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Abstract: The search for efficient and predictive methods to describe the protein folding process at the all atom

level remains an important grand computational challenge. The development of multi teraflop architectures, such as

the IBM BlueGene used in this study, has been motivated in part by the large computational requirements of such

studies. Here we report the predictive all atom folding of the forty amino acid HIV accessory protein using an evo

lutionary stochastic optimization technique. We implemented the optimization method as a master client model on

an IBM BlueGene, where the algorithm scales near perfectly from 64 to 4096 processors in virtual processor mode.

Starting from a completely extended conformation, we optimize a population of 64 conformations of the protein in

our all atom free energy model PFF01. Using 2048 processors the algorithm predictively folds the protein to a near

native conformation with an RMS deviation of 3.43 Å in <24 h.
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Introduction

Protein folding and structure prediction at the all atom level

remain important computational challenges with many applica

tions in the life and nano sciences. One important milestone in

this direction is the development of methods that are capable to

predictively fold proteins and peptides from unbiased unstruc

tured conformations to the native ensemble. Direct simulation

studies have demonstrated the folding of several small peptides

and mini proteins from completely extended conformations, but

remain limited in the system size by the large computational

effort required.1 6 Unfolding simulations, starting from the

native conformation have given insight into protein thermody

namics7 and the transition state ensemble in a first principles

approach even for larger proteins,8,9 but typically fail to return

to the native ensemble once the transition state has been

crossed.

One great hope towards reproducible all atom folding is the

development of algorithms that can exploit emerging massively

parallel computational architectures that will deliver petaflop

computational performance by the end of this decade. The

straightforward parallelization of the energy and force evaluation

in a single computational step is one possible approach to dis

tribute the computational load, but remains limited to a rela

tively small number of processors (presently roughly 16 128

nodes with a high speed interconnect, depending on program

and architecture). This approach alone is therefore unlikely to

efficiently exploit the many thousand processors of emerging

petaflop architectures, let alone grid applications with hundreds

of thousands of processors. An alternative approach has been to

distribute short simulations on many independent nodes and to

extrapolate the results2 or to reconstruct the folding dynamics

from coarse grained dynamics of populations of such simula

tions.10

In yet another alternative approach, we have developed

models11 and algorithms,12,13 which permit reproducible and pre

dictive folding of small proteins (up to sixty amino acids) from

random initial conformations using free energy forcefields. We

exploit Anfinsen’s thermodynamic hypothesis14 that many pro

teins are in thermodynamic equilibrium with their environment

under physiological conditions. The unique three dimensional

native conformation of the protein can then be predicted as the

global optimum of a suitably free energy model. The free energy
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model captures the internal energy of a given backbone con

formation and solvent and side chain entropy via an implicit

solvent model. Comparing just individual backbone conforma

tions these models assess the relative stability of conforma

tions15 (structure prediction). In combination with thermody

namic simulation methods (Monte Carlo or parallel temper

ing),16 19 this approach generates continuous folding trajectories

to the native ensemble.

To assess the relative stability of given backbone ensembles,

stochastic optimization methods20 can be used to search the pro

tein free energy landscape in a fictitious dynamical process.

Such methods thus offer the potential to explore the protein

free energy landscape orders of magnitude faster than kinetic

simulations by accelerating the traversal of transition states21 the

directed construction of downhill moves on the free energy sur

face,22 the exploitation of memory effects or a combination of

such methods.23 Obviously this approach can be generalized to

use not just one, but several concurrent dynamical processes to

speed the simulation further, but few scalable simulation

schemes are presently available. In a recent investigation, we

found that parallel tempering scales only to about 32 repli

cas.17,18 The development of algorithms that can concurrently

employ thousands of such dynamical processes to work in con

cert to speed the folding simulation remains a challenge, but

holds the prospect to make predictive all atom folding simula

tions in a matter of days a reality.19

The development of such methods is no trivial task for a

simple reason: if the total computational effort (number of func

tion evaluations N) is conserved, while the number of nodes (np)
is increased, each process explores a smaller and smaller region

of the conformational space. If the search problem is exponen

tially complex, as protein folding is believed to be,24 such local

search methods revert to an enumerative search, which must

fail. It is only the ‘‘dynamical memory’’ generated in thermody

namic methods such as simulated annealing (SA),20 that permit

the approximate solution of the search problem in polynomial

time. Thus, massively parallel search strategies can only succeed

if the processes exchange information.

We have recently developed an evolutionary algorithm,

which generalized the basin hopping or Monte Carlo with mini

mization,13,15,23,25 29 method to many concurrent simulations.

Using this approach we could fold the sixty amino acid bacterial

ribosomal protein to its native ensemble.30,31 This simulation

exploited 50 concurrent dynamical processes and ran for about 6

months on a PC cluster. Here we used a 4096 processor IBM

BlueGene computer to investigate the folding of the 40 amino

acid HIV accessory protein. We find that the algorithm scales

from 64 to 4096 nodes with <10% loss of computational effi

ciency. Using 2048 processors we succeed to fold the protein

from completely extended to near native conformations in less

than a single day.

Methods

We have parameterized an all atom free energy forcefield for

proteins (PFF01),11 which is based on the fundamental biophysi

cal interactions that govern the folding process. We could that

near native conformations of several proteins correspond to the

global optimum of this forcefield. We have also developed, or

specifically adapted, efficient stochastic optimization meth

ods12,18,21 (stochastic tunneling, basin hopping, parallel temper

ing, evolutionary algorithms) to simulate the protein folding pro

cess. Forcefield and simulation methods are implemented in the

POEM (Protein Optimization with free Energy Methods) pro

gram package.

With this approach we were able to predictively and reprodu

cibly fold more than a dozen proteins, among them the trp cage

protein (23 amino acids),32 the villin headpiece (36 amino

acids),33 the HIV accessory protein (40 amino acids),15 protein

A (40 amino acids) as well as several toxic peptides and � hair

pin proteins (14 20 amino acids)13 in simulations starting from

random initial conformations. With 60 amino acids the four

helix bacterial ribosomal protein L2030 is the largest protein

folded de novo to date. We could demonstrate that the free

energy approach is several orders of magnitude faster than the

direct simulation of the folding pathway, but nevertheless

permits the full characterization of the free energy surface that

characterizes the folding process according to the prevailing

funnel paradigm for protein folding.15,33

Forcefield

The all atom (with the exception of apolar CHn groups)

free energy forcefield PFF0111 parameterizes the internal free

energy of a protein macrostate in a minimal thermodynamic

approach.11,15,34 The forcefield parameterizes the internal free

energy of the protein (excluding backbone entropy) and contains

the following nonbonded interactions:
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Here rij denotes the distance between atoms i and j and g(i) the
type of the amino acid i.

The Lennard Jones parameters (Vij, Rij for potential depths

and equilibrium distance) depend on the type of the atom pair

and were adjusted to satisfy constraints derived from a set of

138 proteins of the PDB database.34 36 The nontrivial electro

static interactions in proteins are represented via group specific

dielectric constants (eg(i)g(j) depending on the amino acids to

which the atoms i and j belong). The partial charges qi and the

dielectric constants were derived in a potential of mean force

approach.37 Interactions with the solvent were first fit in a mini

mal solvent accessible surface model38 parameterized by free

energies per unit area �i to reproduce the enthalpies of solvation

of the Gly X Gly family of peptides.39 Ai corresponds to the

area of atom i that is in contact with a fictitious solvent. Hydro

gen bonds are described via dipole dipole interactions included

in the electrostatic terms and an additional short range term for

backbone backbone hydrogen bonding (CO to NH) which



depends on the OH distance, the angle between N, H, and O

along the bond and the angle between the CO and NH axis.11

In the folding process under physiological conditions, the

degrees of freedom of a peptide are confined to rotations about

single bonds. In our simulation we therefore consider only

moves around the sidechain and backbone dihedral angles,

which are attempted with thirty and seventy percent probability

respectively. The moves for the sidechain angles are drawn from

an equidistributed interval with a maximal change of 58. Half of
the backbone moves are generated in the same fashion, and the

remainder is generated from a move library that was designed to

reflect the natural amino acid dependent bias towards the forma

tion of � helices or � sheets. The probability distribution of the

move library was fitted to experimental probabilities observed in

the PDB database.40 While driving the simulation towards the

formation of secondary structure, the move library introduces no

bias towards helical or sheet structures beyond that encountered

in nature.

Optimization Strategy

Protein simulations that do not conserve the overall energy of

the system at least on average are complicated by the compara

tively close packing of the atoms in the collapsed ensemble,

which the protein encounters en route from the unfolded to the

folded ensemble. The high density of the collapsed conforma

tions means that many proposed moves of the dynamical scheme

of the simulation have very high potential energy. Suitable opti

mization methods must therefore be able speed the simulation

by avoiding high energy transition states, adapt large scale

moves or accept unphysical intermediates. The basin hopping

technique has proved to be a reliable workhorse for many

complex optimization problems,13,26,29 including protein fold

ing,15,23,27,28,41 but employs only one dynamical process.

This method42 employs a relatively straightforward approach

to eliminate high energy transition states of the PES (Fig. 1).

The original potential energy surface is simplified by replacing

the energy of each conformation with the energy of a nearby

local minimum. This replacement eliminates high energy bar

riers in the stochastic search that are responsible for the freezing

problem in SA. In many applications the additional effort for the

minimization step is more than compensated by the improved ef

ficiency of the stochastic search. The basin hopping technique

and derivatives35 has been used previously to study the potential

energy surface of model proteins29 and polyalanines using all

atom models.27,28 We have used a SA process for the minimiza

tion step,13 because analytical gradients for the SASA implicit

solvent model of our forcefield are computationally very difficult

to obtain. Within each SA20 simulation, new configurations are

accepted according to the Metropolis criterion, while the temper

ature is decreased geometrically from its starting to the final

value. The starting temperature and cycle length determine how

far the annealing step can deviate from its starting conformation.

The final temperature must be small compared with typical

energy differences between competing metastable conformations,

to ensure convergence to a local minimum.

We have generalize this method to a population of size N,
which is iteratively improved by P concurrent dynamical proc

esses.30,31 The whole population is guided towards the optimum

of the free energy surface with a simple evolutionary strategy in

which members of the population are drawn and then subjected

to a basin hopping cycle. At the end of each cycle, the resulting

conformation either replaces a member of the active population

or is discarded. Similar strategies, employing a conformation

Figure 1. (a) Schematic illustration of the bain hopping technique: each point of the original potential

energy surface (PES) is mapped to its nearest local minimum. The stochastic search of the effective

PES is much faster than on the original one, because intervening transition states are reduced or elimi

nated. (b) Histogram of the distribution of client execution time (blue) and client idle time (red) in sec

onds for 20 iterations of the EA on 2048 processors. Inset: Wall clock time per iteration for the evolu

tionary algorithm as a function of the number of processors; a constant time dependence indicates per

fect scaling. The red line indicates the average of all iterations for N 2048 processors as a guide to

the eye. (c) Time series of the best energy (black), the average energy (blue) and the instantaneous

energy (red) as a function of iterations for N 2048. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]



stack, have previously been explored in simulations of the 23

amino acid BBA5 protein.13,35

This algorithm was implemented on a distributed master

client model in which idle clients request a task from the master.

The master maintains a list of open tasks comprising the active

conformations of the population. The client then performs a SA

simulation of specified length (N ¼ 40,000 steps) on the confor

mation. The SA runs used a geometric cooling schedule reduc

ing the temperature from 1200 to 2 K.

Conformations are drawn randomly according to some proba

bility distribution from the active population. The acceptance

criterion for newly generated conformations must balance the di

versity of the population against the enrichment low energy

decoys. Since one can in principle account for the number of

times a given conformation was found (not employed here),

there is no need to store duplicates. We therefore accept only

new conformations which are different by at least 4 Å RMSB

(root mean square backbone deviation) from all members of the

active population. If we find one or more members of the popu

lation within this distance, the new conformation replaces the all

existing conformations if its energy is lower than the best, other

wise it is discarded. If the new conformation differs by at least

the threshold from all other conformation it replaces the worst

conformation of the population if it is better in total (free)

energy. If a merge operation has reduced the size of the popula

tion, the energy criterion for acceptance is waived until the orig

inal number of conformations is restored.

Results

Scalability

For timing purposes we have performed simulations using 64,

128, 256, 512, 1024, 2048, and 4096 processors on an IBM

BlueGene in virtual processor mode. Here we report data for a

population size P ¼ 64 for simulations of the 40 amino acid

HIV accessory protein (sequence: QEKEAIERLK ALG

FEESLVI QAYFACEKNE NLAANFLLSQ, pdb id: 1F4I).43 As

demonstrated in Figure 1(a) the algorithm scales well up to

4096 processors.

The control loop is implemented employing a synchronous

simulation protocol, where tasks are distributed to all processors

of the machine, each drawing a member of the presently active

conformation with equal probability. Each processor then per

forms a basin hopping simulation in which the present confor

mation is optimized independently of all others. For each step of

the process the energy evaluation is optimized to compute only

those energy terms in the model that have changed from the pre

vious conformation, clashing conformations are rejected outright.

For this reason the simulation time varies slightly from basin

hopping simulation to basin hopping simulation even though the

number of simulation steps is identical for each processor (N ¼
40,000). As the simulations finish, their conformations are trans

ferred to the master, which decides whether to accept (average

probability: 57%) the conformation into the active population or

disregard the conformation. Then a new conformation is imme

diately given to the idle processor. Because the processors are

processed sequentially some processors wait for the master

before they get a new conformation. Fluctuations in the client

execution times (Fig. 1b) induce a waiting time before the next

iteration can start. This waiting time is largest in the first few

iterations, because a processor in subsequent iterations have

slight starting offsets along the time axis, which increase the

likelihood that the results are returned in the same sequence of

processors that they were issued. In this scenario there would be

no waiting time even in a synchronous processing mode.

For the realistic simulation times chosen in these runs, the

average waiting time is less than 10% of the execution time and

nearly independent of the number of processors used. An asyn

chronous implementation of the master loop would probably

reduce these fluctuations further. We have also performed simu

lations on the smaller trp cage protein (20 amino acids) and the

56 amino acid protein G with qualitatively similar results (data

not shown).

Folding Simulation

For the folding simulation the population was initially seeded

with a single completely stretched ‘‘stick’’ conformation. The

seed conformation had an average RMSB deviation of 21.5 Å to

the experimental conformation. We then performed 20 cycles of

the evolutionary algorithm described above.

Figure 1(c) shows the convergence of the energy as a func

tion of the total number of basin hopping cycles. We find that

the best energy converges quickly to a near optimal value with

the total number of basin hopping cycles. The average energy

trails the best energy with a finite energy difference. This differ

ence will remain indefinitely by construction, because the algo

rithm is designed to balance diversity and energy convergence.

The acceptance threshold of 4 Å RMS for the new population

enforces that only one near native conformation is accepted in

the population, the average energy will therefore always be

higher than the best energy. The red line shows the instantane

ous energy of the conformations that are returned from the client

to the master after one BHT cycle. As expected they continue to

fluctuate around the average energy of the population. Figures

2b and 2c shows the overlay of the folded and the experimental

conformation. The starting conformation (Fig. 2a) has no sec

ondary structure and no resemblance of the native conformation.

In the final conformation, the secondary structure elements agree

and align well with the experimental conformation. Aside from

the native ensemble, only one different cluster of conformations

with low energy occurs frequently in the simulations. One repre

sentative conformation for this family is shown in Figure 2(c),

which has nearly the same secondary structure content, but the

first helix is not aligned properly with the helix 2(ESLVIQAYF)

and helix 3(NLAANFLLS). Helix 2 and helix 3 agree to 2.8 Å

with the native conformation in this structure.

The success of the algorithm to fold the protein can be

rationalized by analyzing the flow of information through the de

cision tree (See Chart 1). We have annotated the arrows of the

tree to show the fraction of total new conformations flowing

through the various branches. About 30% of the returning con

formations are similar to at least one of the active conformations



and all of these are accepted into the active population (refine

ment). This implies that the SA step is highly successful to

improve existing conformations. We find that 10% of the simu

lations lead to the replacement of more than one conformation

(merge operation) in the decision tree, which indicates a narrow

ing of the folding funnel as the simulation proceeds. The protein

is not just folded one, but many simulations converge to the

same intermediate structure. The merge operation is therefore

useful to avoid replication of the information.

From the remaining 72% conformations, 10% conformations

(the same as the fraction of merge operations) are added to the

population because it has shrunk. The algorithm thus succeeds

to continuously reseed itself; this generates a high likelihood

that the simulation does not get stuck in an uninteresting meta

stable area of the folding landscape. Nineteen percent of the

new conformations are dissimilar to all other conformations of

the population, but nevertheless better than the worst conforma

tions. These new structural templates are then the candidates for

further local refinement in the steps discussed above. About

43% of the basin hopping cycles go astray, which is commensu

rate with earlier basin hopping investigations. We note that

the balance of refinement and new structural templates generate

Figure 2. (a) Starting conformation for the evolutionary algorithm, (b) and (c) overlay of the experi

mental (red) and the folded structure (blue) for the N 2048 run. Both conformations agree in their

secondary structure content, the backbone RMS deviation is 3.43 Å, originating from a misalignment

of the first helix (shown in front), (d) Schematic illustration of the different routes of the evolutionary

algorithm on a two dimensional model protein folding funnel. Most simulations explore the vicinity of

the starting conformation, but with increasing dimension of the search space, many go astray (red),

only a few find new conformations (green), that are refined in later iterations. This inherent limitation

of the local search process, here the simulated annealing run, makes it possible to employ algorithms

that start many simulations from the same conformation without wasting computational resources. The

funnel landscape was taken from K. Dill’s homepage (www.dillgroup.ucsf.edu).



a dynamic population that slides as whole towards the global

optimum of the free energy funnel.

Discussion

Using a scalable evolutionary algorithm we have demonstrated

the all atom folding of the 40 amino acid HIV accessory protein

from a completely extended conformation to within 4 Å of the

native conformation in about 24 h turnaround time using 2048

processors of an IBM BlueGene. The evolutionary algorithm

evolves not one, but an active population containing many con

formations concurrently. Considering the limiting cases, it is a

priori unclear, how such a strategy can succeed to efficiently

fold the protein. For small population size (P) many processors

(N) construct short trajectories emanating from the same confor

mation (P << N). If the energy gain for each such step is small

compared with the total folding energy, many cycles will be

required to complete the simulation even if many processors are

available. A large fraction of the computational resources would

be wasted in such a scenario. In the opposite limit (N << P)
most conformations sample high energy regions of the free

energy surface that are unrelated to the native conformation.

Improvement of such conformations is irrelevant to the folding

process. The latter limit is therefore unattractive for large scale

distributed computational architectures, where N is large.

The key to convergence lies therefore in the exploitation of

the specific characteristics of the protein free energy landscape

of naturally occurring proteins. Following the current funnel

paradigm44,45 the protein explores an overall downhill process

on the energy landscape, where the conformational entropy of

the unfolded ensemble is traded for enthalpic gain of the protein

and free energy gain of the solvent.7,46 Using one or low

dimensional indicators the complex folding process appears for

many small proteins as a two state transition between the

unfolded and the folded ensemble with no apparent intermedi

ates. This transition has been rationalized in terms of the funnel

paradigm, where the protein averages over average frictional

forces47 49 on its downhill path on the free energy landscape.

In this context on cycle of the evolutionary algorithm in the

P << N limit attempts to improve many times each of the con

formations of the active population.

Because of the effective friction and local frustration on the

free energy landscape most of these simulations explore the

vicinity of their respective starting points. Because of the actual

high dimensionality (D) of the search space (D ¼ 160 free dihe

dral angles for 1F4I) most of them terminate higher in free

energy than their starting conformation. For a two dimensional

free energy surface this is illustrated schematically in Figure 1(d).

These conformations are rejected by the energy criterion. Most

of the remaining simulations that improve upon the starting con

formation stay within the distance acceptance threshold of the

evolutionary algorithm and replace their starting conformation in

the active population. The distance acceptance threshold thus

ensures that the population is not overpopulated by nearly identi

cal conformations of the same region in conformational space.

In the rare event, that the simulation improves the energy and

generates a genuinely new conformation, the energetically worst

conformation of the active population is replaced. This con

formation is the starting point for further local refinement in

subsequent iterations.

This analysis reveals the mechanism for the effectiveness of

the evolutionary algorithm. The move generator, in this case the

SA run in the individual step, generates an ‘‘acceptable’’ new

conformation with a probability p(D) that falls rapidly with the

dimension of the search space and the quality of the present

population. As long as p(D) < P/N each cycle of the evolution

ary algorithm will improve each member of the active popula

tion at most once on average. As long as no genuinely better

move generator exists (higher p(D)), all computation effort is,

on average, efficiently directed towards folding the protein. Only

when N becomes so large that the above relation no longer

holds, several attempts per cycle will improve the same member

of the active conformation, even though only one of these

improvements can be kept according to the acceptance rules,

leading to duplication and hence waste of computational resour

ces. This is good news for the scalability of the evolutionary

algorithm for larger proteins: Because p(D) drops rapidly with

the size of the protein, the number of processors that can be

effectively employed for folding can be further increased using

thousands, possibly hundreds of thousands of processors concur

rently.

Chart 1. Schematic illustration of the decision tree for the evolu

tionary algorithm employed in this investigation: new conformations

enter the decision tree with energy ENew, the number of conforma

tions in the population with an RMSD < CutOff RMSD is desig

nated as Nsame. Nmax/Ncur are the maximal/current number of

conformations in the population. The highest energy of all confor

mations in the population is designated by EWorst. The arrows in

the tree are annotated by the total probabilities of the conformation

flow in the folding simulation described in the text.



Summary

The search for methods and models for de novo folding of small

and medium size proteins from the completely extended confor

mation at atomic resolution has been a ‘‘holy grail’’ and grand

computational challenge for decades.50 The development of

multi teraflop architectures, such as the IBM BlueGene used in

this study, has been motivated in part by the large computational

requirements of such studies. The demonstration of predictive

folding of a 40 amino acid protein with <24 h turnaround time

is thus an important step towards the long time goal to elucidate

protein structure formation and function with atomistic resolu

tion. The free energy approach employed here, which presently

lacks a detailed elucidation of the folding kinetics, can comple

ment Hamiltonian based simulation methods, such as molecular

dynamics or replica exchange methods, to understand how pro

teins fold and interact. The mapping of the ‘‘folding problem’’

onto an optimization problem permits the use of methods that

speed the exploration of the free energy surface. The present

study demonstrates, equally importantly, it is possible to paral

lelize the search process by splitting the simulation into a large

number of independent conformations, rather than by paralleliz

ing the energy evaluation. This more coarse grained paralleliza

tion permits the use of a much larger number of weakly linked

processors. The present study thus demonstrates a computing

paradigm for protein folding that may be able to exploit the

petaflop computational architectures that are presently being

developed. The availability of such computational resources in

combination with free energy folding methods can make it pos

sible to investigate and understand a wide range of biological

problems related to protein folding, misfolding and protein pro

tein interactions.
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