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Abstract. Profiles of atmospheric state variables retrievedrecent methods mostly rely on information theoRofigers
from remote measurements often contain a priori information2000. It is now common practise to represent the state pa-
which causes complication in the statistical use of data andameter to be retrieved on an altitude grid which is finer than
in the comparison with other measured or modeled data. Fothe altitude resolution of the instrument (see, @an Clar-
such applications it often is desirable to remove the a priorimann et al.2003h. Since inference of vertical profiles of
information from the data product. If the retrieval involves atmospheric state parameters on such a fine grid otherwise
an ill-posed inversion problem, formal removal of the a pri- would lead to an ill-posed inversion problem, stochastical
ori information requires resampling of the data on a coarsef(Rodgers2000 or other, e.g., smoothnesEKhonov, 1963

grid, which in some sense, however, is a prior constraint inTwomey, 1963 Steck and von Clarmani200]) constraints
itself. The fact that the trace of the averaging kernel matrix ofare applied which make the retrieval stable, i.e. regularize the
a retrieval is equivalent to the number of degrees of freedomninversion problem.

of the retrieval is used to define an appropriate information- The disadvantage of regularization is that the elements of
centered representation of the data where each data point reghe solution of the retrieval problem do carry inter-dependent
resents one degree of freedom. Since regridding implies furinformation, and that the solution does not merely depend
ther degl’adation Of the data and thUS causes additional IO&%’] the measurement but inc|udes a Certain portion Of a pri_
of information, a re-regularization scheme has been develyyi information. The following problem areas in the use
oped which allows resampling without additional loss of in- of constrained retrievals have been identified: A meaning-
formation. For a typical CION@profile retrieved from spec-  fy| comparison of two profiles of different content of a piori
tra as measured by the Michelson Interferometer for Passivéhformation requires to estimate the uncertainty of the dif-
Atmospheric Sounding (MIPAS), the constrained retrieval ference of the profiles which is due to their different a pri-
has 9.7 degrees of freedom. After application of the pro-grj content Rodgers and Connp2003. The estimation of
posed transformation to a coarser information-centered altithjg uncertainty, the so-called “smoothing error of the differ-
tude grid, there are exactly 9 degrees of freedom left, and th@nce” relies on the knowledge of the climatological variabil-
averaging kernel on the coarse grid is unity. Pure resamplingty in all scales of the quantity to be compared, in order to
on the information-centered grid without re-regularization pe aple to test the significance of the observed differences.
would reduce the degrees of freedom to 7.1 (6.7) for a stairpften reliable climatological variance-covariance informa-
case (triangular) representation scheme. tion is not available. These artefacts in profile differences
do not only affect applications like quantitative validation of
remotely sensed data but even visual inspection of measured
data. It is virtually impossible to recognize significant struc-
tures (which basically are differences of the observed state

While in early applications of remote sensing to atmosphericvariable) and to distinguish them from artefacts caused by a

research retrieval approaches often were based on ad hdiori information in, e.g., time series or 2-D plots of results.

methods or unconstrained maximum likelihood estimation,N© Mmeaningful sums (e.g. total reactive atmospheric nitro-
gen calculated from its components) or ratios (mainly used
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(2002; Ray et al.(2002; Glatthor et al.(2009; Mengistu  the a priori covariance matrix, while, in other applications,
Tsidu et al.(2009; Muscari et al.(2003; Esler and Waugh it often is a first order smoothing operatdwomey, 1963
(2002; Mller et al.(1999) of results can be calculated, if Tikhonoy, 1963. SettingR zero leads to the unconstrained
the a priori content of the data is significantly different or least squares solution, which is also called maximum like-
varying. Furthermore, depending on the nature of the a pridihood solution. G is called the gain function. All compli-

ori information, profile retrievals at different geolocations are cations arising from iterative processing to solve problems
no longer statistically independent. This adds complicationcaused by non-linearity df (x5) are omitted here since they

to statistical applications such as averaging or data assimdo not contribute to the aspect of the problem discussed. The
ilation. Beyond this, there are two further, certainly non- retrieval covariance matrig, of x is

scientific but nevertheless practically relevant problems with

To-1 -1
regularized profiles: First, the data amount of a complete sebx = (KT STK+R)™, (2)
of diagnostic data can pe enormous. Second, the exXperience, .o the noise error covariance matB, of & is

was made that a majority of data users refuses to deal with

this diagnostic information and thus runs risk to misinterprets,, = GS.G”. ©)

the data.

For applications as discussed above, a representation of Removal of the effect of the a priori information without
the retrieved state parameters which is free of formal a pri-rérunning the retrieval, i.e. the transformation of the maxi-
ori information is desirable and often advantageous. Singulafum a posteriori solutiofimap, or any other regularized so-
value decomposition-based approaches have been developkdion Xreg to the related maximum likelihood solutidif.
for similar purposesCeccherini et al(2003 have proposed ~according to
such an approach for validation purposes targeted at maxi-
mum likelihood estimates of the atmospheric staleiner ~ £mL = (S¢* —R)™*
and da Silva(1998 proposed two methods, namely null- ] ] ) o
space filtering of retrievals and partial eigen-decompositionusually first neleds resampilmg on a coarser grid to avoid sin-
retrievals. All these approaches, however, transform the estidularity of S;*—R=K"S-K. It is worthwhile mention-
mated atmospheric state variables into a space without obvil?d that the maximum likelihood solution is not really un-
ous physical meaning. This paper is targeted at a physica”)por_lstrgnjed but implicitly constrained b_y the coarse grid on
obvious representation of retrieved data which can directly béVhich itis represented and the related interpolation conven-

used without running risk of major misinterpretation, without 10N- _ _
giving up the major advantage of the regularized retrieval, 1N€nxn averaging kernel matrix
which is its inherent stability.

[S; l¥rec — Rxa] (4)

A=KTSK +R)IKTS K = GK (5)

is a helpful diagnostic tool, which is useful to rewrite E&). (
such that it becomes obvious which part of the solution is
controlled by the measurement and which by the a priori in-
formation:

2 Theoretical background

With very few exceptions explicitely mentioned, we use the
theoretical retrieval concept establishedRgdgers(2000.
While all MIPAS data processors the authors are aware of,
perform the retrieval inpthe framework of Newtonean itera- ¥REG = Xa T AWX —xa) +Ce, ©

tion, for the discussion of the method presented in this papewherex represents the true atmospheric state arisl the

the linear formulation of the retrieval problem is sufficient measurement noise characterizedyIn the following we
and used. The estimate of thedimensional atmospheric assume=xgec.

state vectork is calculated from then-dimensional vector The number of degrees of freedom of the signal was shown
containing the measured spectral radiangess to be

X =xa+ (KTSG_lK + R)_lKTse_l(y — F(x3)) dgfsignal = tr(A) (7)
=xa+ G(y — F(xa), . N o 1
for optimal estimation applications whelRe=S; ~ (Rodgers

where x5 contains the a priori information on the atmo- >00q. However, this concept also holds for other regular-
spheric stateF (x) is the radiative transfer forward model i, ation methods such as smoothing in the sensBkdfonov

1)

which provides the spectral radiances as a functiom, &
is them xn Jacobian matrix, whose elements §§e super-
J

script” denotes transposed matric&s;is the measurement
covariance matrixR is a regularization term, which, in max-
imum a posteriori (formerly called “optimal estimation”) ap-
plications as suggested BRodgers2000, is the inverse of
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(1963 or Twomey (1963 (see Appendix A). To avoid con-
fusion, we follow the suggestion &teck (2002 and use
the term “number of degrees of freedom of the retrieval
(dgf retrieva)” here rather than “number of degrees of free-
dom of the signaldgfsigna)” Which is reserved for maxi-
mum a posteriori retrievals in a Bayesian sense.
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3 Appropriate representation Averaging kernels of Eqs1() and (L2) are not directly com-
parable, because they have delta functions of different widths

In the following we first address the question which repre-as a reference: The delta funktion in thelimensional grid,

sentation of the retrieved profile is appropriate. To allow thewhich is the reference to Eql®), is wider than the delta

removal of the formal a priori information, the grid on which function in then-dimensional grid, which is the reference for

the profile is represented shall be coarse enough for the invelgq, (11).

sion ofK7'S; XK to be stable, but no coarser, in orderto avoid  Thekxk covariance matrix of the retrieval represented in

unnecessary loss of information. Then we suggest a schemge coarse grid is

to transform the data retrieved by EQ) ¢o the appropriate . T

grid such that the averaging kernel matrix in the coarse gridsi =W'SW (16)

is zero while the loss of information is minimal. This trans-  an appropriate representation of the retrieval in a sense as

formation scheme, however, can also be used to represent thgscussed above fulfills the conditions

data on any grid coarser than the one found most appropriate .

for the particular profile. The latter application is particularly A =1, (17)

useful, if profiles of different state variables, or profiles of nd

one state variable at different times or locations shall be rep-

resented in a comparable manner, which generally implies = int(dgf retrieva) (18)

;Zi[_ggtli?;tg?:f of the profiles has to be represented on \ia\‘/hered_g f retr_ievmhere is the numbe_r of degre_es of fre(_adom of
We assume that the strenath of th larization i the retrieval in the fine grid, which is not typically an integer.

gth of the regularization in Bq. ( e .

has been chosen appropriately (in a Bayesian sense or arﬁA)‘/S follows from Eq. (9), Eq. (17) can be satisfied with

other optimality criterion, e.gSteck 2002 and that the num-  W7TRW = 0, (19)

ber of degrees of freedom of the regularized solution is the

maximum number of degrees of freedom reasonably obtainIor which we have to find a non-trivial solution, _|.Et7é0
able from the given measurement. andW=£0. This means that the transformed retrieval shall

A linear transformation of the retrieved profile to a  K€€P as many degrees of freedom as possible while the state
coarser grid uses the transformation matrix parameters in the_dlr_nensmnal grid sha}II not be constrameq
to each other. This kind of representation of a vertical profile
w* = WTw)~-tw’ (8) where each data point represents one degree of freedom we
call “information-centered”.
where W is the interpolation matrix which samples the  The number of useful gridpoints can be obtained by sin-
coarse grid profile on the fine grid. The profile on the coarseyy|ar value decomposition, but not the placement of the alti-
grid then is tude gridpoints. Therefore, we propose an approach which is
based on the number of degrees of freedom of the retrieval.

z £a
¥ =W ©) If the number of degrees of freedom, i.e. the number of inde-
and the coarse-grid Jacobian is pendent pieces of information in the measurement, is equal to
. the dimension of the retrieval vector, an averaging kernel can
K =KW (10)  peinverted, i.e. the a priori information can be removed from

the retrieval. In the following we discuss two approaches to
remove the a priori information from the retrieval and to rep-
resent the retrieval on a coarser altitude grid.

The averaging kernel matrix on the coarse ghde IR**"
is
A =GK = W*GK = W*A (11) _ _
3.1 Staircase representation
The AcIR**" averaging kernel matrix is understood to
represent the response of a retrieval in thdimensional ~ First, we determine, how many degrees of freedfnft shall
grid to a delta perturbation in the finerdimensional grid. ~ be represented by each component ofittitmensional state

With W*W=1 wherel is kxk unity, the averaging kernel v_ector in the coarse_grld. The_ldeal value would be one, but
z ) ] i ) sincedgf generally is not an integetig f. of each altitude
AcIR**k related to a retrieval in the coarsedimensional step; is calculated as

grid is def
. 8
s L Vj dgfe= ——— 20
A=G az 81° = intdgf) (20)
= W*GKW (13) Certainly, the excess information relatedkte (dg fc—dgf)
— W*AW (14) is lost through slight undersampling on the coarse

1 1 1 dimensional grid. This, however, is the price to pay for an
= (WTKTSQ KW +WTRW) WTKTS;’KW (15)  easy representation.

www.atmos-chem-phys.net/7/397/2007/ Atmos. Chem. Phys., 748872007
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The new gridpointsfzj are distributed over altitude such tion outlined below. The new averaging kernel matrix after

that this substitution is
1(j) A =AR) = (KIS K +R) KIS K (23)

; ;,)au Ndgfor 1 where A= (ai,) (21) The new constraint terfR’ and the particular resampling ma-
=10

trix W’ are chosen to fulfill the following conditions

wherel; and/; are the lowermost and uppermost grid- tr(A(R)) ~ tr(A(R')), (24)
points in the fine grid to be represented by one new coarse-
gridpoint f,j_ The new gridpoint then has to be placed which is not required to be satisfied exactly because of
somewhere between the altituded;) andi(l2). One can  dgf#int(dgf), and
even go a step further and determine the placement of the -/ " o 1 P
new gridpointi; by linear interpolation of the sub-trace U(A) =W ARIW) & A =1 & W RW =0, (25)

l2(j) ; : : : -
M a in z. Alternatively, the closest altitude in N
t%é_;il-(djl)mgi\)’sli(é)nal grid can be c%losen which offers someWhere WA ) is the number of degrees of freedom of the re-

i o . sampled profile. This is achieved by a constr&ntin the
operational advantages. The level of sophistication of find- : o . :
. : ) . ) fine grid which is equivalent to a resampling onto the coarse
ing the exact information-centered altitudes is not really nec-_ . . . . .
f'ld. The formal resampling of am-grid profile subject to

essary, because no two subsequent limb measurements w . ) )
: . . &uch a constraint onto thegrid then conserves all infor-
be exactly identical but may be desired to be represente

X : . S mation except that contained in the neglected fraction of a
on the same grid, which requires approximations anyway.degree of freedom

When two ore more profiles are to be represented on a com- In the following we present a pair & andW’ matrices
mon grid, the gridpoints can be selected such that the crite- 9 P P

rion defined in Eq.Z1) is applied until the respective sums which fulfill these two co_nd!tlons. For convenience, we as-
I(j) ) sume that the coarse grid is a subset of the fine grid. The
Y 20 a1 exceedig fe for each of the profiles.

() i new constrainR’ is supposed not to constrain values at the
In summary, we work bottom up along the diagonal of the grigpoints which also are members of the coarse grid, while
averaging kernel matrix adding up diagonal elements untilit shajl produce values between the coarse gridpoints which
the trace of the block of the matrix considered by now ex-go not carry additional information but are completely de-
ceedsdg fc and assign an altitude gridpoint to this subma- termined by the values at the coarse gridpoints and a chosen
trix of the averaging kernel. Since this grid is approximately interpolation scheme, e.g. a staircase function.
information-centered, it is considered a kind of natural rep- A constraintR’ compliant to this requirement is a block-

resentation of the retrieved profite diagonal: xn matrix, of the form
Resampling of the constrained oversampled fine-grid re- ,
trieval, however, degrades the profile and further reduces the RDsuhl’ 0 - 0
information belowdg fretrievar  This follows from Eq. 15), ) 0  Rogpe - 0O
because Eq.19) is not usually satisfied for arbitrarily cho- ~0O = . . ) (26)
senW andR matrices. This leads tb x k averaging kernels O 0 ...R )
unequal unity, which is equivalent to less thadegrees of ’ Usuhk

freedom. To compensate for this additional loss of informa-\yhere each of the disjoint diagonal blocm/ﬁsuhj represents

tion, it seems necessary to first remove the a priori mforma-One gridpoint in the coarse grid, representing one degree of

tion in the fine-grid retrieval. This, however, is not possible freedom. The coarse gridpoints shall be placed where
in most cases, since the unconstraimegrid solution suf-

fers from ill-posedness. Instead, we search for a new con- 24) defe
straintR’, which in effect is equivalent to the resampling of a=—=+( - Ddgfe. (27)
the retrieval to the appropriate coarse grid, i.e. which fulfills '=/1()

Eq. @19). In order to substitute the original constraRtby \yhile the block boundaries are placed where
the new constrainR’, we make use of Eq. 10.48 Bfodgers

(2000 l(j) ’
> a = jdgfe. (28)
I=l1(j)
.%/ — (S;l _ R + R/)fl I:S;l-i. _ Rxa+ R/x;:l , (22) 11U - -
Blocks of the sizé (j) xi(j) are set zero whei(j)=1, while

blocks equal or larger thanx2 are set up as first order
Tikhonov-type regularization matrice§ikhonov, 1963 of
the type

wherez’ is the transformed profile in thedimensional grid,
S« is the estimated xn covariance matrix of, xg is the
original a priori profile, ande} is the new a priori profile,
which is set to zero at all altitude gridpoints for the applica- R/Dsub: yLlL{ (29)

Atmos. Chem. Phys., 7, 39468 2007 www.atmos-chem-phys.net/7/397/2007/
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wherel 1 is a local-gridwidth weighted(;) x (i (j)—1) first where the number of non-zero entries in tttecolumn isn; .

order difference matrix of the type It should be noted that alst/% satisfies the condition
o = by~ ° W =1 (34)
0 (hiv1—hit2) ™" -+ 0 owo=
Li()= : : x

The validity of Eq. (L9) can easily be verified for regulariza-

0 0 e (higma=hip ™t tion and transformation matrices as defined in EQ6-30)
-1 1 0--- 00 and @3). The re-regularized and resampled profile thus con-
5 0-11.-- 00 (30) tainsk=int(dg f) degrees of freedom.
N Certainly, the same solutiokf which we obtain by EqR2
0 0 0----11 can in principle be found by an unconstrained maximum like-

lihood retrieval of a staircase profile on the coarse grid. How-
ever, this optimal grid is not typically known in advance and
thus the fine-grid retrieval is a prerequisite. The availability
h%f the fine-grid retrieval further offers extensive diagnostics,
£ then x n averaging kernel matrid’ (Eq. 23), which is

not available for a direct maximum likelikood retrieval on the
pcoarse grid.

for regular fine grid, or a similar matrix which each non-
zero matrix element weighted Iy, 1—h; wherej indicated
the row of L7 gridwidth-compensated second order differ-
ence operators. Such a regularization does not constrain t
x-values which correspond to coarse-grid-points but, whe
sufficient regularization strength for each matrix-block is
chosen such that no altitude resolution is allowed within eac
block, values at the additional gridpoints are forced to follow
the staircase function between the coarse-grid points. Suc
largey values are necessary to avoid singularity of the first
term in Eq. 22). Transformation of arbitrary fine gridded
profiles to the coarse grid then uses

fh%.z Triangular representation

Neither is the staircase representation considered a realis-
tic representation of the atmosphere, nor do most forward
models support this representation. A representation where

% % 0---0---0---0 atmospheric state parameters are interpolated (e.g. linearly)
» o.--o0t...x...0...0 between the altitude gridpoints is preferred in most applica-
(W 2 .. ? ’ (31) tions. As with the staircase representation, we require the

information content of the resampled retrieval to be the in-
teger value of the degrees of freedom of the fine-grid re-
wherei; is the number of fine-grid points to be representedtrieval (Eq.20) and define this to be the number of coarse-
by the jth coarse-grid point. The number of non-zero entriesgrid points. In order to represent the profile from the upper-
in each row of W™ is i;. For staircase profiles, however, most to the lowermost end of the original profile, we define
which have been generated wif andy —oo, also asim-

pler transformation matrix of the type hy=h1 (35)

0..-0 00}
k

EST

10.--000---0 060---0 and
" 00---010---0 00.--0
0= . 0 B2 =, (36)
00.--000---0 10---0 whereh=(h1, - - -, hx)T is the grid of the coarse represen-
will transform the matrix to the coarse grid without loss of tation, while hk=(h1, ---, h,)T is the original fine altitude

information, because due to the regularization applied allgrid. In order to satisfy Eq20), the other coarse-grid points
values within a block are the same. Reformation of theh, to hg_1 are the same as for the staircase representa-

staircase-profile from the coarse-grid profile uses tion. In order to emulate this coarse grid retrieval in the fine
10...0 grid retrieval, the following regularization matrix can be con-
structed:
10---0 g 00 OR, 0110 00 0
01.---0 Ra=| . o|+]0 0 00fpy] : (37)
: : . . 00--- 0
: : 0 0---0 - 0"'0R,subk—l
W/D — . . (33) 0 0 0---0 A
01---0

Contrary toRr, the diagonal blocks oR’, are not disjoint
00...1 but each two adjacent blocks share a common diagonal ele-
ment. Each block is of the size

00..-1 () % i(j) = (20j) — 1) + 1) x (2()) — () + D).

www.atmos-chem-phys.net/7/397/2007/ Atmos. Chem. Phys., 748872007
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Blocks R/, ;0f the size %2 are set zero, while blocks regularized retrieval based on the constraR}{ is trans-
equal or larger than:33 are set up as second order Tikhonov- formed onto the coarse grid by transformation mati%,
type regularization matriceikhonov, 1963 of the type without additional loss of information, and we have

Ryeup=yL2L} (38)  WEW, =1. (43)

where L, is a local-gridwidth weightedi(j)—2)xi(j)
second order difference matrix of tridiagonal form with 4 Smoothing errors of deduced gquantities
sub-diagonal, diagonal, and super-diagonal elemgms,

—xi(Ai—14+A;), M Aj_1, respectively, where Various scientific application areas of data involve the analy-
sis of differences of profiles (validation, data assimilation, vi-
Ap=hiy1—Mh (39)  sual recognition of structures in data) or calculation of sums
(e.g. total reactive chlorine) or ratios (correlation analyses) of
and data. After regridding the data and related averaging kernel
h = 2 (40) matrices and covariance matrices (dfalisesi et al.2005,

Ai—1Ai (A1 + A and transformation of the data to the same a priori profile

(Rodgers and Connp2003, the different amount of a pri-

. L . .
In the triangular apphcatlpn, thg transform'atlon 'maW&. ori information in the data still has to be taken into account.
transforms the coarse-grid profile to the fine grid by linear +qre are two options, which we discuss in the following:

interpolation, with Either the amount of a priori information in the data is left

fa-hy iy 0 0 0 untouched, and possible artefacts caused by different a pri-
fohy ki ‘ . . ori content are characterized by the smoothing error of the
- I } : - : : : deduced quantity, or the data are made directly comparable.
Z_* ligfl 1[_171f 1 O 0 0

”26”1 ;?;_’,f}ll iy o o 4.1 Un-matched a priori content

ﬁg*hg h3z—hy
: : : : : The approach to compare retrieved profitgsandx, of the
W)y = 0 [Tehipripor hiyrip-1-ho 0 0 . (41)  same quantitye without prior adjustment of their a priori

fomhe  hsmhe content has been discussed in detaiRmdgers and Connor

P (2003, who suggest to evaluate the smoothing error covari-
k—Rn—i Tn—ij —Nk—1 . . A A

0 0 0 s s ance matrixSsmooth,dift Of the differencet; andx,

. : T
o ) Ssmooth,difft = (A2 — A1)Se(A2 —A1)", (44)

0 0 0 hi=hy—1 hpa—hia . .

0 0 I hk—gk—l hk—;k—l whereA; andA; are the related averaging kernel matrices,

and wheres; is the climatological covariance matrix of the
The transformation of an arbitrary profile from the fine to state variablé 1. Ssmootn diff IS @ component of the total error
the coarse grid leads to a lengthy expression for the generabf the differenceSyitr, which is used to test the significance
ized formulation of related matriw’¢. Multiplication ofany  of the difference vigg? statistics:
. X ' e .
f!ne-grld profilex by W’} returns the fqotpomts _of the con- x2= (g — )ACZ)TS&flf (1 — %) (45)
tiguous sequence of segments of which each is a regressid
line constrained such that the regression lines intersect at thé cases where the a priori profik, has been chosen dif-
pre-defined coarse-grid altitudes. If need be (e.g. for appliferent from the climatological profilee, around which the
cations as discussed in Set, W’ can easily be computed variability is described by, @ mean smoothing error differ-
numerically for the actual interpolation scheig, accord- ~ €nce
ing to Eq. 8)..For the special case d|_scussed here, where thﬁsmooth,dm = (A — Ap)(xe— Xa) (46)
fine-grid profile has been re-regularized such that all profile .
values on the fine-grid falling between the coarse-grid pointg@S to be considered. _
can be generated by linear interpolation and thus carry noin- 1h€ same basic approach to calculate deduced quanti-
dependent information, the following simpler matrix can be ties without prior consideration of different a priori content

used for the transformation from the fine grid to the coarse@nd characterize related artefacts by the smoothing error of
grid: the deduced quantity certainly holds also for other deduced

y quantities. The smoothing error covariar®gnooth,sum Of,
W — wig-wi, ). W 1 h=h; (42) e.g., total [NQ] = [NO2+NO], represented by vectoks ;,
AT \wpy w7 MTl0 0 £k %1, andx, respectively, is

This interpolation matrix just picks out the independent dataSsmooth.sum = (A1 — Sa1(Ag — D'+
points of the interpolated profile. Again, fgr— oo the re- (A2 —1)Sa2(A2 — DT, (47)

Atmos. Chem. Phys., 7, 39468 2007 www.atmos-chem-phys.net/7/397/2007/
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whereA1, Az, S; 1, andS, 2 are the related averaging kernel comparison. This approximation does not rely on an esti-
and covariance matrices, respectively. The mean smoothingate of the climatological covarian&g. If the finer resolved
error is profile indeed consists of a large number of point measure-
_ ments, this approach is close to exact, and our proposed re-
AXsmooth,sum = (A1=1)(Xe1-Xa1)+(A2—1)(xe2—xa2)(48) regularization/re-sampling method does not offer other than
practical advantages. The user who has no fine-grid averag-
ing kernels available would just use transformation matrices
as defined in Eqs3@) or (41) instead.

The smoothing err.or variances o ration of the .rat|o
X1:.n/X2; n of two profile elements1., andxy., at altitude

ridpointn is . . .
gndpointn In a less than ideal case, however, the residual smoothing
error to be considered covariance is
2
o, = 49
smoothraton = O Smooma = Axll — A9Su(l — Ap) AT (53)
"2 T
(A2 =DSe2(A2=DT) 4 . o . o
x5 (XL” (( 2= DS2(A2=1) n.n wherel isn x n identity. Ssmooth,diff IS zero in the ideal case
’ whenA,=I. The mean smoothing error is
x,g;n ((Al - I)SE,l(Al - I)T)n n) s (50) -
’ AXsmooth,sum = A1(l — A2)(xe — xa) (54)
and the mean smoothing error is When comparing retrievals whose altitude resolution is
A% smooth.sum = ((A1 —D(xe1— xal))n,n too d_n‘ferent to be ignored byt t_o_o similar that th_e approach
mentioned above would be justified, one may wish to cross-
((AZ —Dxe2 va))n,n : (51) wise smooth the retrievals in order to achieve cancellation of

As long as done properly, the approach described above iSs’mo_othi_ng errors. Th!s, however, is not _appropriate since the
of course, valid. The crucial point of this approach, how- application of averaging kernels to profiles is not commuta-

ever, is that the smoothing error covariance matrix can onlylive: The residual smoothing error covariance is

be evaluated when the climatological covariance m&gis o T
known. This is often not the case. Unfortunately, there are>smooth diff = (A1A2 = A2A1S(A1A2 — A2A1)", (55)

situations when assumptions Bgpare dominating the calcu- and the mean smoothing error is

lation of 2. )
For an assumed a priori covariance maSixthe deviation Az o~ (A1A — ArA7)(Xe — Xa) (56)
of the estimated smoothing error of the difference of the two '
profiles from the true smoothing error is Instead, we suggest to first re-regularize and resample the
~ finer resolved one of the two profiles;, following the pro-
(A2 = AD (G — S(A2 — AD) (52) 0 amey

cedure described in Sect. 3. Then the resulting préf/jlds

It cannot easily be associated with certain altitude scalegmgothed by the averaging kernl:xej of the other profile re-

of atmospheric variability. The problem of frequent non- grigded to thek-grid. If covariance matrices, regularization
availability of a reliableSe covariance matrix inferred from matrices, a priori profiles and averaging kernels — all being
representative sufficiently high resolved real data is a majorquantities needed to carry out the rigirous intercomparison
motivation to work with quantities of matched a priori con- ¢ profiles with unmatched a priori content anyway — it is
tent. even possible to re-regularize/re-sample both profiles onto
the same grid, namely the one found optimal for the coarser
resolved one according to the criterion discussed in Sect.

Using the decomposition

4.2 Matched a priori content

In the following, we shortly discuss various approximations
aiming at making profiles comparable such that the smooth—Se _ fine | geoarse (57)
ing error of the difference of the compared profiles vanishes.™ — ™® e
Since these approximations are not perfect, there remains @, coarsejg the part of the variability of the state vari-
residual smoothing error, which we characterize below. The, "

o " ) able which could completely be represented on the coarse
application to deduced quantities other than differences, a@rid and acompone@g”ewhich is the part of the variability
discussed in the previous section, is straightforward and thug .. .

Which can only be represented on the fine grid, the residual
not shown here.

e ) ) i smoothing error can be written in thegrid as
An approximation widely used is to consider the better
resolved one of the two profiles;; to be compared as an  Syyoom it = W*(A1A}, — ALADSIS(ALAL — ALADTWT 4
H H H H =z =/ =/ =z =z =/ =/ =z
|deal_ measurement and to smooth it by application of the av- (A1A, — AyAD)WSPas{y =T (A A, — A AT (58)
eraging kernel of the coarser resolved measurement before = W*(A1A} — ALADSIC(ALA, — ALA)TWAT
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=/ L
The second term disappears becaus®efl and all residual ~ The assessment of the significance of the detected structures
smoothing error covariance is associated with subscale variand patterns in retrievals of unmatched a priori content re-
ability S["®. The same applies holds for the mean smoothingguires not only the climatological covariance mat8x of

error. With a profile but the full multi-dimensional covariance informa-
coarse . _fine tion in the space where the pattern is detected is required.
Xe=Xg =~ t+Xeg (59) Apparent structures in the fields can then be caused by the

varying altitude resolution. After re-regularizing/resampling

. . the profiles on a common altitude grid similar to the one de-
A% smooth,sum = W (A1A5 — A’2A1)x2,”e. (60) fined in Sect. 3 but constant over the ensemble of profiles
under assessment, these artificial structures and patterns are

This approximation is exact, i.e. the residual smoothing errol amoved. While in retrievals following Eql), a different

disappears, in the case that the variability of the true state i§ o nt of measurement information partly influences the
sufficiently well characterized E§g%%"*Ci.e. if the variability  ayitge resolution and partly the noise-induced random re-
can be represented completely in the coarse grid establishgghe 5| error, the altitude resolution is constant in the rereg-

in Sect. 3. ularized/resampled data and only the retrieval error varies.

OtherW|sfe, there remains a residual smoothw;}g errrlor 'f‘ok/ariation of the random retrieval error, however, is easier to
accounted for (Eq%8-60), and our suggested method thus is 4 qje in most applications than the variation of altitude res-
inferior to the approach of comparing profiles of unmatched | ;iion and a priori content

a priori content and characterizing the smoothing error of the
deduced quantity as described in Sect. 4.2. In real applica-
tions, however, there often is no reliable information on theg  ~, 40 study: MIPAS
mean true state and its variability available.
In these situations, the rigorous assessment of the smoothr,  justrate the behaviour of the proposed re-

ing error of the deduced quantity is not feasible and it may eqyjarization/resampling method, we show an application
be helpful to get rid of smoothing error components related, the Michelson Interferometer for Passive Atmospheric
to large scale variability and to be able to relate the ignoredsounding (MIPAS) Fischer and Oelhafl996 Endemann
part of the smoothing error to a smaller scale. and Fischer1993 SAG, 1999, which is an Earth obser-
When data represented as suggested here are to be cOsiion instrument onboard the Envisat research satellite.
pared to high-resolution in situ measurements free of a priypas records high-resolution limb emission spectra of

ori information, sampled at>n gridpoints, the latter are, he Earth's atmosphere, from which vertical profiles of
as usual, smoothed by the averaging kernel of the lower rezimnospheric  constituents' abundances and temperature

solved data. If thét x n averaging kernel matriR’=W*A" 5o retrieved. Operational near-real time data analysis

is available, it should be interpolated k<! shape, i.e. to (Ridolfi et al, 200Q Nett et al, 1999, under responsibility

the grid of the high resolution measurement, and used for the; {1 European Space Agency (ESA), avoids problems
smoothNirlwg operation. Otherwise, thex k averaging kernel  ith jll-posedness of the inversion by using a grid for

matrix A is used. This is unity by definition but its interpo- representation of the vertical profiles which is defined by
lation to thek x I shape is identical to the respective interpo- the tangent altitudes of the measurements, and by restriction
lation matrix used to represent the high-resolution measureef the altitude coverage of the retrieved profiles to heights
ment on a coarse grid. In other words, the high-resolutionwere the measurements contain a clear signal of the target
profile consisting of gridpoints is smoothed by/ax [ ma- guantity, and where no problems due to saturation effects
trix of the typeW or W, depending on the representation in the measured spectra occur. However, there also exist
on the coarse grid chosen. further MIPAS data processorggn Clarmann et 8120033,
Besides the intercomparison of two measurements of thevhich aim at an extended MIPAS data product for scien-
same atmospheric profile, the concept of matched a pritific use. One of these processors is the one operated at
ori content has another wide application area, which is theForschungszentrum Karlsruhe, Institute for Meteorology
recognition of patterns and structures in, e.g., 2-D fields ofand Climate Researclv@n Clarmann et al.2003). This
retrieved state parameters, which basically is the detectiofprocessor uses constrained retrieval approaches, with all
of differences of data in the time of space domain. The al-implications mentioned above, in particular mapping of
titude resolution and the a priori content of data retrieveda priori information onto the retrieved profiles and, as a
directly with Eq. () typically varies with the independent consequence, interdependences of retrieved data.
variable, e.g. with time, latitude, etc. This variation of a pri-  For this case study, we use simulated limb emission spec-
ori content can be caused because the Jacolfarieence  tral measuremets of CIONO First, a vertical profile of
also the averaging kernels, depend on the atmospheric sta@ONO, volume mixing ratios is retrieved, using the regu-
itself. Another possible reason is that a different number oflar processing setup as describedHapfner et al.(2004.
measurementg could be available for the profile retrievals. For radiative transfer modeling, the Karlsruhe Optimized

andx, = 0 as suggested in Section 3, we get
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Fig. 1. Aretrieval of MIPAS CIONG on a fine altitude grid (solid line) and the related re-regularized profiles (dashed lines) which contain
nearly the same number of degrees of freedom, in staircase (upper left panel) and triangular (lower left panel) representation. Re-regularizec
profiles can be sampled on the coarse grid without loss of information. These resampled profiles are, except for the coarse grid itself, free of
a priori information.+ signs indicate the selected altitude gridpoints of the coarse grid. The right panels show the related retrieval errors.

and Precise Radiative Transfer Algorithm (KOPRSyiller, the profiles and the error estimates, respectively, for the tri-
2000 was used. Retrievals were performed with the MIPAS angular representation. In this application, resampling alone
data processor as describedvion Clarmann et al(2003h). without prior re-regularization would reduce the numbers of
Volume mixing ratios are sampled on a 1-km grid from 4— degrees of freedom to 6.7. Also in this application, retrieval
44km, a 2-km grid from 44-70km, and at 70, 75, 80, 90, errors of the re-regularized profile are, on average, similar
100 and 120 km. Since this grid is finer than the altitude res-to those of the original profile. A characteristic of the trian-
olution provided by the measurement geometry, i.e. the vergular representation, however, is, that errors are culminating
tical distance of adjacent tangent altitudes, and since there iat the coarse gridpoints. Because errors of adjacent coarse
not enough spectral information in the measurement to exgridpoints are anti-correlated, errors at altitudes in between,
tract altitude-resolved information on this fine altitude grid, which do not carry independent information but where mix-
the retrieval needs regularization to be stable. In this caseing ratios are determined by linear interpolation, are sub-
a constraint has been chosen which minimizes the first ordestantially smaller. Large errors at the uppermost and lower-
differences of mixing ratios at adjacent altitude gridpoints asmost coarse gridpoints are irrelevant and can be understood
discussed in$teck and von Clarmang001, and references as extrapolation error: Any small uncertainty of the volume
therein). While represented at many more altitude gridpointsmixing ratio vertical gradient will trigger large uncertainties
the retrieved profile has only 9.7 degrees of freedom. Ourat altitudes far off the altitude range where the original re-
proposed method selects the following 9 altitude gridpointstrieval contains information.

to represent the profile as a staircase-type profile: 8.0, 11.0, Certainly re-regularized/resampled profiles are in some
15.0, 18.0, 22.0, 26.0, 30.0, 36.0, and 44.0km. Simply re-sense also affected by a prior constraint because the coarse
sampling the profile onto the coarse grid further reduces thegrid along with the applicable interpolation scheme is a prior
degrees of freedom to 7.1 (see discussion in the paragraptonstraint in itself, but this kind of prior constraint is obvious
above Eq22). Contrary to this, our proposed method con- also to data users who are not familiar with the averaging ker-
serves exactly 9 degrees of freedom, and the averaging kernakl formalism. In consequence, the risk of misinterpretation
matrix is exactly &9 unity. The original retrieval and the re- of data is largely reduced.

regularized/resampled profile are shown in Fig. 1, upper left

panel. The mapping of measurement noise onto the retrieval

is shown in Fig. 1, upper right left panel. These retrieval

errors are similar for the original and the re-regularized/re-

sampled data sets. Lower left and right panels of Fig. 1 show
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6 Conclusions Appendix A

We have proposed a re-regularization/resampling schemeélere we show that the concept to calculate the number of
which allows to represent a retrieval on an appropriate al-degrees of freedom of the retrieval as the trace of the averag-
titude grid such that its averaging kernel becomes unity. Thisng kernel is applicable to smoothing constraints, too. This is
means that, within the newly defined co-ordinate system, thenot self-evident since the inference of thislRndgerg2000),
re-regularized/resampled profile is entirely free of a priori in- Egs. (2.48)—(2.56), involves the non-inverted a priori covari-
formation. All remaining a priori is inherent in the grid defi- ance matrixS,. The smoothing constraifR, which replaces
nition and interpolation scheme which certainly does not al-the S; term in a Tikhonov-type retrieval is singular due to
low to represent sub-scale structures of the true atmospheriigs rankn—1. Smoothing constraints can formally be under-
state. The loss of information is limited to less than one de-stood as Bayesian constraints in cases when there is a priori
gree of freedom, which usually is tolerable for limb measure-knowledge only on the vertical gradient of the profile but not
ments but may limit applicability to nadir instruments where on the values themselves.
the relative loss of information may become significant. We bypass this problem of singularity of the regulariza-
This is, because for nadir sounders the averaging kernels at@on matrix by decomposing the retrieval which involves a
typically very broad, and the signal measured by the instru-smoothing constraint into an unconstrained part of which the
ment represents a wide altitude range. Our proposed repradegrees of freedom are trivial to estimate and an optimal
sentation of retrieved data simplifies the work with deducedestimation/maximum a posteriori-type part, where the argu-
guantities like differences, sums or ratios, guarantees the stanents ofRodgerg2000 (Egs. 2.48-2.56) hold.
tistical independence of profiles retrieved with the same a The retrieval ofx can be rewritten as a retrieval of an
priori information, excludes any bias of a retrieval towards integrated quantity, e.g. vertical column of a trace species,
the a priori information, and reduces the amount of data toaltitude-averaged temperature etc., plus the retrieval-df
be transferred to the data user. The re-regularized/resampléfist order differences of values at adjacent altitude grid-
profiles certainly represent only a smoothed version of thepoints. This transformation of the retrieval vector is done
truth but the related smoothing error is limited to small- by multiplying the vector with matrixC of the type
scale atmospheric structures variability which cannot be rep- 1 111... 11
resented on the chosen altitude grid. Further, the remaining a ~1 100.-.- 0 0
priori information in the re-regularized/resampled data con- 0-110.-- 0 0O

. S . . . C =
sists only of the grid itself and interpolation function used to
represent the data and thus is more obvious to the non-expert : .
data user who neither has the tools available to work with 0 000----11

averaging kernel matrices nor wants to work in spaces with-.l.hiS transformation of the co-ordinate system does not

out obvious physical meaning such as those spanned by th&ange the degrees of freedom. The Tikhonov-type first or-
singular vectors of the solution. der regularization matrix

While the usual approach to characterize retrievals which

include a priori information by their averaging kernels and [1-1 0 .- 0 0O
smoothing errors is, of course, still valid if done properly -1 2-1 0--- 0 0 O
(which however, assumes availability of the climatological 0-1 2-1--- 0 0 O

covariance information of the state variable under assess® = )
ment), our re-regularization/resampling scheme is advanta-

. " 2 . ) 0 00 0---1 2-1
geous in less favourable conditions, i.e. if the required cli- 000 O

matological covariance information is not available. Beyond - -1 1l
this, in a scientific community which is segmented to an ex-is transformed to

tentinto data providers and data users who do not interact di- 0000---0
rectly but communicate their results via databases, as favored 0100---0
by, e.g., the responsible officials in the Global Monitoring for ~1TRe-1_R*—|0010---0
Environment and Security (GMES), data providers will lose

control over the correct handling of data and related diagnos- 0000 - 1

tics. Thus, the importance of easy-to-use data representation

will increase in order to avoid misinterpretation of data. This proves that the retrieval of the integrated quantity is
not constrained by the first order difference smoothing ap-
proach. Therefore, by definition, this quantity adds exactly
one degree of freedom to the retrieval, and the related diag-
onal element of the averaging kernel is unity while all off-
diagonal elements are zero. The 1 differences now are
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constrained by a diagonal matrix (lower right-1) x (n—1)
block in R*), which can be understood as an inverse diago-
nal covariance matrix in the sense of Bayesian maximum a
posteriori retrieval, assuming that there is no knowledge on
higher order differences (which would cause off-diagonal el-
ements in the relevant block 6. Therefore, the number of
degrees of freedom of the retrieval of differences is the trac
of the relevant(n—1)x (n—1) averaging kernel matrid*.
Thus the number of degrees of freedom of the retrieval is
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