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Abstract 

 

This paper presents an original method for evaluating the liquid phase residence time 

distribution in bubble-train flow using data from direct numerical simulations. The method is 

a particle method and relies on the uniform introduction of virtual particles in the volume 

occupied by the liquid phase within a single flow unit cell. The residence time distribution is 

obtained by statistical evaluation of the time needed by any particle to travel an axial distance 

equivalent to the length of the flow unit cell. Residence time curves are evaluated from DNS 

data of bubble-train flow in a square mini-channel for different lengths of the flow unit cell. 

The curves obtained are well fitted by an exponential relationship, which has been developed 

on basis of a two-tanks-in-series compartment model, where the first tank is a plug flow 

reactor and the second is a continuous stirred tank reactor. 

 

Keywords: Bubble-train flow; Taylor flow; Residence time distribution; Direct numerical 

simulation 

 

1. Introduction 

 

Bubble-train flow (BTF) is a common flow pattern for gas-liquid flows in narrow 

channels. It consists of a regular sequence of bubbles of identical shape, which fill almost the 

entire channel cross-section and are often called Taylor bubbles. The individual bubbles are 

separated by liquid slugs and move with the same axial velocity. Therefore, bubble-train flow 

or Taylor flow is fully described by a single flow unit cell, which consists of one bubble and 

the liquid slug separating it from the trailing bubble. BTF is of considerable technical 

relevance, e.g. for monolithic reactors (Boger et al., 2004; Kreutzer et al., 2005a, 2005b) and 

for miniaturized multiphase reactors (Burns and Ramshaw, 2001; Hessel et al., 2004, 2005). 

 

An important characteristic of any chemical reactor is its residence time distribution 

(RTD), since the RTD provides information about the flow and mixing behaviour of reaction 

components. In practice, the residence time distribution is often measured by a stimulus-

response technique, where a specific quantity of tracer (e.g. fluorescent substance, 

radionuclide, solution of salt, etc.) is introduced at the system inlet as a short duration pulse or 

a step function and where the time variation of the tracer concentration at the outlet is 

recorded. 
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The tracer particles injected at the inlet are assumed to follow the same paths through the 

system as did the original fluid particles they replaced (Naumann, 1981). Thus, the tracer 

particles will have the same distribution of residence times as the original fluid particles. By 

recording the times when particles leave, a histogram can be constructed which, with a large 

sampling size, will converge to the differential residence time distribution function, E(t). The 

probability that a particle had a residence time less than t is then given by the cumulative 

residence time distribution function 

 

0

( ) ( )d
t

F t E t t    (1) 

 

The extension of the above measurement principle from single phase flow to gas-liquid 

two phase flow presents no special difficulties (Naumann, 1981). The main difference is that 

the system has now usually two inlets (one for the gas phase and one for the liquid phase), 

while there is still one common outlet. To measure the residence time distribution of the 

liquid phase, the tracer pulse is injected at the liquid inlet only. For bubble-train flow, a 

measurement of the residence time distribution of the gas phase is not of interest, since the 

RTD is very narrow and its mean value can easily be computed from the travelling distance 

and the bubble velocity. 

 

The stimulus-response measurement technique is well suited for macro-reactors, where 

the reactor volume is much larger than the volume of the tracer measuring unit. However, for 

micro-reactors the reactor volume is usually smaller than the volume of the measuring unit. 

This means that the residence time response of the tracer may already be influenced by the 

measuring construction itself (M. Günther et al., 2004). Measurements of liquid phase RTD 

for two-phase flow through narrow channels are reported by Thulasidas et al. (1999) for 

bubble-train flow in single straight channels, by Patrick et al. (1995) for a monolith froth 

reactor, by Heibel et al. (2005) for film flow in a monolith reactor, by Yawalkar et al. (2005) 

and Kreutzer et al. (2005a) for bubble-train flow in a monolith reactor, and by A. Günther et 

al. (2004) and Trachsel et al. (2005) for bubble-train flow in micro-fluidic channel networks 

of rectangular cross-section. The latter authors showed a narrow residence time distribution 

for bubble-train flow as compared to single phase flow. 

 

An alternative way to determine the RTD is by means of computational fluid dynamics 

(CFD). There exist in principle two options to determine the residence time distribution from 

CFD methods (Thyn and Zitny, 2004). The first one is to numerically simulate the stimulus-

response experiment, i.e. setting a short concentration pulse at the inlet of the computational 

domain, computing the unsteady concentration field of the tracer within the computational 

domain and evaluating it at the outlet. This approach has been used in a modified form by 

Salman et al. (2005) to determine the reactor residence time for Taylor flow in a circular 

microchannel from the residence time distribution of a single unit cell by using a convolution 

procedure. The second possibility is the particle tracking method. Here, virtual particles are 

released at the inlet and their trajectories are computed from the known velocity field of the 

CFD calculation (see e.g. Castelain et al., 2000). A notable difference between the two 

methods is that in the particle method only convective properties of the flow are monitored, 

while by evaluation of the unsteady concentration field additionally diffusive transport is 

taken into account. The relative importance of convective and diffusive transport is 

characterized by the Bodenstein number. For bubble-train flow, it can be defined as Bo = 

UBdh/Dtracer, where UB is the bubble velocity, dh is the hydraulic diameter of the channel and 

Dtracer is the molecular diffusion coefficient of the tracer in the liquid phase. For a particle 
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method, no diffusion of the tracer is taken into account. The RTD obtained by a particle 

method is therefore representative for an infinite value of the Bodenstein number. 

 

To predict the residence time distribution for Taylor flow, Salman et al. (2004) developed 

a numerical model valid for low values of the Bodenstein number. This model assumes well 

mixed liquid slugs of uniform concentration and liquid films around the bubble that can be 

adequately described by a one-dimensional convection-diffusion equation. For large values of 

the Bodenstein number (Bo > 10) the model can be simplified to yield an analytical solution 

which corresponds to the representation of a unit cell by a tank-in-series model, consisting of 

a plug flow reactor (PFR) and a continuous stirred tank reactor (CSTR). 

 

An important issue for measurement of the RTD or its computation by CFD is the 

introduction of the tracer at the inlet and its detection at the outlet, because this may strongly 

influence the obtained residence time distribution (Levenspiel and Turner, 1970; Levenspiel 

et al. 1970; Levenspiel, 1999). There are essentially two different concepts, namely the flux 

and planar introduction and measurement, respectively. Both approaches lead to different 

response curves which may, for laminar flow in a pipe or plane channel, be transformed into 

each other, see section 3.2.1. However, only the flux-flux method yields the proper RTD for 

reactor purposes (Levenspiel, 1999). 

 

In this paper we present an original CFD-based method for evaluation of the residence 

time distribution of the continuous phase in bubble-train flow. Our method is a particle 

method and relies on the known bubble shape and velocity field within a unit cell, which are 

assumed to be available from direct numerical simulation (DNS). Particle methods are usually 

based on the computed steady velocity field. For BTF the velocity field is unsteady in the 

fixed frame of reference, for which the RTD has to be computed. It is, however, steady in the 

frame of reference moving with the bubble. In our method we take advantage of this fact and 

apply an appropriate transformation between the two frames of reference. Because the 

concept of planar introduction is not suited for BTF, we extend it to a volumetric introduction, 

where virtual particles are introduced in all mesh cells within the flow domain that are entirely 

filled with liquid. For each particle we determine the time the particle needs to travel an axial 

distance equal to the unit cell length. By appropriate weighting and normalization of the 

residence times of all particles, the residence time distribution is obtained. 

 

The remainder of this paper is organized as follows. In section 2 we present direct 

numerical simulation results of co-current upward bubble-train flow of air bubbles through 

silicon oil in a square vertical channel of 2 mm  2 mm cross section. In section 3 we 

introduce our original particle method for evaluation of the RTD in bubble-train flow. In 

section 4 we present results for the liquid phase residence time distribution in bubble-train 

flow and develop a model for the RTD obtained. Finally, we give conclusions and outlook in 

section 5. 

 

2. Direct numerical simulation of bubble-train flow 

 

In this section we first give a short overview on the numerical method and the computer 

code used to perform the direct numerical simulations of bubble-train flow. We then give the 

physical and numerical parameters of the simulations and provide a verification and 

discussion of the DNS results. 
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2.1. Numerical method 

The direct numerical simulations are performed with the in-house computer code 

TURBIT-VOF, which solves the single-field Navier-Stokes equations with surface tension 

term for two incompressible immiscible fluids under assumption of constant fluid properties 

(i.e. density, viscosity, surface tension). The single-field formulation automatically accounts 

for the proper momentum jump conditions across the gas-liquid interface. The governing 

equations are written in non-dimensional form, see Ghidersa et al. (2004). For normalisation, 

a reference length scale Lref and reference velocity scale Uref are used, which need to be 

specified. The solution strategy is based on a projection method, where the resulting Poisson 

equation for the pressure is solved by a conjugate gradient solver. Time integration of the 

single field Navier-Stokes equation is done by an explicit third order Runge-Kutta method. 

Discretization in space is based on a finite volume method, where a regular Cartesian 

staggered grid is used. All derivatives in space are approximated by second order central 

differences. 

 

For computing the evolution of the deformable interface which separates the two 

immiscible fluids, the volume-of-fluid (VOF) method is used. In any mesh cell that 

instantaneously contains both phases, the interface is locally approximated by a plane. The 

orientation and location of the plane is reconstructed from the discrete distribution of the 

volumetric fraction f of the continuous fluid. Note that - for a certain instant in time - we have 

f = 1 for mesh cells entirely filled with liquid, f = 0 for mesh cells entirely filled with gas, and 

0 < f < 1 for mesh cells that contain both phases. The evolution of f is governed by an 

advection equation, which expresses the mass conservation of the continuous phase. To avoid 

any smearing of the interface, this f-equation is not solved by a difference scheme. Instead, 

the flux of f across the faces of any interface mesh cell is calculated in a geometrical manner, 

depending on the location and orientation of the plane representing the interface. For further 

details about the numerical method we refer to Sabisch et al. (2001). 

2.2. Simulation parameters 

We now give a short overview on the simulations of bubble-train flow that we will use to 

analyse the RTD. The concept of the simulations is essentially the same as in a previous paper 

(Ghidersa et al., 2004). We consider one flow unit cell only and use periodic boundary 

conditions in vertical axial direction (y); see Figure 1 for a sketch of the computational 

domain and the co-ordinate system. The use of periodic boundary conditions in axial direction 

requires a special treatment of the pressure term. For this purpose a “reduced pressure” is 

defined, see Ghidersa et al. (2004). This reduced pressure is periodic because it does not 

involve the hydrostatic contribution and that of the linear axial pressure drop. As a result of 

this pressure decomposition, the buoyancy force and the axial pressure gradient appear as 

source terms in the Navier-Stokes equation. The simulations aim to reproduce the conditions 

of an experiment by Thulasidas et al. (1995), where the co-current upward flow of air bubbles 

in silicon oil of various viscosities in a square vertical channel with a cross section of 2 mm  

2 mm is investigated. This flow configuration was recently investigated numerically by Taha 

and Cui (2006) using the VOF method as implemented in the commercial CFD code 

FLUENT. The latter authors did, however, not consider bubble-train flow, but computed the 

flow of a single Taylor bubble and used inflow and outflow boundary conditions. 

 

In Ghidersa et al. (2004) we presented simulations with a cubic flow unit cell for silicon 

oil of two different viscosities, which result in different values of the capillary number  

Ca ≡ µLUB/, namely Ca  0.04 and Ca  0.2. The capillary number is the relevant non-

dimensional group for two-phase flow in narrow channels, as it represents the ratio of the two 
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dominant forces, namely viscous forces and surface tension. The influence of the capillary 

number is discussed in Ghidersa et al. (2004) and Taha and Cui (2006). In the present paper, 

we consider only the more viscous case, i.e. that one with higher value of Ca, where µL = 

0.048 Pa s and L = 957 kg/m3. While these values for the liquid density and liquid viscosity 

and the value for the coefficient of surface tension  = 0.02218 N/m correspond to the 

experiment of Thulasidas et al. (1995), we increased in Ghidersa et al. (2004) the gas density 

and gas viscosity by a factor of 10 to improve the computational efficiency. So we used G = 

11.7 kg/m3 and µG = 1.84  10-4 Pa s, which results in a liquid-to-gas density ratio of about 81 

and a liquid-to-gas viscosity ratio of about 260. To investigate the effect of this artificial 

increase of G and µG we present, for comparison, in this paper one simulation for the real air 

properties, namely G = 1.17 kg/m3 and µG = 1.84  10-5 Pa s. In addition, a grid refinement 

study is performed for the case with increased gas density and viscosity to assess the influence 

of the mesh size. 

 

As initial condition we place (for the simulations with a cubic unit cell only) a spherical 

bubble in the centre of the computational domain and start the simulations from fluid at rest. 

The diameter of the bubble is chosen so that the gas volumetric fraction in the unit cell   is 

about 33%. In this paper we use for all simulations as reference length scale Lref = 0.002 m 

(i.e. the width of the square channel in the experiment of Thulasidas et al. (1995)) and as 

reference velocity scale Uref = 0.0264 m/s. The reference time scale then becomes tref = Lref / 

Uref = 0.757 s. The driving axial pressure drop corresponds to a reference Euler number Euref  

|pLref| / (L Uref
2) = 27, where |pLref| is the axial pressure drop per reference length. In Table 

1 we list the time step width and number of time steps computed. As can be seen, the time 

step for case A1 is ten times smaller than for case A2 with increased gas density. In Figure 2 

we show the temporal evolution of the bubble velocity and the mean velocity of the liquid 

phase. We see that the curves for cases A1, A2 and A3 show only very small differences. 

Figure 3 shows the temporal evolution of the bubble dimensions in the two wall-normal 

directions x and z. These bubble dimensions are computed as follows. For each mesh cell that 

contains both phases (0 < f < 1) the centroid of the plane representing the interface is 

computed. The centroids of neighbouring mesh cells are then connected to form triangles or 

quadrangles. This yields the closed bubble surface as shown in Figure 1 and Figure 5. By this 

procedure it is possible to determine the bubble dimension with a resolution that is smaller 

than the actual mesh width. As becomes evident from Figure 3, the differences between the 

bubble dimensions in both directions and between the three cases are very small. 

 

At this point it is appropriate to mention some important restrictions of the present 

concept for simulation of BTF. Due to the use of periodic boundary conditions in axial 

direction, the length of the unit cell, the axial pressure drop per reference length and the 

volumetric gas content in the unit cell are input parameters of the simulations, while the gas 

and liquid flow rates are results, i.e. output. This is in contrast to experiments, where usually 

the gas and liquid flow rates are specified and the length of the unit cell, the axial pressure 

drop and the volumetric gas content in the unit cell adjust accordingly. For a comparison with 

experiments it is therefore important to study the influence of the length of the flow unit cell, 

Luc. A preliminary respective study for five different values of Luc in the range 1 ≤  Luc / Lref ≤ 

2 and for the physical parameters mentioned above has been performed by Wörner et al. 

(2004). Here, this study is continued and refined. Justified by the present results for the 

influence of the gas properties and the grid size, in all these runs a uniform isotropic grid with 

a resolution of 48  48 mesh cells per channel cross section is used, and the physical 

properties of the gas phase are set to G = 11.7 kg/m3 and µG = 1.84  10-4 Pa s. Beside the 

change of Luc and that of the initial bubble shape from spherical to elongated (see Figure 1 for 
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the initial bubble shape of case E and Wörner et al. (2004) for its mathematical description) 

all the other parameters of the simulations including  and Euref are identical to run A2. 

2.3. Verification 

Table 2 lists the different values of Luc and the corresponding simulation results. These 

include the bubble velocity UB (which is equal to the mean gas velocity UG), the mean liquid 

velocity UL, the bubble diameter DB, and the bubble length LB. In all simulations the bubble 

shape is axisymmetric and, therefore, any axial cross section through the bubble results in a 

circle. The bubble diameter DB is defined as the largest diameter of this circle for all axial 

cross sections of the bubble. From Table 2 one can see that with increasing length of the unit 

cell the bubble velocity and the mean liquid velocity both increase for a given value of Euref, 

respectively |pLref|. Thus, for the same gas content within the unit cell and for the same 

driving axial pressure gradient larger bubble velocities are reached in longer unit cells. The 

bubble Reynolds number ReB  LWUB/µL is in the range 3.84.8, therefore the flow is 

laminar. Also given in Table 2 are the capillary number Ca and the ratio of bubble velocity to 

total superficial velocity V  UB / J, where J   UG + (1) UL, and the relative bubble 

velocity Z  (UB  J) / UB. The capillary number is proportional to the bubble velocity 

therefore Ca also increases with increasing length of the unit cell. 

 

For verification we use experimental results of Thulasidas et al. (1995) for DB/W, V and Z, 

which are given in graphical form as function of the capillary number. Thulasidas et al. (1995) 

do not give explicit values for the bubble length, but their bubbles are always elongated so 

that the ratio LB/W is clearly larger than 1. They give, however, values for the ratio of bubble 

length to unit cell length LB/Luc, which is in the range 0.60.7 and thus is smaller than in our 

simulations, where it ranges from 0.93 in case A to 0.77 in case H. The experimental values of 

DB/W, V and Z within the range of Ca of our simulations are listed in the last line of Table 2. 

We see that the computed values do well agree with the experimental ones with the only 

exception of cases A1, A2 and A3, where the bubble diameter is clearly too small. The plot of 

DB/W, V and Z as function of the capillary number in Figure 4 shows that one can identify 

essentially two regimes with different trends. For cases A, B and C the capillary number is 

almost the same and we find, for increasing Luc, an increase of DB and a decrease of V and Z. 

For cases D, E, F, G and H the capillary number increases with increase of Luc because the 

bubble velocity increases. While the bubble diameter is almost the same in all these cases, V 

and Z increase with increasing Luc and show a linear increase with Ca. The trends observed in 

the experiment of Thulasidas et al. (1995), for increasing Ca, are a decrease of DB and an 

increase of V and Z. Thus, from the present simulations only cases D, E, F, G and H obey this 

experimental trend for V and Z. We relate these findings to the ratio between bubble length 

and channel width. For cases A, B and C we have LB/W < 1.1, while for cases D, E, F, G and 

H and in the experiment of Thulasidas et al. (1995) we have LB/W > 1.1. Our results therefore 

suggest that bubble-train flow with “short” and “long” bubbles show some different behaviour 

and the critical value separating both regimes is about LB/W  1.1. We note that for cases D, E, 

F, G and H the bubble diameter DB is almost independent of Ca whereas the experiments of 

Thulasidas et al. (1995) show a decrease of DB for increasing values of Ca. For very long 

bubbles one may expect that for a given value of the capillary number the thickness of the 

liquid film and therefore DB should become almost independent of the bubble length. 

However, in the present simulations the bubbles are rather short and the increase of Ca is 

accompanied by an increase of the bubble length. So we expect a relation DB = DB(Ca,LB) 

instead of DB = DB(Ca). Therefore, the expected decrease of DB with increase of Ca for 

sufficiently long bubbles may, in the present simulations, be counteracted by an increase of 

DB with increasing bubble length for a given value of Ca. 
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2.4. Bubble shape and velocity field 

Figure 5 shows a visualization of the computed bubble shape and flow field for cases A2, 

E and H. To allow for a good visualization, the results are shown for each case for an instant 

in time when the bubble tip is almost at the top of the computational domain. In all 

simulations the bubble is axisymmetric, i.e. its cross section at any axial position is circular. It 

is therefore sufficient to display only the left half of the steady bubble shape. Similar 

visualizations for cases C and G are displayed in Wörner et al. (2005a, 2005b). Figure 5 also 

shows the velocity field in the vertical axial mid-plane for the three cases. In the left half of 

the figure the velocity field is shown in the fixed frame of reference, while in the right half it 

is displayed in the frame of reference moving with the bubble (i.e. the bubble velocity is 

subtracted from the vertical velocity component). In the fixed frame of reference it can be 

seen that the velocity profile in the liquid slug has the form of a parabola and is similar for all 

three cases. In the region where the liquid film is very thin the liquid velocity is almost zero. 

In the frame of reference moving with the bubble the flow inside the bubble can be analysed. 

We find that there is one big vortex which occupies almost the complete bubble. In the rear 

part of the bubble, however, the velocity is almost zero in the moving frame of reference. For 

the flow in the liquid, the blank regions in the right half of the figures indicate that part of the 

liquid slug that is moving with the velocity of the bubble. 

 

3. Numerical evaluation of residence time distribution 

3.1. Tracking of mass-less particles 

We now describe our procedure to evaluate the RTD from the DNS data and start by 

presenting the method for the reconstruction of the tracer paths. In this context we introduce 

the following definitions. Let xp,j be the position vector of particle j in the fixed frame of 

reference and let v(x,t) be the velocity field in this frame of reference. Then, the time variation 

of the position of an infinitesimal small mass-less particle in the fixed frame of reference is 

given by 

 

 p,

p,

d
( ),

d

j

j t t
t


x
v x  (2) 

 

Thus, if the particle position at time tn is known, the position at time tn+1 = tn + tn is given by 

 
1

1 1
p, p, p, p,( ) ( ), d

n

n

t
n n n

j j j j

t

t t t t



    x x x v x  (3) 

 

Using an explicit first order Euler forward integration procedure, one can approximate the 

above formula as 

 
1

p, p, p,( , )n n n n n
j j jt t   x x v x  (4) 

 

The computation of the new position of the tracer particle requires therefore knowledge of the 

fluid velocity at the actual position of the particle. For the case of bubble-train flow the phases 

are in relative motion, so that the velocity field in the fixed frame of reference changes in time. 

However, for periodic fully developed bubble-train flow the bubbles move with constant 
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speed UB = (0, UB, 0)T and a steady flow is recovered in the referential linked to the centre of 

mass of the bubble. Let zp,j be the position vector of particle j in the frame of reference 

moving with the bubble and let w(x) be the steady velocity field in this frame of reference. 

Then, the position vector in the moving frame of reference and the one in the fixed frame of 

reference are related by 

 

B0( )t t  z x U  (5) 

 

Here, t0 is the time for which the two frames of reference coincide. The velocity fields in the 

moving frame of reference and in the fixed frame of reference are related by 

 

B( ) ( , )t w z v x U  (6) 

 

Thus, in a discrete representation in time and with t0 = 0 we obtain from the last two equations 

 

p, p, B
n n n

j j t z x U  (7) 

 

and 

 

p, p, B( , ) ( )n n n
j jt  v x w z U  (8) 

 

Inserting Equation (8) into Equation (4) yields 

 

 1
p, p, p, B( )n n n n

j j jt     x x w z U  (9) 

 

Equation (9) and Equation (7) allow us to compute the particle path in the fixed frame of 

reference from knowing the steady velocity field in the moving frame of reference. 

 

Our DNS computer code uses a regular rectilinear staggered grid, where the components 

of the velocity vector are defined at the centre of those faces of a mesh cell that are normal to 

the respective coordinate direction. To determine the velocity at the particle position we 

perform for each velocity component a linear interpolation, which involves the eight nearest 

face-centred values of the respective velocity component. The time step width tn for the 

forward Euler step is determined so that the Courant number, based on the local particle 

velocity, takes a constant value (here this value is 0.1). 

3.2. Initialising the particle positions 

Up to now we have discussed only the problem of finding the position of a particle at a 

certain moment of time assuming that its position at a previous time step is known. In order to 

compute the RTD we must define the initial positions where the particles are released into the 

flow. Additionally, we have to define a criterion to decide when a particle has left the domain. 

Thus, we have to discuss the methods for introducing the numerical tracer and for 

“measuring” it. 

 

3.2.1. Single phase flow  

Levenspiel and Turner (1970) and Levenspiel et al. (1970) point out that there exist two 

different ways of introducing and measuring tracer. These are the flux introduction and planar 
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introduction and the flux measurement and planar measurement, respectively. In the flux 

introduction method the amount of tracer introduced within the cross-section of a duct is 

proportional to the velocity within this cross-section. Thus, more tracer particles are released 

in the centre of the duct and less close to the walls, where the velocity is low. Accordingly, 

the principle of the flux measurement method is to catch all the exit fluid by a “mixing cup 

measurement”. The flux introduction and flux measurement are thus related to the volumetric 

flow rate entering and leaving the duct within a certain time interval. In contrast, the planar 

introduction and planar measurement do not rely on a time interval but on a certain instant in 

time. Therefore, in the planar introduction the tracer is evenly distributed across the cross-

section of the duct while the planar measurement detects the instantaneous tracer 

concentration within the cross-section. The various combinations of the input-output methods 

give different curves. For reactor purposes, the flux introduction - flux measurement method 

(flux-flux) is appropriate and gives the proper RTD curve denoted as E. The flux-planar and 

planar-flux methods both yield the curve E* while the planar-planar method yields E**. 

 

For comparing different reactors it is useful to introduce an RTD curve Eθ ≡ τE, which is 

measured in terms of the mean residence time θ ≡  t / τ (Levenspiel et al., 1970). Here,  is the 

mean hydrodynamic residence time, which is defined as the ratio between reactor volume and 

volumetric flow rate. Similarly, one can define Eθ
* ≡  τE* and Eθ

** ≡  τE**. For laminar single-

phase flow between two parallel plates, the different curves can be transformed by the 

relationship (Levenspiel, 1979) 
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 (10) 

 

Note that the mean value of Eθ is identical to , while the mean values of Eθ
* and Eθ

** are . 

 

The flux-flux method is suitable for a CFD method where the RTD is computed by 

solving a convection-diffusion equation for the tracer concentration. For a particle method the 

realisation of the flux-flux method is not straight forward. Therefore, in the present approach 

we test two procedures. In the first one, which corresponds to the planar introduction, it is 

essential that the particles are uniformly distributed in the inlet plane. This is ensured by 

specifying a certain number of particles per reference length, nLref, which is an input 

parameter of our method. The distance between neighbouring particles in each coordinate 

direction is therefore Lref / nLref. For a cross-section of size Lref  Lref then Np = nLref  nLref 

particles are released in the inlet plane, e.g at y = 0. The trajectories of all particles are then 

computed and for each particle the time needed to reach the outlet plane is stored. By 

classifying the travel time of all particles into certain time intervals of width tclass a 

histogram is produced. This histogram is normalized by Nptclass. By this procedure we obtain 

a curve which we denote EI. The second method aims to reproduce the flux introduction and 

is similar to the first method. However, the residence time of any particle is weighted by the 

ratio between the local axial velocity at the initial position of the particle and the mean axial 

velocity in the inlet cross section. We denote the resulting curve as EII. 

 

To test the methods we evaluated the curves E,I and E,II from DNS data of laminar single 

phase flow in a plane channel. The results are shown in Figure 6 for θclass = 0.047 (stair-type 

curves) in double-logarithmic scale and are compared to the analytical results for Eθ, Eθ
* and 

Eθ
** as given by Equation (10). We see that E,I agrees with Eθ

*, while E,II agrees with Eθ and 
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can thus be considered as approximation of the real RTD curve. We also computed the 

laminar single phase flow in a straight duct with square cross-section and investigated the 

influence of nLref (Wörner et al., 2005a). We found that the mean value of E,I is 2.87 for nLref 

= 48, is 3.47 for nLref = 96, and is 4.13 for nLref = 192. These values are clearly larger than the 

mean hydraulic residence time which corresponds to a mean value of 1. The increase of the 

mean value of E,I with increasing number of particles suggests that the mean value will 

indeed go to infinity for large values of nLref as it should for laminar flow. 

 

3.2.2. Two- phase flow  

While the particle introduction at the inlet cross-section described above is reasonable to 

determine the E curve for single phase flow, it can not be used for bubble-train flow. The 

reason is that releasing particles at a certain instant in time in a cross-section fully occupied 

by liquid (i.e. a cross-section within the liquid slug) will not be a representative particle subset 

for the liquid phase. By such a procedure the contributions of the liquid film flow and the 

corner flow would be missed. Therefore, with exception of two-phase flows which do not 

show any axial variation of the cross-sectional void distribution (i.e. stratified flow and 

annular flow), the concept of the particle introduction must be extended. 

 

In this paper we propose an extension of the planar introduction concept from single-

phase flow to two-phase flow, namely a volumetric introduction. In this volumetric 

introduction, particles are initially distributed in the entire liquid phase within the unit cell and 

not only in the inlet cross section. To have a representative sample of particles we adopt the 

following procedure. The normalisation used in TURBIT-VOF requires Lz = Lref, so that the 

size of the computational domain is Lx × Luc × Lref and its volume is LxLucLref. Within this 

domain in total nLref (Lx / Lref) × nLref (Luc / Lref) × nLref  uniformly distributed virtual particles 

are initialised. Released are, however, only particles which are located inside mesh cells that 

are entirely filled with liquid (i.e. those mesh cells where f = 1). Thus, mesh cells which 

contain both liquid and gas are presently ignored. The number of particles for which 

trajectories are computed is thus approximately 

 

2

ref

3 x uc
p ref(1 ) L

L

L L
N n   (11) 

 

In our DNS simulations the flow is spatially periodic and the periodicity length is equal to 

the length of the flow unit cell Luc. It is therefore reasonable to take the required travelling 

distance of any particle to be a multiple of the length of the flow unit cell 

 

uc uctravelL n L  (12) 

 

Here, nuc is a positive integer. In this paper we only consider the case nuc = 1. Similar to the 

procedure for single-phase flows described above, we realised two methods for evaluation of 

the RTD. In the first method, yielding EI, the travel times of all particles are again equally 

weighted. In the second method, yielding EII, the travelling time of any particle is weighted by 

the ratio between the local axial liquid velocity at the initial position of the particle and the 

mean liquid axial velocity within the unit cell. 
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4. Results for the RTD of bubble-train flow 

 

In this section we give results for the RTD curve of the liquid phase in bubble-train flow 

and only present results for method EII which should correspond to the real RTD with flux 

introduction and flux measurement. RTD curves obtained by method EI are given in Wörner 

et al. (2005a), where they are denoted as V-RTD. In that paper we compared, as a first test, 

the V-RTD curves obtained from the DNS data of cases A2 and A3, which differ only by the 

number of grid cells (483 and 643, respectively). For this comparison we used nLref = 64 and 

found that the differences of the curves are very small (see Figure 3 in Wörner et al., 2005a). 

This is also an indication that the linear interpolation of the discrete velocity field that is used 

to obtain the particle velocity is sufficiently accurate. In Figure 7 we show the RTD curve 

(method EII) for case A2 for three different values of nLref. While the curves are very similar, 

the one for nLref = 96 is clearly the smoothest, especially for larger values of t. We found that, 

in general, the shape of the RTD is more sensitive to the choice of tclass than to that of 

nLref.While small values of tclass may result in quite different values of E for neighbouring 

classes, larger values of tclass lead to smoother curves but have a coarser resolution. Here, we 

use for Figure 7 and Figure 8 the value tclass / tref = 0.1. 

 

The dashed vertical line in Figure 7 is the bubble breakthrough time tB  Luc / UB. This is 

the time the bubble needs to move an axial distance equivalent to Luc. From Figure 7 we see 

that no fluid particles are moving faster than the bubble, a result that is to be expected. 

However, most of the fluid particles have a residence time that is only slightly larger than tB. 

These fluid particles belong to the liquid slug region behind the bubble, which is moving 

almost with the bubble velocity, as indicated by the velocity profiles in the right half of Figure 

5. The long tails in the RTD on the other hand correspond to the flow in the liquid film which 

is almost stagnant (see velocity profiles in the left half of Figure 5). 

 

The inset graphics in Figure 7 shows the RTD for nLref = 96 in semi-logarithmic 

representation. The almost constant slope indicates that the curve may well be approximated 

by an exponential relationship. This and the above discussion for the bubble breakthrough 

time suggest that the RTD curve in Figure 7 may be approximated by a compartment model 

for single-phase flow which consists of two “tanks” in series. The first tank is a plug flow 

reactor and the second tank is a continuous stirred tank reactor which is perfectly mixed (see 

Figure 12.1 in Levenspiel, 1999). This concept has already been adopted by Salman et al. 

(2004) to develop an analytical model for predicting axial mixing during Taylor flow in 

microchannels at high Bodenstein numbers. The RTD of this compartment model is given by 

(Levenspiel, 1999) 

 

PFR

PFR
PFR

CSTR CSTR CSTR

0 for /

for /exp

t V Q

E Q
t V Q

V

Q V
t

V V




  
 

 

  
 (13) 

 

where Q is the volumetric flow rate of the single-phase flow and VPFR and VCSTR are the 

volumes of the plug flow reactor and the continuous stirred tank reactor, respectively. The 

ratio VPFR / Q defines the “delay time” necessary to cross the plug flow reactor. In the case of 

bubble-train flow this delay time is given by the bubble breakthrough time. We therefore 

replace in Equation (13) expression VPFR / Q by tB = Luc / UB. The pre-factor Q / VCSTR in Eq. 

(13) is associated with the continuous stirred tank reactor, since it is just the inverse of the 

mean hydrodynamic residence time of the CSTR. For our bubble-train flow, the CSTR 

corresponds to the liquid slug region, which is well mixed because of the fluids re-circulating 
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motion (Thulasidas et al., 1997). The liquid slug is moving with the total superficial velocity J. 

Considering the length of a unit cell, the mean residence time of the liquid slug is therefore 

given by Luc / J. Replacing in Equation (13) Q / VCSTR by J / Luc yields the following model: 

 

uc

B

uc B

uc B

uc uc

0 for /

for /exp
J

t L U

E J J L
t t L U

L L U




   
   

  

 (14) 

 

A variant of the model is obtained when the total superficial velocity J in Equation (14) is 

replaced by the mean liquid velocity UL: 

 

L L L uc

B

uc B

uc B

uc uc

0 for /

for /exp
U

t L U

E U U L
t t L U

L L U




   
   

  

 (15) 

 

We note that the above models differ from the analytical model of Salman et al. (2004) in 

so far as the latter authors approximate VPFR / Q by LB/UB and Q / VCSTR by UBAfilm /Vslug, 

where Afilm is the cross-sectional area of the liquid film and Vslug is the volume of the liquid 

slug. This model, subsequently called Ecirc, was developed for circular channels, where the 

film thickness is uniform and Afilm can be directly computed from correlations that relate the 

liquid film thickness to the capillary number. For non-circular channels, however, the film 

thickness is not uniform and in square channels, for example, there exists considerable corner 

flow. Nevertheless, for comparison we also present results for model Ecirc, where we use the 

approximations Afilm  W2   DB
2/4 and Vslug  W2 ( Luc  LB ). 

 

In Figure 8 we compare the models EJ, EUL and Ecirc with the evaluated RTD curves 

(method EII) for case E and H. In this figure the RTD data are represented by the shaded area 

and are displayed as linear plot and in the inset graphics as semi-logarithmic plot. In the semi-

logarithmic plots one can recognize that for t/tref > 4 the RTD changes its slope. The steeper 

slope for values t/tref < 4 is better fitted by model EJ, whereas the flatter slope for times t/tref > 

4 is better approximated by model EUL. This behaviour is reasonable because residence times 

t/tref < 4 correspond to virtual particles in the liquid slug, which is moving with velocity J, 

while residence times t/tref > 4 correspond to the flow in the four corners where on average the 

liquid does not move with the total superficial velocity J but with the lower mean liquid 

velocity UL or the even lower liquid superficial velocity JL ≡ (1) UL. The residence time 

distribution predicted by the model of Salman et al. (2004) for circular channels, Ecirc, is too 

narrow and is not a good approximation of the RTD for square channels. This poor 

performance of model Ecirc for square channels may hold at least for capillary numbers Ca > 

0.04, where the bubble is axisymmetric (Thulasidas et al., 1995) and considerable corner flow 

exists. 

While model EJ can be considered to be already a reasonable approximation for the liquid 

phase residence time distribution of bubble-train flow in a square channel, the different slopes 

for small and large times suggest that the model may be further improved by a three tank 

compartment model. The first tank is, as before, the plug flow reactor which is in series with 

two parallel continuous stirred tank reactors. One CSTR corresponds, as before, to the liquid 

slug, while the second corresponds to the liquid corner flow. The RTD of this refined 

compartment model obeys in a semi-logarithmic representation a superposition of two slopes 

(see Figure 12.1 in Levenspiel, 1999), as it is observed in Figure 8. 
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5. Conclusions and outlook 

 

In this paper we presented an original method for evaluating the liquid phase residence 

time distribution of bubble-train flow using data from direct numerical simulations. The 

method is a particle method and relies on the uniform introduction of virtual particles in the 

volume occupied by the liquid phase within a single flow unit cell. The residence time 

distribution is obtained by statistical evaluation of the time needed by virtual particles to 

travel an axial distance equivalent to the length of the unit cell, and by an appropriate 

weighting procedure which takes into account the axial velocity at the particles initial position. 

Residence time curves have been evaluated from DNS data of bubble-train flow in a square 

mini-channel for different lengths of the flow unit cell, where the capillary number is in the 

range 0.20.25. The RTD curves obtained can well be fitted by a simple exponential 

relationship, which has been developed on the basis of a compartment model consisting of 

two tanks in series, the first tank being a plug flow reactor and the second being a continuous 

stirred tank reactor. This model may also be applicable for bubble-train flow in channels with 

circular cross-section, where, unlike in channels with rectangular cross section, no corner flow 

exists and for which the usefulness of a similar model (Salman et al., 2004) has already been 

demonstrated. For channels with square or rectangular cross-section an extension of the basic 

model EJ is proposed, which may allow for taking into account corner flow in more detail. 

This topic will be addressed in future. Also the influence of the capillary number on the 

residence time distribution and model performance will be investigated. 

 

Up to now we have considered only the RTD for a single unit cell. Unfortunately, we can 

not compare our RTD model with experimental data, because measurements of the RTD for a 

single unit cell are not available. In practice, a duct with bubble-train flow will contain tens or 

hundreds of unit cells. We will therefore apply our method to multiple lengths of the unit cell 

(nuc = 2,3, …) and determine the respective RTD curves. In particular, it will be interesting to 

check if the RTD for an arbitrary number of nuc can be obtained by convolution of the RTD 

for a single flow unit cell (nuc = 1). In this case, the developed model EJ will be very useful 

since the determination of the RTD of bubble-train flow will require only information about 

the total superficial velocity and the bubble velocity. Then, it will also be possible to validate 

the model by comparison with measured RTD curves (e.g. Thulasidas et al. 1999; A. Günther 

et al. 2004; Trachsel et al. 2005). 

 

An interesting result of the direct numerical simulations of bubble-train flow in a square 

mini-channel for various values of the unit cell length are the different trends observed for the 

dependence of the bubble diameter, the ratio of bubble velocity to total superficial velocity 

and of the non-dimensional relative bubble velocity on the capillary number for “short” and 

“long” bubbles. The present results suggest that a criterion for the transition between both 

regimes may be given by a critical ratio of bubble length to channel width of about 1.1. To the 

authors’ knowledge, this topic has not been investigated up to now and deserves further 

studies. 
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Nomenclature 

 

Bo   Bodenstein number 

Ca   Capillary number 

BD   Bubble diameter 

E   Residence time distribution (RTD) 

refEu   Reference Euler number, 2

ref ref L ref| | /( )LEu p U   

F   Cumulative residence time distribution function 

f   Liquid volumetric fraction in a mesh cell 

GJ   Superficial velocity of gas phase, G GJ U  

LJ   Superficial velocity of liquid phase L L(1 )J U   

J   Total superficial velocity, G LJ J J   

BL   Bubble length 

refL   Reference length scale, ref 0.002 mL W   

ucL   Length of unit cell 

pN   Number of particles 

tN   Number of time steps 

refLn   Number of particles per reference length 

refLp   Axial pressure drop per reference length 

Q   Volumetric flow rate 

BRe   Bubble Reynolds number 

t   Time 

Bt   Bubble breakthrough time, B ref B/t L U  

BU   Bubble velocity 

GU   Mean velocity of gas phase, here G BU U  

LU   Mean velocity of liquid phase 

refU   Reference velocity scale, ref 0.0264 m/sU   

V   Ratio between bubble velocity and superficial velocity, B /V U J  

PFR CSTR,V V   Volume of reactor 

v   Velocity field in fixed frame of reference 

W   Channel width, 0.002mW   

w   Velocity field in frame of reference moving with the bubble 
T( , , )x y zx   Cartesian position vector in fixed frame of reference 

Z   Non-dimensional relative bubble velocity, B B( ) /Z U J U   

z   Cartesian position vector in frame of reference moving with bubble 
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Greek symbols 

 

   Volume fraction of gas in the unit cell 

   Dynamic viscosity 

   Dimensionless time, /t   

   Density 

   Coefficient of surface tension 

   Mean hydrodynamic residence time 

 

 

Subscripts 

 

B   Bubble 

CSTR  Continuous stirred tank reactor 

G   Gas phase 

L   Liquid phase 

PFR  Plug flow reactor 

ref   Reference value 

uc  Unit cell 
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Tables 

 

 

Table 1: Parameters of simulations performed to investigate the influence of gas physical 

properties and grid size for a cubic unit cell (Luc = W) 

Case G [kg/m3] G [mPa s] grid t / tref
 Nt tmax / tref 

A1     1.17   0.0184 48×48×48 2.5  10-6 300,000 0.75 

A2 11.7 0.184 48×48×48 2.5  10-5   40,000 1.0 

A3 11.7 0.184 64×64×64 1  10-5 100,000 1.0 

 

 

Table 2: Results for simulations with different unit cell length 

Case Luc/W Grid UB/Uref UL/Uref Ca DB/W LB/W V Z 

A1  1.0 48×48×48 3.66 1.21 0.209 0.811 0.928 1.808 0.447 

A2  1.0 48×48×48 3.66 1.20 0.209 0.809 0.934 1.815 0.449 

A3  1.0 64×64×64 3.64 1.20 0.208 0.810 0.935 1.812 0.448 

B  1.125 48×54×48 3.61 1.26 0.206 0.831 0.993 1.770 0.435 

C  1.25 48×60×48 3.62 1.29 0.207 0.842 1.054 1.756 0.430 

D  1.375 48×66×48 3.76 1.33 0.215 0.847 1.138 1.755 0.430 

E  1.5 48×72×48 3.86 1.37 0.220 0.845 1.208 1.761 0.432 

F  1.625 48×78×48 4.10 1.41 0.234 0.849 1.301 1.778 0.437 

G  1.75 48×84×48 4.20 1.44 0.240 0.850 1.370 1.786 0.440 

H  2.0 48×96×48 4.54 1.51 0.259 0.848 1.533 1.809 0.447 

 Experimental data of Thulasidas et al. (1995) 

   0.210.26 0.820.86  1.681.84 0.4350.475 
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Figures 

 

 

 
Figure 1: Sketch of computational domain and co-ordinate system. The bubble shape 

corresponds to the initial conditions of case E. 
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Figure 2: Temporal evolution of non-dimensional bubble velocity and mean liquid velocity 

for cases A1, A2 and A3. 
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Figure 3: Temporal evolution of non-dimensional bubble dimensions in wall normal 

directions x and z for cases A1, A2 and A3. The arrows indicate the mesh cell size for cases 

A1 and A2 (1/48) and A3 (1/64). 
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Figure 4: Simulation results for different values of Luc as function of the capillary number: 

(a) Non-dimensional bubble diameter, (b) ratio of bubble velocity and total superficial 

velocity, (c) ratio of relative velocity to bubble velocity. 
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(a)  (b)  (c)  

Figure 5: Bubble shape and velocity field in vertical mid-plane z = 1 mm for fixed frame of reference 

(left half) and for frame of reference linked to the bubble (right half) for (a): case A2, t/tref = 0.595, (b): 

case E, t/tref = 0.44, (c): case H, t/tref = 0.54. In y-direction only every 8th vector is displayed. Note that 

the values at the axes correspond to x/Lref any y/Lref. 
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Figure 6: Comparison of RTD curves evaluated by method I and method II with analytical 

RTD curves for laminar single phase flow in a plane channel. 
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Figure 7: Evaluated RTD curves for the bubble-train flow of case A2 for three different 

values of nLref. The dashed vertical line corresponds to the bubble breakthrough time. 
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Figure 8: Comparison of evaluated RTD curve of bubble-train flow (shaded area) for case 

E (a) and H (b) with models EJ , EUL and Ecirc. 

 


