~DZ only! was too small to account
for the dynamic correlation effects. These are strongest in the
educt, hence multiconfigurational MC SCF leads to a stabi-
lization of the product with respect to the educt. Second, no
calculations employing larger basis sets than DZP have been
reported in the literature so far. Our goal was to establish
MRD-CI as a quantitative benchmark method for the model
compound at the cc-pVDZ level and to investigate larger

FIG. 2. Scaling plot of the total CPU time vs the number of nodes for a
massively parallel MRD-CI calculation selecting 3.73106 of 23107 deter-
minants running on 32–256 nodes on the CRAY-T3E. The individual con-
tributions ~from the top!are preparation~integral generation, SCF, four-
index transform!, logic ~building and redistributing the residue tables! and
configuration selection~including the perturbative calculation of the ap-
proximate natural orbitals in five iterations! and the iteration of the selected
state-vector, respectively.

FIG. 3. Scaling plot of the total CPU time vs the number of nodes for a
massively parallel MRD-CI calculation selecting 23106 of 2.63107 deter-
minants running on 16–64 nodes on an IBM SP3/SMP. The individual
contributions are labeled as in Fig. 2.



basis sets with this method to ensure that the agreement
obtained at that level of theory is not fortuitous.

We have performed configuration selecting MRCI calcu-
lations on product, educt, and transition state in optimized
geometries28 using cc-pVDZ, cc-pVTZ basis sets. The calcu-
lations were performed in approximate natural orbitals com-
puted in Brillouin-Wigner multireference perturbation
theory.24

Figure 4 shows the convergence of the variational and
total energy for all three states in the cc-pVDZ basis set. The
limit of zero perturbative energy corresponds to the unse-
lected MR-SDCI calculation. The lines show the~quadratic!
regression we use to extraploate to the MR-SDCI limit. For
all calculations the extrapolated curves for the variational
and the total energy meet in the MR-SDCI limit~to a fraction
of a millihenry!, which indicates the consistency and accu-
racy of the MRD-CI approach for this system. We note that
the energies obtained for a given selection threshold result
can result in rather different perturbative energies for the
different isomers. Not surprisingly, the electronic structure of
the transition state is most difficult to describe and yields the
largest perturbative energies for a given threshold. Because
second-order perturbation theory contains a systematic error
in the estimation of the total energy, energies computed for a
given threshold are not readily comparable.

Table I details the electronic energies of educt, transition
state, and product~in a.u.! and their relative differences~in

kcal/mol!. For the cc-pVDZ basis these data are in good
agreement with those obtained by CCSD~T! calculations. We
find that differences of about 1–2 kcal/mol between the
double and the triple zeta quality basis sets, in particular, for
the transition state. Taking the difference in zero-point vibra-
trional energy into account, the results are in quantitative
agreement with the best available experimental data.31,32

B. Dinitrosoethylene

Recent investigations into the ring-opening reaction of
furoxan ~oxadiazole-2-oxide!into dinitrosoethylene illus-
trated the theoretical difficulties encountered in the elucida-
tion the reaction mechanism. There are six possible conform-
ers of 1,2-dinitrosoethylene, all of which might, in principle,
play a role in the ring-opening reaction of furoxan, which
may serve as a possible source of nitric oxide in biology.
High level methods are required qualitatively account for the
energetic ordering of the various conformers, in particular,
the relevance ofcis-cis-trans~cct! DNE. We follow the no-
tation of Ref. 33 labeling the various conformers with their
acronyms (c5cis,t5trans). In all there are 26 stationary
points of the ground state potential energy surface of DNE.

Using configuration selecting CI we have investigated
the relative energies and the singlet triplet splitting~both
adiabatic and vertical!of the tct and ttt isomers in compari-
son with recent B3LYP, CASPT2, CASPT3, CCSD~T!, and
internally contracted MRCI~icMRCI! results. The geom-
etries were optimized at the level of B3LYP discrete Fourier
Transform method with an augmented 6-31111G(d,p) ba-
sis set, for triplets the unrestricted version of this method was
used. The MRCI calculations were performed in an aug-cc-
pVDZ and 6-3111G(2d f ,2pd) basis set in approximate
natural orbitals generated in Brillouin-Wigner multireference
perturbation theory.24,34The last basis set was used to permit
a direct comparison with earlier CCSD~T! and icMRCI cal-
culations. We used a nine orbital active space with reference
selection for all calculations.

The results for the absolute energies of the conformers
and electronic states are summarized in Tables II and III. Due
the presence of lone pairs and strong static correlation ef-
fects, excitation energies are difficult to determine for the
various conformers of DNE. For tct-DNE we find a good
agreement between the Davidson corrected vertical excita-
tion energy computed with MRD-CI and the results of
icMRCI. The results for the aug-pVDZ basis and the larger
6-31111G(d,p) are very similar, indicating convergence
with respect to the basis set. There is a 3.2 kcal/mol differ-
ence to the CCSD~T!result. Similarly there is good agree-

FIG. 4. Convergence of the MRD-CI energy~relative to an offset of 200
a.u.! in units of milli a.u. of the three conformations of enefiyene as a
function of the selection threshold. Shown are the variational energies~solid
lines! and the sum of variational and perturbative energy~dotted lines!.
Parallel lines permit a good extrapolation of relative energies.

TABLE I. Absolute ~in milli a.u. relative to2230.0 H) and relative electronic energies~in kcal/mol! of the
educt, transition state, and product of the ring closure reaction of enediyeneto didehydrobenzene as computed
by MRD-CI and including a Davidson correction (CI1Q).

cc-pVDZ cc-pVTZ
MRD-CI Difference CI1Q Difference MRD-CI Difference CI1Q Difference

Edukt 288.9 2189.6 2262.0 2390.3
TS 235.0 33.8 2140.1 31.0 208.54 33.8 2342.0 30.3
Product 273.5 9.7 2179.6 6.2 2243.8 11.7 2374.1 10.2



ment between CCSD~T!and MRD-CI1P for the adiabatic
excitation energy, which has not been previously computed
with icMRCI. For both vertical and adiabatic excitations en-
ergies of ttt we find good agreement between the correlated
methods.

IV. SUMMARY

Benchmark methods, such as CCSD~T!or MRCI, pro-
vide useful results to our understanding of the electronic
structure of molecules and of chemical reactions despite their
high computational cost. It is, therefore, worthwhile to de-
vote significant effort to the implementation of these meth-
ods on the most powerful available computational architec-
tures, i.e., presently massively parallel machines with
distributed memory. Here we reported significant improve-
ments of our massively parallel implementation of the con-
figuration selective MRD-CI method, which presently per-
mits the treatment of Hilbert spaces of up to 1012

configurations, about 53107 can be selected into the varia-
tional subspace.

This methodological framework permits us to perform
multireference CI calculations for mid-size molecules with
acceptable turnaround times. In this study we have reported
benchmark accuracy results for the singlet and triplet states
of various isomers of dinitrosoethylene in good agreement
with other theoretical methods. We have also reported the
first accurate MRCI calculations for the Bergman cyclization
reaction of enediyene, which agree well with experimental
data. The systematic exploration of various basis sets of dif-
ferent quality permits an assessment of the reliability of other
calculations regarding derivative reactions.
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TABLE II. Vertical and adiabaticS0→T1 excitation energies of the tct-DNE
~kcal/mol!.

Method Basis Vertical Adiabatic

DFT 6-3111G(2d f ,2pd) 11.6 20.9
CCSD~T! 6-3111G(2d f ,2pd) 25.1 18.2
icMRCI1P 6-3111G(2d f ,2pd) 24.4 NA
MRD-CI1P aug-cc-pVDZ 22.5 21.6

aug-cc-pVTZ 22.0 21.2
6-3111G(2d f ,2pd) 21.7 19.4

MRD-CI1D aug-cc-pVDZ 23.5 23.3
aug-cc-pVTZ 22.9 21.2
6-3111G(2d f ,2pd) 23.0 19.4

MRD-CI aug-cc-pVDZ 31.2 28.5
aug-cc-pVTZ 30.6 27.7
6-3111G(2d f ,2pd) 29.3 28.8

TABLE III. Vertical and adiabaticS0→T1 excitation energies of the ttt-
DNE ~kcal/mol!.

Method Basis Vertical Adiabatic

DFT 6-3111G(2d f ,2pd) 15.1 27.7
CCSD~T! 6-3111G(2d f ,2pd) 27.6 7.3
icMRCI1P 6-3111G(2d f ,2pd) 26.2 7.7
MRD-CI1P aug-cc-pVDZ 24.9 7.8

aug-cc-pVTZ 24.7 8.1
6-3111G(2d f ,2pd) 25.2 7.4

MRD-CI aug-cc-pVDZ 25.9 8.9
aug-cc-pVTZ 25.9 9.0
6-3111G(2d f ,2pd) 26.7 8.3

MRD-CI1D aug-cc-pVDZ 30.6 8.0
aug-cc-pVTZ 30.2 8.2
6-3111G(2d f ,2pd) 33.4 7.4


