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Abstract. Profiles of atmospheric state variables retrieved
from remote measurements often contain a priori information
which causes complication in the statistical use of data and
in the comparison with other measured or modeled data. For
such applications it often is desirable to remove the a priori
information from the data product. If the retrieval involves
an ill-posed inversion problem, formal removal of the a pri-
ori information requires resampling of the data on a coarser
grid, which in some sense, however, is a prior constraint in
itself. The fact that the trace of the averaging kernel matrix of
a retrieval is equivalent to the number of degrees of freedom
of the retrieval is used to define an appropriate information-
centered representation of the data where each data point rep-
resents one degree of freedom. Since regridding implies fur-
ther degradation of the data and thus causes additional loss
of information, a re-regularization scheme has been devel-
oped which allows resampling without additional loss of in-
formation. For a typical ClONO2 profile retrieved from spec-
tra as measured by the Michelson Interferometer for Passive
Atmospheric Sounding (MIPAS), the constrained retrieval
has 9.7 degrees of freedom. After application of the pro-
posed transformation to a coarser information-centered alti-
tude grid, there are exactly 9 degrees of freedom left, and the
averaging kernel on the coarse grid is unity. Pure resampling
on the information-centered grid without re-regularization
would reduce the degrees of freedom to 7.1 (6.7) for a stair-
case (triangular) representation scheme.

1 Introduction

While in early applications of remote sensing to atmospheric
research retrieval approaches often were based on ad hoc
methods or unconstrained maximum likelihood estimation,
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recent methods mostly rely on information theory (Rodgers,
2000). It is now common practise to represent the state pa-
rameter to be retrieved on an altitude grid which is finer than
the altitude resolution of the instrument (see, e.g.von Clar-
mann et al., 2003b). Since inference of vertical profiles of
atmospheric state parameters on such a fine grid otherwise
would lead to an ill-posed inversion problem, stochastical
(Rodgers, 2000) or other, e.g., smoothness (Tikhonov, 1963;
Twomey, 1963; Steck and von Clarmann, 2001) constraints
are applied which make the retrieval stable, i.e. regularize the
inversion problem.

The disadvantage of regularization is that the elements of
the solution of the retrieval problem do carry inter-dependent
information, and that the solution does not merely depend
on the measurement but includes a certain portion of a pri-
ori information. The following problem areas in the use
of constrained retrievals have been identified: A meaning-
ful comparison of two profiles of different content of a piori
information requires to estimate the uncertainty of the dif-
ference of the profiles which is due to their different a pri-
ori content (Rodgers and Connor, 2003). The estimation of
this uncertainty, the so-called “smoothing error of the differ-
ence” relies on the knowledge of the climatological variabil-
ity in all scales of the quantity to be compared, in order to
be able to test the significance of the observed differences.
Often reliable climatological variance-covariance informa-
tion is not available. These artefacts in profile differences
do not only affect applications like quantitative validation of
remotely sensed data but even visual inspection of measured
data. It is virtually impossible to recognize significant struc-
tures (which basically are differences of the observed state
variable) and to distinguish them from artefacts caused by a
priori information in, e.g., time series or 2-D plots of results.
No meaningful sums (e.g. total reactive atmospheric nitro-
gen calculated from its components) or ratios (mainly used
for correlation analyses of trace species, e.g.,Kondo et al.
(1999); Rex et al.(1999); Plumb et al.(2000); Wetzel et al.
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(2002); Ray et al.(2002); Glatthor et al.(2005); Mengistu
Tsidu et al.(2005); Muscari et al.(2003); Esler and Waugh
(2002); Müller et al.(1999)) of results can be calculated, if
the a priori content of the data is significantly different or
varying. Furthermore, depending on the nature of the a pri-
ori information, profile retrievals at different geolocations are
no longer statistically independent. This adds complication
to statistical applications such as averaging or data assim-
ilation. Beyond this, there are two further, certainly non-
scientific but nevertheless practically relevant problems with
regularized profiles: First, the data amount of a complete set
of diagnostic data can be enormous. Second, the experience
was made that a majority of data users refuses to deal with
this diagnostic information and thus runs risk to misinterpret
the data.

For applications as discussed above, a representation of
the retrieved state parameters which is free of formal a pri-
ori information is desirable and often advantageous. Singular
value decomposition-based approaches have been developed
for similar purposes:Ceccherini et al.(2003) have proposed
such an approach for validation purposes targeted at maxi-
mum likelihood estimates of the atmospheric state.Joiner
and da Silva(1998) proposed two methods, namely null-
space filtering of retrievals and partial eigen-decomposition
retrievals. All these approaches, however, transform the esti-
mated atmospheric state variables into a space without obvi-
ous physical meaning. This paper is targeted at a physically
obvious representation of retrieved data which can directly be
used without running risk of major misinterpretation, without
giving up the major advantage of the regularized retrieval,
which is its inherent stability.

2 Theoretical background

With very few exceptions explicitely mentioned, we use the
theoretical retrieval concept established byRodgers(2000).
While all MIPAS data processors the authors are aware of
perform the retrieval in the framework of Newtonean itera-
tion, for the discussion of the method presented in this paper
the linear formulation of the retrieval problem is sufficient
and used. The estimate of then-dimensional atmospheric
state vector̂x is calculated from them-dimensional vector
containing the measured spectral radiances,y, as

x̂ = xa + (KT S−1
ε K + R)−1KT S−1

ε (y − F (xa))

= xa + G(y − F (xa)), (1)

where xa contains the a priori information on the atmo-
spheric state,F (x) is the radiative transfer forward model
which provides the spectral radiances as a function ofx, K
is them×n Jacobian matrix, whose elements are∂yi

∂xj
; super-

scriptT denotes transposed matrices;Sε is the measurement
covariance matrix.R is a regularization term, which, in max-
imum a posteriori (formerly called “optimal estimation”) ap-
plications as suggested byRodgers(2000), is the inverse of

the a priori covariance matrix, while, in other applications,
it often is a first order smoothing operator (Twomey, 1963;
Tikhonov, 1963). SettingR zero leads to the unconstrained
least squares solution, which is also called maximum like-
lihood solution. G is called the gain function. All compli-
cations arising from iterative processing to solve problems
caused by non-linearity ofF (xa) are omitted here since they
do not contribute to the aspect of the problem discussed. The
retrieval covariance matrixSx of x̂ is

Sx = (KT S−1
ε K + R)−1, (2)

while the noise error covariance matrixSm of x̂ is

Sm = GSεGT . (3)

Removal of the effect of the a priori information without
rerunning the retrieval, i.e. the transformation of the maxi-
mum a posteriori solution̂xMAP, or any other regularized so-
lution x̂REG to the related maximum likelihood solutionx̂ML
according to

x̂ML = (S−1
x − R)−1

[
S−1

x x̂REG − Rxa

]
(4)

usually first needs resampling on a coarser grid to avoid sin-
gularity of S−1

x −R=KT S−1
ε K . It is worthwhile mention-

ing that the maximum likelihood solution is not really un-
constrained but implicitly constrained by the coarse grid on
which it is represented and the related interpolation conven-
tion.

Then×n averaging kernel matrix

A = (KT S−1
ε K + R)−1KT S−1

ε K = GK (5)

is a helpful diagnostic tool, which is useful to rewrite Eq. (1)
such that it becomes obvious which part of the solution is
controlled by the measurement and which by the a priori in-
formation:

x̂REG = xa + A(x − xa) + Gε, (6)

wherex represents the true atmospheric state andε is the
measurement noise characterized bySε . In the following we
assumêx=x̂REG.

The number of degrees of freedom of the signal was shown
to be

dgfsignal = tr(A) (7)

for optimal estimation applications whereR=S−1
a (Rodgers,

2000). However, this concept also holds for other regular-
ization methods such as smoothing in the sense ofTikhonov
(1963) or Twomey(1963) (see Appendix A). To avoid con-
fusion, we follow the suggestion ofSteck (2002) and use
the term “number of degrees of freedom of the retrieval
(dgf retrieval)” here rather than “number of degrees of free-
dom of the signal (dgf signal)” which is reserved for maxi-
mum a posteriori retrievals in a Bayesian sense.
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3 Appropriate representation

In the following we first address the question which repre-
sentation of the retrieved profile is appropriate. To allow the
removal of the formal a priori information, the grid on which
the profile is represented shall be coarse enough for the inver-
sion ofKT S−1

ε K to be stable, but no coarser, in order to avoid
unnecessary loss of information. Then we suggest a scheme
to transform the data retrieved by Eq. (1) to the appropriate
grid such that the averaging kernel matrix in the coarse grid
is zero while the loss of information is minimal. This trans-
formation scheme, however, can also be used to represent the
data on any grid coarser than the one found most appropriate
for the particular profile. The latter application is particularly
useful, if profiles of different state variables, or profiles of
one state variable at different times or locations shall be rep-
resented in a comparable manner, which generally implies
that at least one of the profiles has to be represented on a
sub-optimal grid.

We assume that the strength of the regularization in Eq. (1)
has been chosen appropriately (in a Bayesian sense or any
other optimality criterion, e.g.Steck, 2002) and that the num-
ber of degrees of freedom of the regularized solution is the
maximum number of degrees of freedom reasonably obtain-
able from the given measurement.

A linear transformation of the retrieved profilêx to a
coarser grid uses the transformation matrix

W∗
= (WT W)−1WT (8)

where W is the interpolation matrix which samples the
coarse grid profile on the fine grid. The profile on the coarse
grid then is

˜̂x = W∗x̂ (9)

and the coarse-grid Jacobian is

K̃ = KW (10)

The averaging kernel matrix on the coarse grid,Ã ∈ IRk×n

is

Ã = G̃K = W∗GK = W∗A (11)

The Ã∈IRk×n averaging kernel matrix is understood to
represent the response of a retrieval in thek-dimensional
grid to a delta perturbation in the finern-dimensional grid.

With W∗W=
˜̃I where ˜̃I is k×k unity, the averaging kernel

˜̃A∈IRk×k related to a retrieval in the coarserk-dimensional
grid is

˜̃A = G̃K̃ (12)

= W∗GKW (13)

= W∗AW (14)

=

(
WT KT S−1

ε KW + WT RW
)−1

WT KT S−1
ε KW (15)

Averaging kernels of Eqs. (11) and (12) are not directly com-
parable, because they have delta functions of different widths
as a reference: The delta funktion in thek-dimensional grid,
which is the reference to Eq. (12), is wider than the delta
function in then-dimensional grid, which is the reference for
Eq. (11).

Thek×k covariance matrix of the retrieval represented in
the coarse grid is

Sx̃ = W∗SxW∗T (16)

An appropriate representation of the retrieval in a sense as
discussed above fulfills the conditions

˜̃A =
˜̃I , (17)

and

k = int(dgf retrieval) (18)

wheredgf retrievalhere is the number of degrees of freedom of
the retrieval in the fine grid, which is not typically an integer.
As follows from Eq. (15), Eq. (17) can be satisfied with

WT RW = 0, (19)

for which we have to find a non-trivial solution, i.e.R6=0
andW 6=0. This means that the transformed retrieval shall
keep as many degrees of freedom as possible while the state
parameters in thek-dimensional grid shall not be constrained
to each other. This kind of representation of a vertical profile
where each data point represents one degree of freedom we
call “information-centered”.

The number of useful gridpoints can be obtained by sin-
gular value decomposition, but not the placement of the alti-
tude gridpoints. Therefore, we propose an approach which is
based on the number of degrees of freedom of the retrieval.
If the number of degrees of freedom, i.e. the number of inde-
pendent pieces of information in the measurement, is equal to
the dimension of the retrieval vector, an averaging kernel can
be inverted, i.e. the a priori information can be removed from
the retrieval. In the following we discuss two approaches to
remove the a priori information from the retrieval and to rep-
resent the retrieval on a coarser altitude grid.

3.1 Staircase representation

First, we determine, how many degrees of freedomdgfc shall
be represented by each component of thek-dimensional state
vector in the coarse grid. The ideal value would be one, but
sincedgf generally is not an integer,dgfc of each altitude
stepj is calculated as

∀j : dgfc =
dgf

int(dgf )
(20)

Certainly, the excess information related tok×(dgfc−dgf )
is lost through slight undersampling on the coarsek-
dimensional grid. This, however, is the price to pay for an
easy representation.
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The new gridpoints̃hj are distributed over altitude such
that

l2(j)∑
l=l1(j)

al,l ≈ dgfc ≈ 1 where A = (ai1i2) (21)

where l1 and l2 are the lowermost and uppermost grid-
points in the fine grid to be represented by one new coarse-
gridpoint h̃j . The new gridpoint then has to be placed
somewhere between the altitudesh(l1) andh(l2). One can
even go a step further and determine the placement of the
new gridpoint h̃j by linear interpolation of the sub-trace∑l2(j)

l=l1(j) al(z),l(z) in z. Alternatively, the closest altitude in
the n-dimensional grid can be chosen, which offers some
operational advantages. The level of sophistication of find-
ing the exact information-centered altitudes is not really nec-
essary, because no two subsequent limb measurements will
be exactly identical but may be desired to be represented
on the same grid, which requires approximations anyway.
When two ore more profiles are to be represented on a com-
mon grid, the gridpoints can be selected such that the crite-
rion defined in Eq. (21) is applied until the respective sums∑l2(j)

l=l1(j) al,l exceeddgfc for each of the profiles.
In summary, we work bottom up along the diagonal of the

averaging kernel matrix adding up diagonal elements until
the trace of the block of the matrix considered by now ex-
ceedsdgfc and assign an altitude gridpoint to this subma-
trix of the averaging kernel. Since this grid is approximately
information-centered, it is considered a kind of natural rep-
resentation of the retrieved profilêx.

Resampling of the constrained oversampled fine-grid re-
trieval, however, degrades the profile and further reduces the
information belowdgfretrieval. This follows from Eq. (15),
because Eq. (19) is not usually satisfied for arbitrarily cho-
senW andR matrices. This leads tok × k averaging kernels
unequal unity, which is equivalent to less thank degrees of
freedom. To compensate for this additional loss of informa-
tion, it seems necessary to first remove the a priori informa-
tion in the fine-grid retrieval. This, however, is not possible
in most cases, since the unconstrainedn-grid solution suf-
fers from ill-posedness. Instead, we search for a new con-
straintR′, which in effect is equivalent to the resampling of
the retrieval to the appropriate coarse grid, i.e. which fulfills
Eq. (19). In order to substitute the original constraintR by
the new constraintR′, we make use of Eq. 10.48 ofRodgers
(2000)

x̂
′
= (S−1

x − R + R′)−1
[
S−1

x x̂ − Rxa + R′x′
a

]
, (22)

wherex̂
′ is the transformed profile in then-dimensional grid,

Sx is the estimatedn×n covariance matrix of̂x, xa is the
original a priori profile, andx′

a is the new a priori profile,
which is set to zero at all altitude gridpoints for the applica-

tion outlined below. The new averaging kernel matrix after
this substitution is

A′
= A(R′) = (KT S−1

ε K + R′)−1KT S−1
ε K (23)

The new constraint termR′ and the particular resampling ma-
trix W′ are chosen to fulfill the following conditions

tr(A(R)) ≈ tr(A(R′)), (24)

which is not required to be satisfied exactly because of
dgf 6=int(dgf ), and

tr( ˜̃A
′

) = tr(W′∗A(R′)W′) ⇔
˜̃A

′

=
˜̃I ⇔ W′T R′W′

= 0, (25)

where tr( ˜̃A
′

) is the number of degrees of freedom of the re-
sampled profile. This is achieved by a constraintR′ in the
fine grid which is equivalent to a resampling onto the coarse
grid. The formal resampling of ann-grid profile subject to
such a constraint onto thek-grid then conserves all infor-
mation except that contained in the neglected fraction of a
degree of freedom.

In the following we present a pair ofR′ andW′ matrices
which fulfill these two conditions. For convenience, we as-
sume that the coarse grid is a subset of the fine grid. The
new constraintR′ is supposed not to constrain values at the
gridpoints which also are members of the coarse grid, while
it shall produce values between the coarse gridpoints which
do not carry additional information but are completely de-
termined by the values at the coarse gridpoints and a chosen
interpolation scheme, e.g. a staircase function.

A constraintR′ compliant to this requirement is a block-
diagonaln×n matrix, of the form

R′

� =


R′

�sub;1, 0 · · · 0
0 R′

�sub;2, · · · 0
...

...

0, 0 · · · R′

�sub;k

 , (26)

where each of the disjoint diagonal blocksR′

�sub;j represents
one gridpoint in the coarse grid, representing one degree of
freedom. The coarse gridpoints shall be placed where

l2(j)∑
l=l1(j)

al,l =
dgfc

2
+ (j − 1)dgfc, (27)

while the block boundaries are placed where

l2(j)∑
l=l1(j)

al,l = j dgfc. (28)

Blocks of the sizei(j)×i(j) are set zero wheni(j)=1, while
blocks equal or larger than 2×2 are set up as first order
Tikhonov-type regularization matrices (Tikhonov, 1963) of
the type

R′

�sub = γ L1LT
1 (29)
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whereL1 is a local-gridwidth weightedi(j)×(i(j)−1) first
order difference matrix of the type

LT
1 (j)=


(hl − hl+1)

−1 0 · · · 0
0 (hl+1 − hl+2)

−1
· · · 0

... · · ·
...

0 0 · · · (hij −1−hij )
−1

 ×

×


−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
... · · · 0

...

0 0 0 · · · −1 1

 (30)

for regular fine grid, or a similar matrix which each non-
zero matrix element weighted byhl+1−hl wherej indicated
the row ofLT gridwidth-compensated second order differ-
ence operators. Such a regularization does not constrain the
x̂-values which correspond to coarse-grid-points but, when
sufficient regularization strength for each matrix-block is
chosen such that no altitude resolution is allowed within each
block, values at the additional gridpoints are forced to follow
the staircase function between the coarse-grid points. Such
largeγ values are necessary to avoid singularity of the first
term in Eq. (22). Transformation of arbitrary fine gridded
profiles to the coarse grid then uses

W′∗

� =


1
i1

· · ·
1
i1

0 · · · 0 · · · 0 · · · 0

0 · · · 0 1
i2

· · ·
1
i2

· · · 0 · · · 0
· · ·

0 · · · 0 0 · · · 0 · · ·
1
ik

· · ·
1
ik

 , (31)

whereij is the number of fine-grid points to be represented
by thej th coarse-grid point. The number of non-zero entries
in each row ofW′∗ is ij . For staircase profiles, however,
which have been generated withR′

� andγ→∞, also a sim-
pler transformation matrix of the type

W′∗

� =


1 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 1 0 · · · 0 0 0 · · · 0

. . . 0
0 0 · · · 0 0 0 · · · 0 1 0 · · · 0

 (32)

will transform the matrix to the coarse grid without loss of
information, because due to the regularization applied all
values within a block are the same. Reformation of the
staircase-profile from the coarse-grid profile uses

W′

� =



1 0 · · · 0
...

...

1 0 · · · 0
0 1 · · · 0
...

...

0 1 · · · 0
· · ·

0 0 · · · 1
...

...

0 0 · · · 1



, (33)

where the number of non-zero entries in theith column isni .
It should be noted that alsoW′∗

� satisfies the condition

W′∗

�W′

� =
˜̃I (34)

The validity of Eq. (19) can easily be verified for regulariza-
tion and transformation matrices as defined in Eqs. (26–30)
and (33). The re-regularized and resampled profile thus con-
tainsk=int(dgf ) degrees of freedom.

Certainly, the same solution̂x′ which we obtain by Eq.22
can in principle be found by an unconstrained maximum like-
lihood retrieval of a staircase profile on the coarse grid. How-
ever, this optimal grid is not typically known in advance and
thus the fine-grid retrieval is a prerequisite. The availability
of the fine-grid retrieval further offers extensive diagnostics,
e.g. then × n averaging kernel matrixA′ (Eq.23), which is
not available for a direct maximum likelikood retrieval on the
coarse grid.

3.2 Triangular representation

Neither is the staircase representation considered a realis-
tic representation of the atmosphere, nor do most forward
models support this representation. A representation where
atmospheric state parameters are interpolated (e.g. linearly)
between the altitude gridpoints is preferred in most applica-
tions. As with the staircase representation, we require the
information content of the resampled retrieval to be the in-
teger value of the degrees of freedom of the fine-grid re-
trieval (Eq.20) and define this to be the number of coarse-
grid points. In order to represent the profile from the upper-
most to the lowermost end of the original profile, we define

h̃1 = h1 (35)

and

h̃k = hn (36)

whereh̃=(h̃1, · · · , h̃k)
T is the grid of the coarse represen-

tation, whileh=(h1, · · · , hn)
T is the original fine altitude

grid. In order to satisfy Eq. (20), the other coarse-grid points
h̃2 to h̃K−1 are the same as for the staircase representa-
tion. In order to emulate this coarse grid retrieval in the fine
grid retrieval, the following regularization matrix can be con-
structed:

R′
1 =


R′

1sub;1 0 · · · 0
0 0 · · · 0
...

...

0 0 · · · 0

 +


0 0 0 · · · 0
0 R′

1sub;2 0 · · · 0
0 0 0 · · · 0
...

...

0 0 0 · · · 0

 + · · · +


0 0 · · · 0
...

...

0 0 · · · 0
0 · · · 0 R′

1sub;k−1

 (37)

Contrary toR′

�, the diagonal blocks ofR′
1 are not disjoint

but each two adjacent blocks share a common diagonal ele-
ment. Each blockj is of the size

i(j) × i(j) = (l2(j) − l1(j) + 1) × (l2(j) − l1(j) + 1).
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Blocks R′

1sub;j of the size 2×2 are set zero, while blocks
equal or larger than 3×3 are set up as second order Tikhonov-
type regularization matrices (Tikhonov, 1963) of the type

R′

1sub = γ L2LT
2 (38)

where L2
T is a local-gridwidth weighted(i(j)−2)×i(j)

second order difference matrix of tridiagonal form with
sub-diagonal, diagonal, and super-diagonal elementsλi1i ,
−λi(1i−1+1i), λi1i−1, respectively, where

1l = hl+1 − hl (39)

and

λi =
2

1i−11i(1i−1 + 1i)
. (40)

In the triangular application, the transformation matrixW′
1

transforms the coarse-grid profile to the fine grid by linear
interpolation, with

W′
1 =



h̃2−h1

h̃2−h̃1

h1−h̃1

h̃2−h̃1
0 0 0

...
...

...
...

...
h̃2−hi1−1

h̃2−h̃1

hi1−1−h̃1

h̃2−h̃1
0 0 0

0
h̃3−hi1

h̃3−h̃2

hi1−h̃2

h̃3−h̃2
0 0

...
...

...
...

...

0
h̃3−hi1+i2−1

h̃3−h̃2

hi1+i2−1−h̃2

h̃3−h̃2
0 0

. . .

0 0 0
h̃k−hn−ik

h̃k−h̃k−1

hn−ik
−h̃k−1

h̃k−h̃k−1
...

...
...

...

0 0 0 h̃k−hn−1

h̃k−h̃k−1

hn−1−h̃k−1

h̃k−h̃k−1

0 0 0 · · · 0 1



. (41)

The transformation of an arbitrary profile from the fine to
the coarse grid leads to a lengthy expression for the general-
ized formulation of related matrixW′∗

1. Multiplication of any
fine-grid profilex by W′∗

1 returns the footpoints of the con-
tiguous sequence of segments of which each is a regression
line constrained such that the regression lines intersect at the
pre-defined coarse-grid altitudes. If need be (e.g. for appli-
cations as discussed in Sect.4), W′∗

1 can easily be computed
numerically for the actual interpolation schemeW′

1 accord-
ing to Eq. (8). For the special case discussed here, where the
fine-grid profile has been re-regularized such that all profile
values on the fine-grid falling between the coarse-grid points
can be generated by linear interpolation and thus carry no in-
dependent information, the following simpler matrix can be
used for the transformation from the fine grid to the coarse
grid:

W′∗
1 =

(
w∗

1,1 · · · w∗

1,n

w∗

k,1 · · · w∗

k,n

)
; w∗

j,l =

{
1 : hl = h̃j

0 : hl 6= h̃j
(42)

This interpolation matrix just picks out the independent data
points of the interpolated profile. Again, forγ→∞ the re-

regularized retrieval based on the constraintR′
1 is trans-

formed onto the coarse grid by transformation matrixW∗
1

without additional loss of information, and we have

W′∗
1W′

1 =
˜̃I . (43)

4 Smoothing errors of deduced quantities

Various scientific application areas of data involve the analy-
sis of differences of profiles (validation, data assimilation, vi-
sual recognition of structures in data) or calculation of sums
(e.g. total reactive chlorine) or ratios (correlation analyses) of
data. After regridding the data and related averaging kernel
matrices and covariance matrices (c.f.,Calisesi et al., 2005),
and transformation of the data to the same a priori profile
(Rodgers and Connor, 2003), the different amount of a pri-
ori information in the data still has to be taken into account.
There are two options, which we discuss in the following:
Either the amount of a priori information in the data is left
untouched, and possible artefacts caused by different a pri-
ori content are characterized by the smoothing error of the
deduced quantity, or the data are made directly comparable.

4.1 Un-matched a priori content

The approach to compare retrieved profilesx̂1 andx̂2 of the
same quantityx without prior adjustment of their a priori
content has been discussed in detail byRodgers and Connor
(2003), who suggest to evaluate the smoothing error covari-
ance matrixSsmooth.,diff of the differencêx2 andx̂1,

Ssmooth.,diff = (A2 − A1)Se(A2 − A1)
T , (44)

whereA1 andA2 are the related averaging kernel matrices,
and whereSa is the climatological covariance matrix of the
state variablêx1. Ssmooth.,diff is a component of the total error
of the differenceSdiff , which is used to test the significance
of the difference viaχ2 statistics:

χ2
= (x̂1 − x̂2)

T S−1
diff (x̂1 − x̂2) (45)

In cases where the a priori profilexa has been chosen dif-
ferent from the climatological profilexe, around which the
variability is described bySe, a mean smoothing error differ-
ence

1̄x̂smooth.,diff = (A2 − A1)(xe − xa) (46)

has to be considered.
The same basic approach to calculate deduced quanti-

ties without prior consideration of different a priori content
and characterize related artefacts by the smoothing error of
the deduced quantity certainly holds also for other deduced
quantities. The smoothing error covarianceSsmooth.,sum of,
e.g., total [NOx] = [NO2+NO], represented by vectorsx̂1+2,
x̂1, andx̂2, respectively, is

Ssmooth.,sum = (A1 − I)Sa,1(A1 − I)T +

(A2 − I)Sa,2(A2 − I)T , (47)
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whereA1, A2, Sa,1, andSa,2 are the related averaging kernel
and covariance matrices, respectively. The mean smoothing
error is

1̄x̂smooth.,sum = (A1−I)(xe,1−xa,1)+(A2−I)(xe,2−xa,2)(48)

The smoothing error varianceσ 2
smooth.,ratio;n of the ratio

x̂1;n/x̂2; n of two profile elementŝx1;n and x̂2;n at altitude
gridpointn is

σ 2
smooth.,ratio;n = (49)

1

x̂4
2;n

(
x̂2

1;n

(
(A2 − I)Se,2(A2 − I)T

)
n,n

+

x̂2
2;n

(
(A1 − I)Se,1(A1 − I)T

)
n,n

)
, (50)

and the mean smoothing error is

1̄x̂smooth.,sum =
(
(A1 − I)(xe,1 − xa,1)

)
n,n(

(A2 − I)(xe,2 − xa,2)
)
n,n . (51)

As long as done properly, the approach described above is,
of course, valid. The crucial point of this approach, how-
ever, is that the smoothing error covariance matrix can only
be evaluated when the climatological covariance matrixSe is
known. This is often not the case. Unfortunately, there are
situations when assumptions onSe are dominating the calcu-
lation ofχ2.

For an assumed a priori covariance matrixS̃e, the deviation
of the estimated smoothing error of the difference of the two
profiles from the true smoothing error is

(A2 − A1)(S̃e − Se)(A2 − A1)
T . (52)

It cannot easily be associated with certain altitude scales
of atmospheric variability. The problem of frequent non-
availability of a reliableSe covariance matrix inferred from
representative sufficiently high resolved real data is a major
motivation to work with quantities of matched a priori con-
tent.

4.2 Matched a priori content

In the following, we shortly discuss various approximations
aiming at making profiles comparable such that the smooth-
ing error of the difference of the compared profiles vanishes.
Since these approximations are not perfect, there remains a
residual smoothing error, which we characterize below. The
application to deduced quantities other than differences, as
discussed in the previous section, is straightforward and thus
not shown here.

An approximation widely used is to consider the better
resolved one of the two profiles,̂x2 to be compared as an
ideal measurement and to smooth it by application of the av-
eraging kernel of the coarser resolved measurement before

comparison. This approximation does not rely on an esti-
mate of the climatological covarianceSe. If the finer resolved
profile indeed consists of a large number of point measure-
ments, this approach is close to exact, and our proposed re-
regularization/re-sampling method does not offer other than
practical advantages. The user who has no fine-grid averag-
ing kernels available would just use transformation matrices
as defined in Eqs. (33) or (41) instead.

In a less than ideal case, however, the residual smoothing
error to be considered covariance is

Ssmooth.,diff = A1(I − A2)Se(I − A2)
T AT

1 , (53)

whereI is n × n identity. Ssmooth.,diff is zero in the ideal case
whenA2=I . The mean smoothing error is

1̄x̂smooth.,sum = A1(I − A2)(xe − xa) (54)

When comparing retrievals whose altitude resolution is
too different to be ignored but too similar that the approach
mentioned above would be justified, one may wish to cross-
wise smooth the retrievals in order to achieve cancellation of
smoothing errors. This, however, is not appropriate since the
application of averaging kernels to profiles is not commuta-
tive. The residual smoothing error covariance is

Ssmooth.,diff = (A1A2 − A2A1)Se(A1A2 − A2A1)
T , (55)

and the mean smoothing error is

1̄x̂smooth.,sum = (A1A2 − A2A1)(xe − xa) (56)

Instead, we suggest to first re-regularize and resample the
finer resolved one of the two profiles,x̂2, following the pro-

cedure described in Sect. 3. Then the resulting profile˜̂x
′

2 is

smoothed by the averaging kernel˜̃A1 of the other profile re-
gridded to thek-grid. If covariance matrices, regularization
matrices, a priori profiles and averaging kernels – all being
quantities needed to carry out the rigirous intercomparison
of profiles with unmatched a priori content anyway – it is
even possible to re-regularize/re-sample both profiles onto
the same grid, namely the one found optimal for the coarser
resolved one according to the criterion discussed in Sect.3.

Using the decomposition

Se = Sfine
e + Scoarse

e , (57)

whereScoarse
e is the part of the variability of the state vari-

able which could completely be represented on the coarse
grid, and a componentSfine

e which is the part of the variability
which can only be represented on the fine grid, the residual
smoothing error can be written in thek-grid as

Ssmooth.,diff = W′∗(A1A′

2 − A′

2A1)Sfine
e (A1A′

2 − A′

2A1)
T W′∗T

+

(
˜̃A1

˜̃A
′

2 −
˜̃A

′

2
˜̃A1)W∗′Scoarse

e W∗′T (
˜̃A1

˜̃A
′

2 −
˜̃A

′

2
˜̃A1)

T

= W′∗(A1A′

2 − A′

2A1)Sfine
e (A1A′

2 − A′

2A1)
T W′∗T .

(58)
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The second term disappears because of˜̃A
′

2=I and all residual
smoothing error covariance is associated with subscale vari-
ability Sfine

e . The same applies holds for the mean smoothing
error. With

xe = xcoarse
e + xfine

e (59)

andxa = 0 as suggested in Section 3, we get

1̄x̂smooth.,sum = W′∗(A1A′

2 − A′

2A1)x
fine
e . (60)

This approximation is exact, i.e. the residual smoothing error
disappears, in the case that the variability of the true state is
sufficiently well characterized byScoarse

e , i.e. if the variability
can be represented completely in the coarse grid established
in Sect. 3.

Otherwise, there remains a residual smoothing error not
accounted for (Eqs.58–60), and our suggested method thus is
inferior to the approach of comparing profiles of unmatched
a priori content and characterizing the smoothing error of the
deduced quantity as described in Sect. 4.2. In real applica-
tions, however, there often is no reliable information on the
mean true state and its variability available.

In these situations, the rigorous assessment of the smooth-
ing error of the deduced quantity is not feasible and it may
be helpful to get rid of smoothing error components related
to large scale variability and to be able to relate the ignored
part of the smoothing error to a smaller scale.

When data represented as suggested here are to be com-
pared to high-resolution in situ measurements free of a pri-
ori information, sampled atl>n gridpoints, the latter are,
as usual, smoothed by the averaging kernel of the lower re-
solved data. If thek × n averaging kernel matrix̃A′

=W∗A′

is available, it should be interpolated tok×l shape, i.e. to
the grid of the high resolution measurement, and used for the
smoothing operation. Otherwise, thek × k averaging kernel

matrix ˜̃A
′

is used. This is unity by definition but its interpo-
lation to thek × l shape is identical to the respective interpo-
lation matrix used to represent the high-resolution measure-
ment on a coarse grid. In other words, the high-resolution
profile consisting ofl gridpoints is smoothed by ak × l ma-
trix of the typeW∗

� or W∗
1, depending on the representation

on the coarse grid chosen.
Besides the intercomparison of two measurements of the

same atmospheric profile, the concept of matched a pri-
ori content has another wide application area, which is the
recognition of patterns and structures in, e.g., 2-D fields of
retrieved state parameters, which basically is the detection
of differences of data in the time of space domain. The al-
titude resolution and the a priori content of data retrieved
directly with Eq. (1) typically varies with the independent
variable, e.g. with time, latitude, etc. This variation of a pri-
ori content can be caused because the JacobiansK , hence
also the averaging kernels, depend on the atmospheric state
itself. Another possible reason is that a different number of
measurementsy could be available for the profile retrievals.

The assessment of the significance of the detected structures
and patterns in retrievals of unmatched a priori content re-
quires not only the climatological covariance matrixSe of
a profile but the full multi-dimensional covariance informa-
tion in the space where the pattern is detected is required.
Apparent structures in the fields can then be caused by the
varying altitude resolution. After re-regularizing/resampling
the profiles on a common altitude grid similar to the one de-
fined in Sect. 3 but constant over the ensemble of profiles
under assessment, these artificial structures and patterns are
removed. While in retrievals following Eq. (1), a different
amount of measurement information partly influences the
altitude resolution and partly the noise-induced random re-
trieval error, the altitude resolution is constant in the rereg-
ularized/resampled data and only the retrieval error varies.
Variation of the random retrieval error, however, is easier to
handle in most applications than the variation of altitude res-
olution and a priori content.

5 Case study: MIPAS

To illustrate the behaviour of the proposed re-
regularization/resampling method, we show an application
to the Michelson Interferometer for Passive Atmospheric
Sounding (MIPAS) (Fischer and Oelhaf, 1996; Endemann
and Fischer, 1993; SAG, 1999), which is an Earth obser-
vation instrument onboard the Envisat research satellite.
MIPAS records high-resolution limb emission spectra of
the Earth’s atmosphere, from which vertical profiles of
atmospheric constituents’ abundances and temperature
are retrieved. Operational near-real time data analysis
(Ridolfi et al., 2000; Nett et al., 1999), under responsibility
of the European Space Agency (ESA), avoids problems
with ill-posedness of the inversion by using a grid for
representation of the vertical profiles which is defined by
the tangent altitudes of the measurements, and by restriction
of the altitude coverage of the retrieved profiles to heights
were the measurements contain a clear signal of the target
quantity, and where no problems due to saturation effects
in the measured spectra occur. However, there also exist
further MIPAS data processors (von Clarmann et al., 2003a),
which aim at an extended MIPAS data product for scien-
tific use. One of these processors is the one operated at
Forschungszentrum Karlsruhe, Institute for Meteorology
and Climate Research (von Clarmann et al., 2003b). This
processor uses constrained retrieval approaches, with all
implications mentioned above, in particular mapping of
a priori information onto the retrieved profiles and, as a
consequence, interdependences of retrieved data.

For this case study, we use simulated limb emission spec-
tral measuremets of ClONO2. First, a vertical profile of
ClONO2 volume mixing ratios is retrieved, using the regu-
lar processing setup as described inHöpfner et al.(2004).
For radiative transfer modeling, the Karlsruhe Optimized
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Fig. 1. A retrieval of MIPAS ClONO2 on a fine altitude grid (solid line) and the related re-regularized profiles (dashed lines) which contain
nearly the same number of degrees of freedom, in staircase (upper left panel) and triangular (lower left panel) representation. Re-regularized
profiles can be sampled on the coarse grid without loss of information. These resampled profiles are, except for the coarse grid itself, free of
a priori information.+ signs indicate the selected altitude gridpoints of the coarse grid. The right panels show the related retrieval errors.

and Precise Radiative Transfer Algorithm (KOPRA) (Stiller,
2000) was used. Retrievals were performed with the MIPAS
data processor as described invon Clarmann et al.(2003b).
Volume mixing ratios are sampled on a 1-km grid from 4–
44 km, a 2-km grid from 44–70 km, and at 70, 75, 80, 90,
100 and 120 km. Since this grid is finer than the altitude res-
olution provided by the measurement geometry, i.e. the ver-
tical distance of adjacent tangent altitudes, and since there is
not enough spectral information in the measurement to ex-
tract altitude-resolved information on this fine altitude grid,
the retrieval needs regularization to be stable. In this case,
a constraint has been chosen which minimizes the first order
differences of mixing ratios at adjacent altitude gridpoints as
discussed in (Steck and von Clarmann, 2001, and references
therein). While represented at many more altitude gridpoints,
the retrieved profile has only 9.7 degrees of freedom. Our
proposed method selects the following 9 altitude gridpoints
to represent the profile as a staircase-type profile: 8.0, 11.0,
15.0, 18.0, 22.0, 26.0, 30.0, 36.0, and 44.0 km. Simply re-
sampling the profile onto the coarse grid further reduces the
degrees of freedom to 7.1 (see discussion in the paragraph
above Eq.22). Contrary to this, our proposed method con-
serves exactly 9 degrees of freedom, and the averaging kernel
matrix is exactly 9×9 unity. The original retrieval and the re-
regularized/resampled profile are shown in Fig. 1, upper left
panel. The mapping of measurement noise onto the retrieval
is shown in Fig. 1, upper right left panel. These retrieval
errors are similar for the original and the re-regularized/re-
sampled data sets. Lower left and right panels of Fig. 1 show

the profiles and the error estimates, respectively, for the tri-
angular representation. In this application, resampling alone
without prior re-regularization would reduce the numbers of
degrees of freedom to 6.7. Also in this application, retrieval
errors of the re-regularized profile are, on average, similar
to those of the original profile. A characteristic of the trian-
gular representation, however, is, that errors are culminating
at the coarse gridpoints. Because errors of adjacent coarse
gridpoints are anti-correlated, errors at altitudes in between,
which do not carry independent information but where mix-
ing ratios are determined by linear interpolation, are sub-
stantially smaller. Large errors at the uppermost and lower-
most coarse gridpoints are irrelevant and can be understood
as extrapolation error: Any small uncertainty of the volume
mixing ratio vertical gradient will trigger large uncertainties
at altitudes far off the altitude range where the original re-
trieval contains information.

Certainly re-regularized/resampled profiles are in some
sense also affected by a prior constraint because the coarse
grid along with the applicable interpolation scheme is a prior
constraint in itself, but this kind of prior constraint is obvious
also to data users who are not familiar with the averaging ker-
nel formalism. In consequence, the risk of misinterpretation
of data is largely reduced.

www.atmos-chem-phys.net/7/397/2007/ Atmos. Chem. Phys., 7, 397–408, 2007



406 T. von Clarmann and U. Grabowski: Elimination of a priori

6 Conclusions

We have proposed a re-regularization/resampling scheme
which allows to represent a retrieval on an appropriate al-
titude grid such that its averaging kernel becomes unity. This
means that, within the newly defined co-ordinate system, the
re-regularized/resampled profile is entirely free of a priori in-
formation. All remaining a priori is inherent in the grid defi-
nition and interpolation scheme which certainly does not al-
low to represent sub-scale structures of the true atmospheric
state. The loss of information is limited to less than one de-
gree of freedom, which usually is tolerable for limb measure-
ments but may limit applicability to nadir instruments where
the relative loss of information may become significant.
This is, because for nadir sounders the averaging kernels are
typically very broad, and the signal measured by the instru-
ment represents a wide altitude range. Our proposed repre-
sentation of retrieved data simplifies the work with deduced
quantities like differences, sums or ratios, guarantees the sta-
tistical independence of profiles retrieved with the same a
priori information, excludes any bias of a retrieval towards
the a priori information, and reduces the amount of data to
be transferred to the data user. The re-regularized/resampled
profiles certainly represent only a smoothed version of the
truth but the related smoothing error is limited to small-
scale atmospheric structures variability which cannot be rep-
resented on the chosen altitude grid. Further, the remaining a
priori information in the re-regularized/resampled data con-
sists only of the grid itself and interpolation function used to
represent the data and thus is more obvious to the non-expert
data user who neither has the tools available to work with
averaging kernel matrices nor wants to work in spaces with-
out obvious physical meaning such as those spanned by the
singular vectors of the solution.

While the usual approach to characterize retrievals which
include a priori information by their averaging kernels and
smoothing errors is, of course, still valid if done properly
(which however, assumes availability of the climatological
covariance information of the state variable under assess-
ment), our re-regularization/resampling scheme is advanta-
geous in less favourable conditions, i.e. if the required cli-
matological covariance information is not available. Beyond
this, in a scientific community which is segmented to an ex-
tent into data providers and data users who do not interact di-
rectly but communicate their results via databases, as favored
by, e.g., the responsible officials in the Global Monitoring for
Environment and Security (GMES), data providers will lose
control over the correct handling of data and related diagnos-
tics. Thus, the importance of easy-to-use data representation
will increase in order to avoid misinterpretation of data.

Appendix A

Here we show that the concept to calculate the number of
degrees of freedom of the retrieval as the trace of the averag-
ing kernel is applicable to smoothing constraints, too. This is
not self-evident since the inference of this inRodgers(2000),
Eqs. (2.48)–(2.56), involves the non-inverted a priori covari-
ance matrixSa. The smoothing constraintR, which replaces
the Sa term in a Tikhonov-type retrieval is singular due to
its rankn−1. Smoothing constraints can formally be under-
stood as Bayesian constraints in cases when there is a priori
knowledge only on the vertical gradient of the profile but not
on the values themselves.

We bypass this problem of singularity of the regulariza-
tion matrix by decomposing the retrieval which involves a
smoothing constraint into an unconstrained part of which the
degrees of freedom are trivial to estimate and an optimal
estimation/maximum a posteriori-type part, where the argu-
ments ofRodgers(2000) (Eqs. 2.48–2.56) hold.

The retrieval ofx can be rewritten as a retrieval of an
integrated quantity, e.g. vertical column of a trace species,
altitude-averaged temperature etc., plus the retrieval ofn−1
first order differences of values at adjacent altitude grid-
points. This transformation of the retrieval vector is done
by multiplying the vector with matrixC of the type

C =


1 1 1 1· · · 1 1

−1 1 0 0· · · 0 0
0 −1 1 0 · · · 0 0
...

. . .

0 0 0 0· · · −1 1


This transformation of the co-ordinate system does not
change the degrees of freedom. The Tikhonov-type first or-
der regularization matrix

R =



1 −1 0 · · · 0 0 0
−1 2 −1 0 · · · 0 0 0

0 −1 2 −1 · · · 0 0 0
. . .

0 0 0 0· · · −1 2 −1
0 0 0 0· · · −1 1


is transformed to

C−1T
RC−1

= R∗
=


0 0 0 0· · · 0
0 1 0 0· · · 0
0 0 1 0· · · 0

. . .

0 0 0 0· · · 1


This proves that the retrieval of the integrated quantity is
not constrained by the first order difference smoothing ap-
proach. Therefore, by definition, this quantity adds exactly
one degree of freedom to the retrieval, and the related diag-
onal element of the averaging kernel is unity while all off-
diagonal elements are zero. Then−1 differences now are
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constrained by a diagonal matrix (lower right(n−1)×(n−1)

block in R∗), which can be understood as an inverse diago-
nal covariance matrix in the sense of Bayesian maximum a
posteriori retrieval, assuming that there is no knowledge on
higher order differences (which would cause off-diagonal el-
ements in the relevant block ofC∗. Therefore, the number of
degrees of freedom of the retrieval of differences is the trace
of the relevant(n−1)×(n−1) averaging kernel matrixA∗.
Thus the number of degrees of freedom of the retrieval is

dgfretrieval = 1 + tr(A∗)

We recombine the retrieval of the integrated quantity and the
differences retrieval and write the related averaging kernel
matrixA∗′

∈IRn×n as

A∗′
=

[
1 0
0 A∗

]
and find that

tr(A∗′) = dgfretrieval.

Since the number of degrees of freedom are conserved when
reversibly transforming back to the original coordinate sys-
tem, we obtain

dgfretrieval = tr(A) = tr(A∗′).

Following this approach the equivalence can also be shown
for higher order difference operators as regularization con-
straint, or linear combinations of these.
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