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Summary

We investigate the landscape of the internal free-
energy of the 36 amino acid villin headpiece with a
modified basin hopping method in the all-atom force
field PFF01, which was previously used to predic-
tively fold several helical proteins with atomic resolu-
tion. We identify near native conformations of the pro-
tein as the global optimum of the force field. More
than half of the twenty best simulations started from
random initial conditions converge to the folding fun-
nel of the native conformation, but several competing
low-energy metastable conformations were observed.
From 76,000 independently generated conformations
we derived a decoy tree which illustrates the topologi-
cal structure of the entire low-energy part of the free-
energy landscape and characterizes the ensemble of
metastable conformations. These emerge as similar
in secondary content, but differ in tertiary arrange-
ment.

Introduction

Ab initio protein tertiary structure prediction (PSP) and
the elucidation of the mechanism of the folding process
are among the most important outstanding problems of
biophysical chemistry (Baker and Sali, 2001; Moult et
al., 2001; Schonbrunn et al., 2002). Investigations of the
protein landscape may offer insights into the folding
funnel and help elucidate folding mechanism and kinet-
ics. A complete characterization of the low-energy
landscape for proteins remains a difficult task because
of their complexity.

One of the central paradigms of protein folding is that
many proteins in their native conformation are in
thermodynamic equilibrium with their environment (An-
finsen, 1973). Exploiting this characteristic, researchers
have been able to predict the structure of the protein
by locating the global minimum of its free-energy sur-
face (Li and Scheraga, 1987; Liwo et al., 2002; Onuchic
et al., 1997) without recourse to the folding dynamics,
a process that is potentially much more efficient than
the simulation of the folding process. For questions
only regarding the folded structure of the protein, PSP
based on global optimization of the free-energy may
offer a viable alternative, provided that suitable param-
eterization of the free-energy of the protein in its envi-
ronment exists and that the global optimum of this free-
*Correspondence: wenzel@int.fzk.de
energy surface can be found with sufficient accuracy
(Li and Scheraga, 1987).

We have recently demonstrated a feasible strategy
for all-atom protein structure prediction (Schug et al.,
2003; Herges and Wenzel, 2004a, 2004b) in a minimal
thermodynamic approach. We developed an all-atom
force field for proteins (PFF01), which parameterizes
the internal free-energy (Snow et al., 2004) of a protein
on the basis of physical interactions (Herges and Wen-
zel, 2004a). Using various stochastic optimization
methods (Schug et al., submitted), we have already
demonstrated the reproducible and predictive folding
of several proteins in PFF01: the 40 amino acid HIV ac-
cessory protein (1F4I) (Herges and Wenzel, 2004b), the
20 amino acid trp-cage protein (1L2Y) (Schug et al.,
2003), the 60 amino acid four-helix bacterial ribosomal
protein L20 (1GYZ) (Raibaud et al., 2002; Schug et al.,
2004b), and the DNA binding domain of the human cen-
tromere protein B with 56 amino acids (unpublished
data). In addition, we could show that PFF01 stabilizes
the native conformations of other helical proteins, e.g.,
a 45 amino acid headpiece of protein A (Snow et al.,
2002; Gouda et al., 1992; Zhou and Karplus, 1999; Vila
et al., 2004), and the engrailed homeodomain (1ENH)
from Drosophilia melangaster (Clarke et al., 1994;
Mayor et al., 2003).

Here we investigate tertiary structure formation of the
autonomously folding 36 amino acid headpiece of the
villin protein (PDB code, 1VII). The villin headpiece did
not fold in a landmark explicit-water all-atom simula-
tions using the AMBER (Duan and Kollman, 1998) force
field. A recent optimization-based approach using the
ECEPP/2 force fields with an implicit solvent model
(Hansmann, 2002) found a two-helix structure as the
estimate of the global optimum of the free-energy sur-
face. Three-helix structures were also observed, indi-
cating that the difficulty of folding this protein in silico
may originate from both deficiencies of the force field
and/or limitations in the sampling of the conforma-
tional space.

Here we performed 50 independent simulations using
modified basin hopping technique (comprising 1.67 ×
108 energy evaluations in total) from random initial con-
ditions. Half of the runs found conformations associ-
ated with the folding funnel leading toward the native
state, the lowest energy simulation associated with the
native folding funnel resulted in a structure with a 3.3 Å
backbone rms deviation (rmsd) to the NMR conforma-
tion. We also found one low-lying metastable confor-
mation within 1 kcal/mol of the independently obtained
estimate of the global optimum of the free-energy sur-
face. We find that in silico folding of the villin headpiece
requires at least ten times the numerical effort that was
invested in the larger 40 amino acid HIV accessory pro-
tein, a three-helix bundle, which we recently folded re-
producibly using the same force field and the same op-
timization strategy.

In order to rationalize these differences, we charac-
terized the low-energy portion of its free-energy sur-
face (FES) of the protein using a decoy tree approach
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(Becker and Karplus, 1997) generated from over 76,000 
decoys that grouped into 14,000 families. This analysis 
demonstrates that the villin headpiece has several 
metastable three-helix conformations, which have al-
most the same energy and secondary structure content 
as the native state, but which differ significantly in terti-
ary structure from the NMR conformation. This charac-
terization of the relevant part of the free-energy surface 
of the protein is presently difficult to accomplish by 
other means, but may contribute significant insight into 
the folding properties of proteins both experimentally 
and in silico.

Results

We first performed 500 independent Monte-Carlo simu-
lations at 500 K on random initial conformations of the 
villin headpiece (PDB code, 1VII; sequence, MLSDE 
DFKAV FGMTR SAFAN LPLWK QQNLK KEKGLF), each 
comprising 2 × 105 energy evaluations. The initial con-
formations were generated by setting the dihedral an-
gles of the protein to random values and selecting non-
clashing conformations; they have no secondary 
structre. The 50 conformations with the lowest energies 
that differed by at least 4 Å in their backbone rmsd from 
one another were selected as starting conformations 
for the optimization runs. These conformations span a 
wide variety of possible structures, but we nevertheless 
found that they already contain much of the correct se-
condary structure. During this phase of the simulation, 
the helical content of these structures increased from 
zero to about 45% (the native conformation has 53%
helical content). In this context it is important to note 
that the simulation temperature (500 K) is largely unre-
lated to the “system temperature” that is determined 
by the parameterization of the free-energy force field 
(300 K), because the force field has no kinetic energy 
term.

Starting from these conformations, we performed 50 
independent basin hopping runs, as described in the 
methods section, for 100 cycles each, resulting in 67 × 
106 energy evaluations for each decoy. The depen-
dence of the energies as a function of the basin hop-
ping cycle for 20 of these runs that resulted in the low-
est energies is shown in Figure 1. The efficiency of the 
basin hopping technique to generate new, nontrivial 
structures with better energies is shown in the inset of 
the figure, which shows a histogram of the energy gain 
for a basin hopping step (i.e., the energy difference be-
tween the starting conformation and the conformation 
at the end of the SA run). The first 20 cycles were dis-
carded for the construction of the histogram to elimi-
nate the influence of equilibration effects in the begin-
ning of the simulation. The basin hopping method used 
an threshold acceptance criterion, according to which 
all basin hopping steps with � E < 3 kcal/mol (shown 
blue in the histogram) were accepted (acceptance ratio, 
35%). Length and temperature bracket of the underly-
ing SA simulation must be adapted to ensure a signifi-
cant acceptance ratio to permit nontrivial dynamics in 
the simulations. When this is achieved, the energy of 
each individual run fluctuates significantly, as is evident 
in the figure. Some simulations visit the global minimum
e.g., red, pink, and violet curves), while others (e.g.,
otted red curve) never even come close within the al-

otted time. In order to obtain an estimate of the energy
f the global optimum of the FES, we performed 20
asin-hopping simulations starting from the NMR con-

ormation. For these simulations the threshold accep-
ance criterion ensures that the vicinity of the NMR con-
ormation is extensively probed. We therefore estimate
he global optimum of the force field at −86.59 kcal/mol
ith a near native conformation (rmsd 3.6 Å).
The features of the best conformations of the 20 sim-

lations that reached the lowest energies are summa-
ized in Table 1, along with their rmsd to the NMR con-
ormation and their secondary structure content. We
ote that best energies of these low-energy decoys are
ery close to one another and that a nonnative confor-
ation emerges as the lowest decoy (energy differ-

nce, 0.69 kcal/mol). We also note that even the best
onformation (decoy D01) fails to reach the energy of
he NMR decoy of the decoy tree (−86.59 kcal/mol; blue
ine in Figure 1). Given the fluctuations in the energies
f the basin-hopping procedure (see Figure 1), the pre-
ent optimization strategy is inadequate to resolve en-
rgy differences on this scale. Should the FES have
everal minima that are energetically closer than the
cale of the threshold criterion (3 K), it is a natural (and
esirable) feature to visit these structures with nearly
qual probability. The resolution of the available optimi-
ation methods is presently insufficient to ensure that
ll simulations converge to the native conformation.
In order to ensure the validity of this conclusion, we

elected the best conformations from the five lowest
nergy runs. For each of these, we performed an addi-
ional simulation of 40 basin hopping cycles, compris-
ng 50 × 106 energy evaluations. These demonstrated
hat up to 2 kcal/mol can be gained in the total energy
f some structures, but we found no conformations
ith energies lower than the NMR decoy. The simula-

ions associated with D01 and D02 never produced
onformations that had a lower energy than the starting
onformation and the energetic order of the other con-
ormations was not significantly changed. These results
upport the conclusion that the present implementation
f the modified basin hopping technique had reached
he limit of its energy resolution.

In comparison to earlier studies (Daura et al., 1998;
in et al., 2003), it is encouraging that three-helix struc-
ures with the right secondary structure dominate the
ow-energy decoys. The fraction of correct native struc-
ure increased further from the end of the high-temper-
ture runs to the end of the basin-hopping runs. The
msd values in the table also demonstrate that obtain-
ng the correct secondary structure is a necessary, but
ot a sufficient condition for proper folding of the
rotein.
This investigation of the villin headpiece had con-

umed more than the 10-fold computational effort that
as required to reproducibly and predictably fold the
tructurally conserved 40 amino acid headpiece of the
IV accessory protein (Herges and Wenzel, 2004b;
chug et al., 2004a). The two proteins have less than
2% sequence homology (Gille et al., 2003) and differ

n their secondary structure content, but both fold into
ompact three-helix bundles. Although the HIV acces-



Figure 1. Accepted Energy as a Function of
Step Number for the Best Twenty of Fifty Ba-
sin-Hopping Simulations Described in the
Text

The bold red curve indicates the simulation
that visited the best conformation; note that
significant energy fluctuations are required
to explore the conformational space. On the
energy scale of the simulation, the best ener-
gies obtained are indistinguishable from the
estimate for the globally best energy that
was obtained independently (see text). Inset:
Histogram of the energy difference between
the starting and the final conformation in a
single basin hopping step. Blue/red areas in-
dicate accepted and rejected moves. Data
was accumulated after the equilibration
period of the first 20 steps to reflect equilib-
rium properties of the simulation.
difference in the folding behavior, we have attempted to in Figure 2. There are five three-helix and two two-helix

Table 1. Top Twenty Decoys after the Initial Simulations of the Villin Headpiece in PFF01

Code Energy Rmsd Branch Dist Secondary Structure

NMR −86.59 CHHHHHTTSSSCHHHHTTSCHHHHHHHHHHTTCC
D01 −86.23 7.57 C (3.31) CHHHHHHHHHHCHHHHHHSHHHHHHHHHHHHTCC
D02 −85.51 4.56 N (3.27) CHHHHHHHTSCHHHHHHCHHHHHHHHHHHHHTCC
D03 −85.35 5.80 N (4.86) CSHHHHHHHHHCHHHHHHCHHHHHHHHHTTTCCC
D04 −85.11 4.30 N (3.23) CHHHHHHHTSCSHHHHHCHHHHHHHHHHHHHTCC
D05 −84.08 4.13 N (3.35) CHHHHHHHTSCHHHHHHSHHHHHHHHHHHHHTCC
D06 −83.46 7.70 C (3.14) CHHHHHHHHHHCSSCSSCHHHHHHHHHHHHHTCC
D07 −82.97 4.62 N (3.37) CHHHHHHHCHHHHHHHHSHHHHHHHHHHHHHSCC
D08 −82.55 5.93 N (4.65) CHHHHHHHHHHHCHHHHHSCTTTCHHHHHHHHHC
D09 −82.03 6.50 A (4.42) CCCHHHHHHHTCSCHHHHHHSSSHHHHHHHHHHT
D10 −81.07 6.76 E (4.08) CCCHHHHHHHTSSCCSSCSSHHHHHHHHHHHHHT
D11 −80.96 7.42 A (4.00) CHHHHHHHTCSCHHHHHHSCSHHHHHHHHHHTCC
D12 −80.38 7.11 X CHHHHHHHHHHCCSHHHHCSSHHHHHHHHHHTCC
D13 −80.36 7.56 C (3.49) CHHHHHHHHHHHTTCCSSSHHHHHHHHHHHHTCC
D14 −79.94 8.29 X CHHHHHHHHHTTTSSCSCSSHHHHHCHHHHHHHT
D15 −79.85 3.86 N (4.54) CHHHHHHHHHTCSCHHHHHHSCHHHHHHHHHHTS
D16 −79.25 5.03 N (3.48) CHHHHHHHHHCSSCHHHHHSHHHHHHHHHHHHHT
D17 −78.74 2.66 N (2.75) CHHHHHHHTSCCHHHHHHSCHHHHHHHHHHHTCC
D18 −78.39 7.58 C (3.59) CHHHHHHHHHCCCHHHHHSHHHHHHHHHHHHTCC
D19 −78.35 3.18 N (3.49) CHHHHHHHTSCCHHHHHHSCHHHHHHHHHHHHHC
D20 −78.21 7.30 B (4.00) CHHHHHHHHHHHHHHHHHSHHHHHHHHHHHHTCC

Top 20 decoys after the initial simulations of the villin headpiece in PFF01 (see text) with their energy (in kcal/mol), the rmsd to the native
structure, the closest terminal branch of the tree (see text), and the rmsd between the terminal branch and the decoy. Next we show the label
of the conformation of the closest branch in the decoy tree (Figure 3) and the rmsd between the two conformations. An X donates a
conformation that is larger than 5 Å rmsd from all branches of the tree. The last column shows the secondary structure content (computed
with DSSP).
sory protein is slightly larger, 8 of 20 basin-hopping
simulations found the NMR structure and no competing
low-energy decoys emerged. This finding illustrates the
significant differences in the in silico folding rates of
even the family of naturally occurring three-helix bundles.

Differences in the in silico folding rates of for protein
models of equal lengths have often been traced to vari-
ous measures of the complexity of their sequence de-
pendent potential energy surfaces, but investigations
into realistic proteins have been hampered by the lack
of adequate all-atom models for which folding to the
native state could be observed. In order to analyze the
characterize the low-energy portion of the free-energy
landscape of the villin headpiece and compare it with
the landscape of the HIV accessory protein. Starting
from randomized initial conformations, we generated in
excess of 76,000 structures with the modified basin-
hopping method. These were grouped in to 14,000 de-
coy families, according to the procedure outlined in the
methods section and a decoy tree was generated. The
low-energy portion of the 1VII free-energy surface is il-
lustrated in Figure 3, it features seven almost isoener-
getic nonnative terminal branches. The decoy associ-
ated with the terminal branches of the tree are shown
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Figure 2. Native Structure and the Conformations of the Terminal u
Branches of the Decoy Tree of the Villin Headpiece N
The labels refer to the branches in Figure 3 and the numbers indi- q
cate the rmsd deviations to the native structure (labeled NMR). The t
color-coded distance map in the top right compares the Cβ and

f−Cβ distances of the native structure with that of the NMR decoy.
lThe density of each square corresponds to the degree of similarity
wof the experimental and the model C(beta)-C(beta) distances for

each pair of amino acids, which are enumerated along the protein l
sequence along the horizontal and vertical axis of the figure. Black
(gray) squares indicate that the Cβ and −Cβ distances of the native a
and the other structure differ by less than 1.5 and 2.25 Å, respec-

ptively. White squares indicate larger deviations.
d
t

estructures at the bottom of their respective branches of

the tree. One notes a distinct propensity for the forma- p
ftion of helices in those regions where the NMR struc-

ture forms helices 1 and 3. The central helix occurs less c
(often and leads to misfolded decoys reminiscent of the

two-helix structures found in (Lin et al., 2003). The en- p
gergy spectrum shows a gap of less than 1 kcal/mol be-

tween the NMR decoy and the next competing struc- l
sture and becomes nearly continuous with increasing

energy. An analysis of the rmsd matrix of all low energy c
odecoys suggests that many distinct metastable confor-

mations were probed in the search. t
In order to further analyze the results of the folding

runs, we have computed the rmsd distance matrix be- t
ttween the conformations associated with the terminal

branches of the decoy tree (Figure 3), as depicted in m
tFigure 2 and the conformations D01–D20. Table 1

shows the label of the closest branch for each decoy b
pand its rmsd deviation to the bottom structure. Out of

the 20 simulations, the native branch (N) was visited 11 d
imes, branch C was visited 4 times, branch A 2 times,
nd branches C and B 1 time. Two conformations (la-
eled X) could not be associated with any terminal
ranch, but their energies are very high. This finding
rossvalidates the independent generation of the de-
oy tree and the simulation runs. The data from the
onstruction of the decoy tree indicates that the folding
uns did efficiently explore the low-energy conforma-
ional space, even if their energy resolutions is too low
o ultimately distinguish between the conformations as-
ociated with the native and nonnative low-energy con-
ormations. Similarly, it is encouraging that all low-
nergy decoys of the folding simulations could be
ssociated with families already present in the tree, in-
icating that the decoy tree may contain a nearly com-
lete characterization of the low-energy surface of the
illin headpiece. It is also encouraging that 50% of the
imulation runs are at least associated with the native
ranch.

iscussion

ased on this data, it is possible to compare the decoy
rees of the villin headpiece and the HIV accessory pro-
ein (Herges and Wenzel, 2004a), see Figure 4. The lat-
er has a much less branched structure and all compet-
ng low-energy branches terminate at a much higher
elative energy. To illustrate the features of the FES sur-
ace associated with a given tree, we have schemati-
ally indicated two one-dimensional surfaces in the fig-
re that are commensurate with the respective trees.
ote that the distribution of branching points permits a
ualitative comparison of the energy barriers required
o bridge tow families. A comparison of these two sur-
aces thus indicates that folding simulations for the vil-
in headpiece have much more opportunity to go astray
hen compared to those of 1F4I and will require much

onger time to escape from metastable conformations.
Long-lived metastable conformations, such as those

ssociated with terminal branches of the decoy tree are
resently difficult to characterize experimentally or by
irect simulation. Free-energy optimization strategies
hus offer a unique opportunity to characterize the low-
nergy portion of the FES, even though they are inca-
able of characterizing the extended ensembles of

olding intermediates that are characterized by large
ontributions of backbone conformational entropy

Garcia and Onuchic, 2003). We have therefore com-
uted measures of native content for all decoy and
enerated trees in which the width of the branch il-

ustrates similarity with the native structure for the cho-
en criterion. Figure 5 shows four such trees that indi-
ate the presence of helices 1, 2, and 3 and the fraction
f long-range native content in the decoy set respec-
ively.

In addition to the topological information present in
he tree, this information permits a characterization of
he physical properties of the folding funnel and its
etastable branches. By definition, all native charac-

eristics are fully present in the terminus of the native
ranch. Helix 1 (amino acids: 4–11), for example, is also
resent in branches C, E, and F, but its content actually
ecreases with decreasing energy in branch B. Helix 2



Figure 3. Decoy Tree for the Villin Headpiece
in the Optimized Force Field

The structures corresponding to the terminal
branches of the tree are shown in Figure 2.
The tree was constructed from a set of
76,000 structures grouped in 14,000 families,
as discussed in the Experimental Proce-
dures.
points. This indicates that the formation of nearly the rameterization of the free-energy landscape on the ba-

Figure 4. Schematic Representations of
One-Dimensional Potential Energy Surfaces
Compatible with the Decoy Trees Obtained
for the All-Atom Models of the HIV Acces-
sory Protein and the Villin Headpiece

HIV accessory protein, left; villin headpiece,
right.
(15–20), by comparison, is present in A, B, and D, but
not in C. Helix 3 (24–34) is present only in branch C.
Provided that the characterization of the free-energy
surface in the tree is complete, this analysis suggests
that none of the long-lived folding intermediates have
the complete secondary structure. As a result, it is un-
likely that a sequential folding scenario along a single
path, reminiscent of Levinthals paradigm (Levinthal,
1968), is realized in this protein.

Instead, different folding paths will generate confor-
mations in either the native or one of the nonnative fam-
ilies, which differ in their secondary structure content.
In processes moving from one nonnative family to the
next, part of the original secondary content is lost, and
secondary structure in a different region of the protein
is formed instead. Branches B and C apparently have
too much content of either helix 2 or 3, respectively, to
generate close by conformations of similar energy. Only
transitions leading to the native branch lead to an in-
crease in secondary structure. Note that the topological
information in the tree does not imply that a folding
path that has visited C must visit B before reaching N,
as the trees represent highly simplified projections of
complex multidimensional surfaces.

Of particular interest is the bottom panel of the figure,
which illustrates the fraction of native contacts. It
clearly demonstrates that essentially all long-range na-
tive contacts are formed only at the bottom of the na-
tive folding funnel. Few long-range contacts are already
present in the metastable funnels or near the branching
entire secondary structure is required for the formation
of stabilizing long-range contacts for the villin head-
piece. Note that while all helices are prevalent already
at comparatively high energies in the native funnel, the
formation of the long-range native contacts occurs in
a very small fraction of the conformation space, that
appears accessible only after all secondary structure has
formed. Even though the free-energy optimization strat-
egy followed here yields no direct dynamical informa-
tion, this finding is commensurate with a folding sce-
nario in which the long-range native contacts are
formed only a the very end of the folding process, after
the transition state. In the absence of the characteriza-
tion of the transition states separating the metastable
conformations, however, no immediate conclusions re-
garding the experimental folding rate of the protein can
be drawn from the decoy trees.

Conclusions
Recent investigations of all-atom protein structure pre-
diction with free-energy models (Schug et al., 2003; Vila
et al., 2004; Herges and Wenzel, 2004a, 2004b) provide
increasing evidence that the native tertiary structure
can be predicted as the equilibrium conformation of
suitable free-energy force field, a finding commensu-
rate with the free-energy paradigm of protein folding
(Anfinsen, 1973). We find that PFF01 stabilizes the na-
tive conformation of a family of nonhomologous helical
proteins as its global minimum. The all-atom represen-
tation in PFF01 or similar force fields permits the pa-
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cFigure 5. Illustration of the Secondary and Tertiary Structure
pContent of the Low-Energy Portion of the Free-Energy Surface of

the Villin Headpiece p
Each figure shows the decoy tree of the villin headpiece, where the a
width of the branch is proportional to some characteristic of the s
decoy family at the given energy. From top to bottom the character- c
istics are: the fraction of helical content in the regions where the a
native conformation has helices 1, 2, and 3, respectively. The bot-

Wtom panel corresponds to the fraction of long-range native con-
ttacts, defined as the fraction of Cβ and −Cβ distances that differed

less than 2 Å from their native counterparts from residues 3–14 with o
residues 23–33. r

f
n

sis of physical interactions that are well understood for
ssmaller systems. Such parameterization promise better
itransferability in comparison to knowledge based
cmethods, but can only be exploited when efficient opti-
tmization methods are available to accurately and relia-
obly determine the global optimum of the FES at the all-

atom level. f
The use of physical interactions in all-atom represen-
ations incurs a large computational cost when com-
ared to more coarse-grained or homology-based
odels. In an optimization approach, this increase in

ost is partially compensated by the efficiency of the
onformational search. Here we demonstrated that the
ative conformation of the villin headpiece and its en-
ire low-energy FES can be characterized with atomic
esolution with present-day computational resources.
he total computational effort invested in this study
orresponds to an MD trajectory of approximately 1.2
s, comparable to the effort invested in a landmark ex-
licit water simulation MD (Duan and Kollman, 1998) of
he same system. This simulation failed to fold into the
ative state, while other recent MD simulations indicate
hat the native conformation is visited only rarely on
his timescale. Our results suggest that protein struc-
ure prediction using stochastic optimization methods
ay become a viable alternative to explicit water MD

or small proteins. In comparison to folding by molecu-
ar dynamics or replica exchange methods (Garcia and
nuchic, 2003), the disadvantage of the optimization
trategies is the loss of dynamical information. We also
ote that the presently available evidence indicates
hat explicit water simulation models are superior to im-
licit solvent models with regard to the accuracy in
hich the native conformation is resolved (Simmerling
t al., 2002).
In comparison to earlier implicit solvent free-energy
odels (Lin et al., 2003), a force field that correctly pre-
icts the native conformation of several nontrivial pro-
eins with 20–60 amino acids as its global optimum is
ow available. There is presently no evidence to sug-
est that this force field would not fold larger proteins,
ut optimization methods to perform such experiments
ith presently available computational resources are
till lacking. Progress toward the study of larger pro-
eins depends on further improvements of the energy
esolution of the optimization method. Successful tech-
iques must bridge the gap between efficient explora-
ion of the overall structure of the FES and the very
ccurate resolution of competing local minima. Even
omparatively simple three-helix proteins appear to
ose significant challenges for which the villin head-
iece provides an interesting example: while we were
ble to fully characterize the low-energy free-energy
urface of the protein, reproducible folding, which
ould be achieved for the trp-cage protein (Schug et
l., 2003) and the HIV accessory protein (Herges and
enzel, 2004b), presently overtaxes the energy resolu-

ion of the basin-hopping method. The close proximity
f the different branches of decoy tree may provide a
ationalization of the difficulties encountered in prior
olding studies, which also failed to converge to the
ative structure (Daura et al., 1998; Lin et al., 2003).
The construction of the decoy tree and its compari-

on for different proteins permits a qualitative rational-
zation of the folding dynamics that is presently inac-
essible by other means. The number of branches of
he decoy tree, their complexity, and energy distribution
ffers a straightforward characterization of the folding
unnel of the protein and augments dynamic character-
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