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Evanescent Wave Transport and Shot Noise
in Graphene: Ballistic Regime and Effect of Disorder
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Abstract We have investigated electrical transport and shot noise in graphene field 
effect devices. In large width over length ratio W/L  graphene strips, we have mea-
sured shot noise at low frequency (f = 600–850 MHz) in the temperature range of

4.2–30 K. We observe a minimum conductivity of 4e2 
and a finite and gate depen-

dent Fano factor reaching the universal value of 1
3 at the Dirac point, i.e. where the

density of states vanishes. These findings are in good agreement with the theory de-
scribing that transport at the Dirac point should occur via evanescent waves in perfect
graphene samples with large W/L. Moreover, we show and discuss how disorder and
non-parallel leads affect both conductivity and shot noise.
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1 Introduction

Graphene is a unique two-dimensional material. Its recent discovery has spawned
great interest in the scientific community [1]. Graphene is a gapless semiconductor:
the conduction and valence bands touch in two inequivalent points (K and K′, usually
called Dirac points) where the density of states vanishes. However, the conductivity
at the Dirac point remains finite. Indeed, at the Dirac point, it has been theoretically
shown that in perfect graphene, the conduction occurs only via evanescent waves, i.e.
via tunneling between the leads [2, 3]. We present measurements of conductivity and
noise in graphene strips that support this theory.

Effect of disorder, interactions or carrier statistics can be assessed accurately by
probing shot noise in mesoscopic devices [4]. These out of equilibrium current fluctu-
ations arise from the granular nature of electron charges. Indeed, shot noise provides
a powerful tool to reveal information on fundamental conduction properties of low-
dimensional systems which are not accessible via conventional dc transport measure-
ments. For example, such current fluctuations have been used to show that fractional
charges can carry current [5, 6], to demonstrate the fermionic nature of electrons [7,
8], and to study many-body phenomena in mesoscopic physics [9–11].

In this article, we address a study of the noise in short and wide graphene strips.
Using a home-made low-noise amplification set-up, we measure shot noise as a func-
tion of gate voltage in two-terminal field-effect graphene devices. We show that the
transport via evanescent wave theory is in good agreement with our results on large
width over length ratio W/L samples when the distance between the leads is 200 nm.
We show how the disorder affects the conductivity and the shot noise. Additionally,
we have measured shot noise in the case of non-rectangular systems, i.e. when the
leads are not parallel.

2 Transport via Evanescent Waves at the Dirac Point

Using the scattering matrix formalism (see [12]), one can express the carrier trans-
port of a mesoscopic system. The conductance of each quantum channel carrying

current can be written as G = g e2

h
T , where g is the degeneracy (spin and valley)

of the system and T the electron transmission probability. When the system is bi-
ased, current fluctuations appear and for a single channel they can be described by
〈(δI )2〉 = 2e〈I 〉(1−T ). Shot noise is due to the discreteness of charge [4]. It can only
be detected when the electron–phonon inelastic scattering length Le–ph and electron–
electron inelastic scattering length Le–e are much larger than any sample dimension
[13–16]. Then, one can write the noise power spectrum which is proportional to the
product of the transmission T and the reflection R = 1 − T , summed over the N

channels:

SI = 2e3|V |
h

N−1∑

n=0

Tn(1 − Tn). (1)



In the limit of low transparency Tn � 1,

SI = SP = 2e3|V |
h

N−1∑

n=0

Tn = 2e〈I 〉, (2)

defining a Poissonian noise induced by independent and random electrons like in
tunnel junctions [4]. The common way to quantify shot noise is to use the Fano factor
F which is the ratio between the measured shot noise and the Poissonian noise:

F = SI

SP

= SI

2e〈I 〉 =
∑N−1

n=0 Tn(1 − Tn)
∑N−1

n=0 Tn

. (3)

Then, for a Poissonian process F = 1 (at small transparency Tn → 0, i.e. when trans-
port occurs via electron tunneling) while F = 0 in the ballistic regime (i.e. in the
perfect transmission case Tn → 1) and F = 1/3 in the case of a diffusive system.

In graphene, it has been demonstrated that transport at the Dirac point may occur
via electronic evanescent waves [2, 3] (illustration in Fig. 1). Tworzydło et al. used
heavily-doped graphene leads and the wave function matching method to directly
solve the Dirac equation in perfect graphene with length L and width W [3]. They
found that for armchair edges, the quantization condition of the transverse wave vec-
tor is defined by ky,n = (n+α)

W
π where α = 0 or 1

3 for metallic or semiconducting
armchair edges. At the Dirac point, the transmission coefficient reads:

T Dirac
n = 1

cosh2(π(n + α) L
W

)
. (4)

As we can see, at the Dirac point, graphene has a similar bimodal distribution of
transmission eigenvalues as in diffusive systems [4]. Finally, in the case of large
W/L → ∞, the mode spacing becoming small, one can replace the sum over the
N channels by an integral over the transverse wave vector component ky to obtain
the conductivity and the Fano factor for metallic armchair edges systems:

σDirac = GDirac
L

W
= 4e2

h

L

W

∫ ∞

0

dky

cosh2(kyL)
= 4e2

πh
, (5)

Fig. 1 (Color online). Schematics representing transport via evanescent waves in perfect graphene with
large aspect ratio W/L. Evanescent state transport occurs when the Fermi energy is set at the Dirac point.
Away from the Dirac point, transport occurs via propagating plane waves



FDirac =
∑N−1

n=0 T Dirac
n (1 − T Dirac

n )
∑N−1

n=0 T Dirac
n

≡
∫ ∞

0
dky

cosh2(kyL)
(1 − 1

cosh2(kyL)
)

∫ ∞
0

dky

cosh2(kyL)

= 1

3
. (6)

At the Dirac point, in the case of coherent carrier transport, the conductivity is mini-

mum (σDirac = 4e2

πh
) and the Fano factor is maximum (FDirac = 1

3 ) [3]. It is important
to note that metallic leads [17] do not affect the evanescent wave theory. However,
both conductivity and Fano factor are no longer respectively minimum and maxi-
mum when the transport is incoherent [18]. Moreover, in large samples the mini-

mum conductivity has been measured around σDirac = 4e2

h
[1, 19, 20], which could

be explained by the presence of disorder [21]. Transition from ballistic to diffusive
regime in the presence of disorder has been studied very recently [22]. By tuning
the carrier density, the Fermi level is moved away from the Dirac point where the
density of states is no longer zero. At large density the number of conducting chan-
nels increases, the evanescent states are then accompanied by propagating states, and
the conductivity rises while the Fano factor decreases [3]. Note that the duality be-
tween evanescent and propagating waves could be studied using multi-probes and
cross-correlation measurements [23]. The Fano factor for a bilayer system has been
predicted to be 1

3 as well [24] or 1 − 2
π

[25], i.e. very close to 1
3 . We note that in

graphene pn-junctions the Fano factor is also very close to 1
3 [26] and takes values

depending on the Landau level filling factors under magnetic field [27]. Additionally,
shot noise could be used to detect specular Andreev reflections [28], in ferromagnet-
graphene-superconductor junctions [29]. Finally, transport at the Dirac point remains
not fully understood. The fact that the distribution function of the transmission prob-
ability of the evanescent states is exactly the same as for the propagating states in
diffusive systems is still unexplained. This resulting exotic shot noise for a ballistic
system might be related to relativistic quantum dynamics of confined Dirac fermions
which are known to exhibit a jittering motion called zitterbewegung [2, 3].

Fig. 2 (Color online). (a) Minimum conductivity and (b) Fano factor at the Dirac point versus the width
over length ratio W/L calculated using the evanescent wave theory [3], for three different boundary con-
ditions: for metallic armchair edges in blue solid line (α = 0), for semiconducting armchair edges in green
dashed line (α = 1

3 ) and smooth edges in red dotted line (α = 1
2 ). The black thin dotted line marks the

universal values for the minimum conductivity and the Fano factor



Finally, Tworzydło et al. show how conductivity and Fano factor evolve as a func-
tion of the width over length ratio using different boundary conditions [3]. In Fig. 2 is
reproduced the behavior of both conductivity and Fano factor as a function of W/L

for three different boundary conditions. At small W/L, both minimum conductiv-
ity and Fano factor take non-universal values. Note that calculations for zigzag edges
have been done for the conductivity using tight binding theory [30]. The zigzag edges
mix different values of ky,n which strongly complicates the analytical solution.

3 Experimental Set-up, Samples and Shot Noise Measurement Technique

Measuring shot noise requires carefully dedicated electronics. There are several ways
to detect it such as cross correlation [5–8, 10, 11] or SQUID-based resistance bridge
[31] techniques. Depending on the nature of the studied system, one must avoid any
low frequency noise known as 1/f noise (also called Flicker noise). By measuring

the noise spectrum density at low frequency (10 Hz) SI = A
〈I 2〉
f β where A is the noise

amplitude coefficient and β ∼ 1, we have extracted A ∼ 10−8 and checked that our
set-up is well above the crossover frequency between 1/f and shot noise. In this
work, we used a sensitive lock-in detection technique (see also [32–34]), to improve
the measurement sensitivity. The current is modulated using a sine-wave modulation,
I = IDC + δI sin(ωt) where IDC 
 δI , for the lock-in detection of noise. Alterna-
tively, shot noise can also be detected using a dc set-up. In order to avoid external spu-
rious signals, the set-up is placed in a Faraday cage. We use the shot noise generated
by a tunnel junction, which is Poissonian (F = 1) to calibrate the graphene sample
noise. The tunnel junctions are fabricated of Al/AlOx /Al using standard two-angle
shadow evaporation in an ultra-high vacuum system. A microwave switch is used to
alternatively measure the noise from the graphene sample or the tunnel junction. We
use bias-tees to split dc bias and the bias-dependent high-frequency noise signal. The
noise signal is first amplified by a low-noise amplifier (LNA) with a noise temperature
of Tnoise = 3.5 K in matching conditions, thermalized at the same temperature as the
sample. The noise detection scheme ends with a series of room-temperature ampli-
fiers, and the signal is finally collected by a zero-bias Schottky diode with band-pass
filtering of f = 600–850 MHz to cut off EMI from mobile phone frequencies (see
Fig. 3(a)). All the data was measured in a helium dewar, in which samples were in
a He-gas atmosphere of 1 bar. The resistance of the samples was measured using
standard low-frequency ac lock-in technique with an excitation amplitude of 0.3 mV
(∼3 K) at ω

2π
= 63.5 Hz, in the temperature range of 4.2–30 K.

Graphene sheets are mechanically exfoliated using the Scotch tape technique and
transferred from the graphite crystals (the graphite used here is a natural graphite
powder) to the surface of a SiO2/Si substrate (300 nm thick thermally grown SiO2
layer). The silicon substrate is heavily doped and it is used as a back-gate (see
Fig. 3(c)). The single graphene layers are located using a three-CCD camera in an
optical microscope on the base of the RGB green component shift [35]. After stan-
dard e-beam lithography, a bilayer Ti (10 nm)/Au (40 nm) is evaporated followed by
lift-off with acetone. Chips are mounted in a homemade sample holder and micro-
bonded with Al wire. We report measurements on six samples which are listed in
Table 1.



Fig. 3 (Color online). (a) Experimental set-up for detecting shot noise at T = 4.2–30 K. See the text for
details. (b) Schematic of the principle of our measurements in terms of the noise power reflection |�|2.
(c) Illustration of a typical graphene sample fabricated for our noise study

Table 1 Sample characteristics of the six samples measured in our experiments. W/L is the width over
length ratio. θ corresponds to the angle between the leads. VD defines the position of the Dirac point in

gate voltage. These points were extrapolated from the minimum conductivity at 4e2

πh
for samples B and C.

See text for more details

Sample A Sample B Sample C Sample D Sample E Sample F

W
L

= 24 W
L

= 10 W
L

= 3 W
L

= 2 W
L

= 4.2 W
L

= 1.8

L = 200 nm L = 200 nm L = 300 nm L = 500 nm L = 950 nm L = 500 nm

θ = 0◦ θ = 0◦ θ = 0◦ θ = 0◦ θ = 0◦ θ = 8◦
VD = 19.5 V VD = 145 V VD = 100 V VD = 78 V VD = 28 V VD = 22 V

The noise power measured from the LNA is a mixture of thermal noise and the
shot noise of the sample. It can be defined as a function of the reflected signal |�|.
Here |�| = |R−Z0||R+Z0| is the noise signal reflection coefficient when the noise source
(the measured sample with a resistance R) does not match the circuit (here our cold
amplifier is matched to a transmission line having an impedance of Z0 = 50 
).
Then, the measured noise power can be expressed:

P(I) = Pnoise(1 − |�|2) = F × 2eV
RZ0

(R + Z0)2

= F × 2eI × Z0

(
R

R + Z0

)2

, (7)



Fig. 4 Schematic of the equivalent circuit of our measurement: Rd and Z0 represent the resistance of the
sample and the cold preamplier respectively, i2

n represents the full noise generated by the circuit

where Pnoise = F 2eIR is the shot noise generated by the sample at T = 0 (see
Fig. 3(b)).

In our experiments, we used a similar technique as in [32–34] to measure the shot
noise and extract the Fano factor. During the noise measurement the sample (with
the differential resistance Rd = dV

dI
) is coupled to the LNA with an impedance Z0 =

50 
, where i2
n marks the full noise at the operating point, including the preamplifier

noise and shot noise from the sample.
We have used the electrical equivalent model shown in Fig. 4 to calculate the

coupling of the current fluctuations. Then, the noise power transferred to the cold
amplifier can be written as:

PZ0 =
(

Rd

Rd + Z0

)2

Z0i
2
n (8)

and the measured noise signal is:

P = gain × BW × g × PZ0 = G × PZ0, (9)

where gain refers to the total gain of the amplifier chain, BW is the measurement
bandwidth, g denotes the sensitivity of the Schottky diode noise detector, and G is
the calibration factor. In linear systems such as tunnel junctions or graphene, Rd is
constant. Using our aforementioned set-up, we can write:

1

G
1

Z0

�P

�I
=

(
Rd

Rd + Z0

)2
�i2

n

�I
. (10)

As the change of the noise generator i2
n is due to the shot noise part:

�i2
n = �SI = 2eFd�I, (11)

where Fd is the differential Fano factor: then (9) reads:

1

G
1

Z0

�P

�I
=

(
Rd

Rd + Z0

)2

2eFd. (12)

Since usually Rd 
 Z0, the coupling term Rd

Rd+Z0
can be taken as 1. From the tunnel

junction measurement where F = Fd = 1 when eV 
 kBT , one can derive the cal-
ibration factor G . After using it upon the graphene noise measurement, one gets the



differential Fano factor Fd as a function of the biasing current, and we then define
the average Fano factor by integrating Fd over the current bias:

F = 1

I

∫ I

0
FddI, (13)

which is the common Fano factor when eV 
 kBT , and tends to zero around zero
bias (due to thermal noise averaging). In terms of current noise, our average Fano
factor corresponds to:

F = SI (I ) − SI (0)

2eI
. (14)

For nonlinear system such as carbon nanotubes [33], noise measurements are sen-
sitive to changes in the sample resistance. We then have to take it into account and
calculate corrections by deriving the differential resistance. If we now consider our
sample with a differential resistance Rd not constant, we must differentiate (9):

1

G
1

Z0
�P = �

[(
Rd

Rd + Z0

)2

i2
n

]

=
(

Rd

Rd + Z0

)2

�i2
n + i2

n × 2

(
Rd

Rd + Z0

)
�

(
Rd

Rd + Z0

)
, (15)

and if we calculate:

�

(
Rd

Rd + Z0

)
= (Rd + Z0)�Rd − Rd�Rd

(Rd + Z0)2
= Z0

(Rd + Z0)2
�Rd. (16)

Then we can write (15) as:

1

G
1

Z0

�P

�I
=

(
Rd

Rd + Z0

)2
�(i2

n)

�I
+ 2i2

n

(
Rd

Rd + Z0

)(
Z0

(Rd + Z0)2

)
�Rd

�I
. (17)

Since

�Rd

�I
= ∂R

∂V
Rd = ∂( ∂V

∂I
)

∂V
Rd =

(
−R2

d

∂2I

∂V 2

)
Rd, (18)

we finally obtain a new expression for (15):

1

G
1

Z0

�P

�I
= 2eFd −

Rd variation︷ ︸︸ ︷
2eFd

2Z0

Rd

−

total system noise︷ ︸︸ ︷

2i2
nZ0Rd

∂2I

∂V 2
. (19)

The first order correction comes from the measured shot noise due to Rd variations
and the second order corrections is caused by the total system noise due to the non-
linearity, i2

n corresponding to the full noise at the operating point including the noise
due to the LNA. Note that in our shot noise measurements in graphene, the correction
is taken into account in the extraction of F even though it is very small.



Fig. 5 (Color online). (a) Schematic of a typical noise curve showing the transition from thermal to pure
shot noise. The noise given by the LNA shifts the curve to a higher noise level. (b) Typical tunnel junction
noise measurement used for the Fano factor extraction of our graphene samples. The curve is fitted using
the Khlus formula at T = 4.5 K

Figure 5(a) shows a schematic of a typical noise curve that can be measured using
our experimental set-up. As we mentioned in the previous parts of this article, shot
noise gives information that cannot be extracted from classical dc transport measure-
ments. However, it can be only detected if the frequency is high enough to overcome
the 1/f noise. Shot noise occurs when the sample is biased; this is an out of equi-
librium noise (also called excess noise). At low bias, thermal noise, originating from
the random thermally excited vibration of the charge carriers, is predominant. The
noise power can be define as P = kBT �f , where �f is the bandwidth of the LNA.
Thermal noise extends over all frequencies up to the quantum limit when �ω > kBT

[36]. When the bias is large enough (eV > kBT ), the noise versus bias curve becomes
linear and the detected noise is purely due to the shot noise. The slope of the linear
part corresponds to the Fano factor. The minimum noise at zero bias is a mixture of
the thermal noise of both the LNA and the sample.

Figure 5(b) illustrates the very high resolution of our experimental set-up on a
typical tunnel junction sample of resistance RT = 8 k
. The data are fitted using a
formula similar to the one originally introduced by Khlus [37] which describes the
cross-over from thermal to shot noise when eV ∼ kBT :

SI =
(

R

R + Z0

)2{4kBTnoise

Z0
+ 4kBT

R

[
F 2e|V |

4kBT
coth

(
2e|V |
4kBT

)
+ (1 − F )

]}
, (20)

where Tnoise is the thermal noise of the LNA.

4 Shot Noise in Graphene

Now we focus our work on shot noise. We used the experimental set-up and the
technique to extract the Fano factor presented in Sect. 3. We have divided this section
in three parts. In the first part, we will show that our measurements are well described
by the evanescent wave theory and demonstrate that transport in graphene can be
ballistic. In the second part, we will see how disorder affects the Fano factor and we



will compare our findings with the existing theories modeling disordered graphene.
Finally, we will show how non-parallel leads affect shot noise.

4.1 Ballistic Regime

We first present measurements on samples A, B, C, and D. Sample A has a very large
aspect ratio. In Fig. 6(a), we can see the resistance and conductivity of sample A as a
function of the gate voltage (i.e. charge carrier density). All of our graphene samples
show a maximum resistance in positive gate voltage Vgate values. This means that at
zero gate voltage, the Fermi level lies in the valence band because our samples are
non-intentionally p-doped, probably due to oxygen gas adsorption [38]. We observe

a maximum resistance and a minimum conductivity of around 4e2

πh
at the Dirac point,

Fig. 6 (Color online). DC transport and shot noise measurements on sample A. (a) Resistance R (left
axis) and conductivity σ (right axis) as a function of Vgate. (b) Differential resistance dV/dI versus bias
voltage Vbias at the Dirac point (red curve) and at high density (blue curve). (c) Current noise per unit
bandwidth SI as a function of bias at the Dirac point, at T = 8.5 K, fitted (red curve) using Khlus formula
(F = 0.318). Note that the low-bias data are perfectly fitted as well as the high-bias. (d) Mapping of the
average Fano factor F as a function of gate voltage Vgate and bias voltage Vbias at T = 8.5 K



despite the chemical doping. From our measured conductivity values, it seems that
adsorbed gas on a graphene sheet does not create strong scattering centers and thus
does not affect dramatically the transport properties of our samples. For sample A,
we obtain a minimum conductivity which is the one expected for large aspect ratio
graphene strips [3] and observed experimentally in recent experiments [39]. It is im-
portant to note that the resistance of our graphene samples is nearly independent of
the bias voltage Vbias, regardless of whether the measurement is taken at or far from
the Dirac point (see Fig. 6(b), as well as Fig. 8(b), Fig. 9(b) and Fig. 10(b)). A non-
linear behavior of the resistance, like in carbon nanotubes [33], should be taken into
account since noise measurements are sensitive to the sample resistance.

In Fig. 6(c), we can see the current noise per unit bandwidth as a function of
the Vbias measured at the Dirac point at T = 8.5 K in sample A. Using the Khlus
formula (20) which describes the cross-over from thermal to shot noise when eV ∼
kBT , we have fitted and extracted the Fano factor F [37].

Since the resistance of our graphene samples is bias-independent, we may fit Khlus
formula (20) to our data using only F as a fitting parameter at fixed temperature T .
Note that when dealing with the integrated differential Fano factor, the excess noise
4kBTn

Z0
can be neglected. Using (20), we have fitted and extracted the Fano factor

F = 0.318 at T = 9 K . We have also used our tunnel junction calibration technique to
extract the average Fano factor F [32–34] to check the accuracy of our measurements.
We found F = 0.338 at the Dirac point (at Vbias = 40 mV).

Our measurements seem to confirm that transport at the Dirac point occurs via
evanescent waves [2, 3]. The two extracted Fano factors F and F as well as the
minimum conductivity are very close to the expected theoretical values of 1

3 and 4e2

πh
respectively at the Dirac point for a perfect graphene strip with large W/L [3]. Note
that the Fano factor in this case is also the one expected for a diffusive mesoscopic
system at the Dirac point. In Ref. [3], the authors demonstrate that the Fano factor
should decrease as the charge carrier density increases which should not happen for
a diffusive system (see the next subsection for a detailed review of the influence of
disorder on the shot noise in graphene). In Fig. 6(d), we can see a mapping of the
average Fano factor F , calculated by integrating the differential Fano factor Fd as
described in Sect. 3, as a function of the bias voltage Vbias and the gate voltage Vgate.
A clear dependence of F on gate voltage (i.e. the charge carrier density) is observed,
with a clear drop (about a factor of 2) of the Fano factor at large carrier density. This

gate dependence, in addition to the observation of the minimum conductivity at 4e2

πh

and a maximum Fano factor of 1
3 at the Dirac point, confirm in turn, that our results

are in good agreement with the evanescent state theory [3], and that charge carriers
in our sample do not undergo any inelastic scattering. Note that we cannot obtain a
quantitative agreement with the evanescent mode theory, because doping by the leads
may cause variation of the gate coupling capacitance and because the presence of
non-uniform doping, that does not strongly scatter the charge carriers, also affects the
electronic density of states. Nevertheless, the gate voltage scale is found to be larger
than the one found in [3]. Comparing our data with a square lattice contact model in
perfect graphene strips with large W/L [40], we observe that the capacitance Cgate

in our sample is smaller by a factor of ∼ 9 compared to the one that gives a simple
two infinite plane capacitor model (i.e. Cgate ∼12 aF μm−2 instead of 115 aF μm−2).



Fig. 7 (Color online). Average Fano factor F extracted at Vbias = 40 mV for samples A, B and C, all
having W/L ≥ 3, as a function of δV = Vgate −VDirac, where VDirac is the gate voltage value to reach the
Dirac point. For the two unintentionally highly p-doped samples (orange and green dots), the Dirac point

was estimated via extrapolation of the minimum conductivity at 4e2

πh
. At large δV , F tends to 0, value

expected for a ballistic mesoscopic system

We notice that the Fano factor is barely affected by temperature (up to T = 30 K).
This indicates that both the length L and the width W are smaller than the electron–
phonon inelastic scattering length Le–ph. If this condition was not fulfilled, the Fano

factor would decrease, approximatively as inversely proportional to N = Le–ph

max(W,L)

(note that the actual form of Le–ph would be model dependent [4]). Since our shot
noise measurements do not depend on temperature (between 4 and 30 K) and with
our contacts being highly transparent, the presence of inelastic scattering mechanism
in the graphene sample and at its interfaces with the leads can be ruled out. It is
important to note that bad contacts can only increase the Fano factor toward the limit
of two symmetrical tunneling barriers in series (i.e. RT 1 = RT 2):

F = R2
T 1 + R2

T 2

(RT 1 + RT 2)2
→ 1

2
. (21)

This is not the case of our samples in which the Fano factor has never been measured
higher than 1

3 .
In addition to sample A, we measured two other samples with large width over

length ratios, samples B and C (all having W/L ≥ 3). The average Fano factor F

as a function of δV = Vgate − VDirac is plotted in Fig. 7 for samples A, B and C.
All samples were p-doped, the Dirac points being at positive gate voltages, but only
for one of these three samples we could reach the Dirac point (sample A). The gate
voltages corresponding to the Dirac point for the two other samples were estimated
from their conductivity curves. Despite the high doping level of the samples, the
Fano factor seems to behave universally and tends to zero at very high density. This,
indeed, demonstrates that graphene can behave as a ballistic conductor, contradicting
some of the recent arguments [41]. Despite the probable presence of some disorder
in our system, the transport regime can be considered to be ballistic on our sample
length scale.

We also measured sample D which has a much smaller aspect ratio (W/L = 2). In
Fig. 8(a), we can see that the minimum conductivity reaches a much larger value than

the sample with large W/L (∼6 e2

h

 4e2

πh
). We also verify that the resistance R of

the sample can be considered to be constant as a function of the bias (see Fig. 8(b)).



Fig. 8 (Color online). DC transport and shot noise measurements on sample D. (a) Resistance R (left
axis) and conductivity σ (right axis) as a function of gate voltage Vgate. (b) Differential resistance dV/dI

versus bias voltage Vbias at the Dirac point (red curve) and at high density (blue curve). (c) Current noise
per unit bandwidth SI as a function of the bias voltage Vbias at the Dirac point, at T = 5 K, fitted (red
curve) using Khlus formula (F = 0.196). (d) Mapping of the average Fano factor F as a function of the
gate voltage Vgate and the bias voltage Vbias at T = 5 K

The spectral density of current noise as a function of Vbias is shown in Fig. 8(c). We
observe that the data are well fitted at low bias using the Khlus formula. However,
we can see a deviation at large bias which indicates a reduction of the Fano factor,
presumably due to electron–phonon coupling [4]. The Fano factor reaches F = 0.196
at the Dirac point and eventually decreases substantially at large charge carrier den-
sity. A mapping of the average Fano factor F as a function of bias Vbias and gate
voltage Vgate is displayed in Fig. 8(d). We observe that the determination of F in
Fig. 8(c) yields almost the same result: F = F = 0.19 at the Dirac point. Our mea-
surements are in agreement with the results of [3] calculated for the case of metallic
armchair edge for small W/L for the Fano factor. Note that there is a discrepancy for

the minimum conductivity which should be ∼1.1 4e2

πh
.



4.2 Effect of Disorder

Disorder can dramatically influence electronic transport in mesoscopic conductors.
Fano factor of 1

3 has been predicted [4] and measured in the case of diffusive systems
[42]. Multi-walled carbon nanotubes have shown some more exotic values, maybe
due to electron–electron interactions in this one-dimensional system [43]. Recent
measurements in disordered graphene [44] have shown a gate-independent Fano fac-
tor and a value higher than 1

3 but smaller than 1
2 (which is the maximum obtainable

value for two symmetrical tunnel junctions), which could be due to bad graphene-
contact interfaces (see previous section) or strong potential disorder [45].

In the previous sections, we have seen that given the zero density of states at the
Dirac point in graphene, transport occurs via evanescent modes instead of propa-
gating modes [3]. Nevertheless, defects like vacancies [46] or dislocations [47] can
enhance locally the density of states at the Dirac point, which becomes finite, or cre-
ate localized states which could create magnetic moments hampering charge carrier
transport [48]. As a consequence, in graphene with disorder, transport at the Dirac
point might occur via a combination of evanescent and propagating modes due to
presence of scattering. Indeed, perfect infinite two-dimensional graphene must be to-
tally flat. Defects should curve such ideal plane and create roughness as in suspended
membranes [49]. Such ripples have been observed in suspended graphene [50] and
are believed to be intrinsic [51]. However, the origin of these corrugations on exfoli-
ated graphene deposited on SiO2/Si substrate [52, 53] is still debated. Ripples have
been clearly observed in graphene grown epitaxially on SiC [54]. In fact, it is believed
that ripples could be the origin of the charge impurity formations at the Dirac peak
[55, 56]. However, there is not yet a consensus as to the origin of these charge impu-
rities [55–59]. Such charge puddles [60] creating potential scattering centers should
influence conduction in graphene [57]. Another limiting factor in the carrier mobility
is the interaction with the substrate [61]. It was shown that intrinsic carrier mobility
could be as high as 200 000 cm2 V−1 s−1 [59]. This was achieved using suspended
structure [62] after current annealing [63]. However, mobility achievable in graphene
on SiO2/Si substrate is on the order of μ = 20 000 cm2 V−1 s−1 so far, corresponding
to elastic mean free path le ∼ 500 nm at a carrier density n = 5 × 1012 cm−2 [20].

Recent theories showed that disorder should enhance conductivity in graphene via
impurity resonant tunneling [64]. Such counterintuitive behavior can be understood
as a consequence of the absence of intervalley scattering [65] and the chirality con-
servation [66]. It was also shown that weak disorder may induce anomalously large
conductance fluctuations at high charge carrier density [67]. By modeling smooth
potential disorder, San Jose et al. have shown that near the Dirac point at length
scales � L,W , disorder increases the minimum conductivity and lowers the Fano
factor at the Dirac point, down to 0.243 for one-dimensional disorder and to 0.295
for the two-dimensional case [68]. A diffusive system should not display any gate
dependence. Absence of gate dependence was demonstrated for long-range disorder
in [45]. A gate-dependent Fano factor appears once the disorder strength is reduced.

We have measured shot noise in sample E which has a large W/L and large dis-
tance between the leads, approaching 1 μm. In Fig. 9(a), the resistance R and the
conductivity σ are plotted versus gate voltage Vgate. The resistance curve is not as



Fig. 9 (Color online). DC transport and shot noise measurements on sample E. (a) Resistance R (left
axis) and conductivity σ (right axis) as a function of gate voltage Vgate. (b) Differential resistance dV/dI

versus bias voltage Vbias at the Dirac point (red curve) and at high density (blue curve). (c) Noise spectral
density SI as a function of bias voltage Vbias at the Dirac point, at T = 12 K, fitted (red curve) using Khlus
formula (F = 0.256). (d) Mapping of the average Fano factor F as a function of gate voltage Vgate and
bias voltage Vbias at T = 12 K

peaked as it should be in the clean case, and in fact, the Dirac point seems to be trun-
cated probably due to the presence of disorder. Note that the graphene sheet is, again,

p-doped. We also see that the minimum conductivity is no longer 4e2

πh
but much larger,

which is also in agreement with the fact that disorder should increase the conductivity
in graphene [64]. In Fig. 9(b), we see that the resistance remains constant when the
bias is tuned.

From our noise measurements, we observe a strong decrease of the Fano factor at
the Dirac point compared to 1

3 expected by the evanescent wave theory. Figure 9(c)
shows the noise spectral density measured on sample E at T = 12 K. Using Khlus
formula, we extract a Fano factor at the Dirac point F = 0.256. The fit is not perfect
at high bias probably due to electron–phonon coupling. We also note that the curve
is slightly asymmetrical. The average Fano factor gives a smaller value of about 0.23
(see Fig. 9(d)). These values are in good agreement with the model which takes into



account one dimensional smooth potential disorder [68]. In Fig. 9(d), we observe that
the Fano factor is reduced by tuning the gate voltage Vgate, proving that the disorder
present in our sample in smoother than in [44].

4.3 Non-Parallel Leads

In this last part, we present measurements on conductivity and shot noise in sam-
ple F which has non-parallel leads. In the frame of the evanescent wave theory for
metallic armchair edges and rectangular samples, one would expect to measure a sub-
Poissonian shot noise smaller than 1

3 (around F ∼ 0.17 for W/L = 1.8). Figure 10(a)
displays the resistance R and the conductivity σ as a function of gate voltage Vgate,
showing a maximum resistance at a positive gate voltage, sample F being p-doped.
We note that the minimum conductivity is much higher than the value predicted by
the evanescent wave theory. Figure 10(b) confirms that the graphene strip behaves as
an ohmic system. In Fig. 10(c), we can see current noise per unit bandwidth SI as a

Fig. 10 (Color online). DC transport and shot noise measurements on sample F. (a) Resistance R (left
axis) and conductivity σ (right axis) as a function of gate voltage Vgate. (b) Differential resistance dV/dI

versus bias voltage Vbias at the Dirac point (red curve) and at high density (blue curve). (c) Noise spectral
density SI as a function of bias voltage Vbias at the Dirac point, at T = 12 K, fitted (red curve) using Khlus
formula (F = 0.087). (d) Mapping of the average Fano factor F as a function of gate voltage Vgate and
bias voltage Vbias at T = 12 K



function of bias voltage Vbias at the Dirac point. We note that the noise seems to be a
bit unstable. Using Khlus formula, we have fitted the data and extracted a Fano factor
at the Dirac point F = 0.087. This value has been confirmed by extracting the aver-
age Fano factor F . Surprisingly, by tuning the gate voltage Vgate we do not observe
that the Fano factor is maximum at the Dirac point and varies when the charge carrier
density is tuned. As shown in Fig. 10(d), the Fano factor is barely affected by the gate
voltage which is similar to what has been as seen by DiCarlo et al. [44], but with a
much larger Fano factor value >0.35. We note that in our non-parallel lead sample,
away from the Dirac point, the Fano factor reach a value close to the one found in
sample D (similar W/L) and E (disorder case) at large density.

In the model describing transport occurring via evanescent waves at the Dirac
point [2, 3], the condition for quantization of the transverse wave vector is essential
to finally obtain the transmission eigenvalue distribution. If the leads are non-parallel
or not rectangular, one can expect that the condition for quantization of the trans-
verse and longitudinal modes are no longer fulfilled. The mixing of the transverse
and the longitudinal modes may change the distribution function of the transmission
probabilities of the evanescent states, acting similarly as the effect of disorder [30].
Consequently, both conductivity and Fano factor should be modified by non-parallel
leads. However, to our knowledge, there is no model available considering the effect
of sample geometry on conductivity and Fano factor.

5 Conclusions

We have studied transport and noise in graphene strips. We have seen a gate-
dependent shot noise in short graphene strips with large and small W/L. At the Dirac
point, we observed that for large W/L both minimum conductivity and Fano factor

reach universal values of 4e2

πh
and 1

3 respectively. At very large carrier density, the
Fano factor tends to zero which is the value expected for a ballistic system. For W/L

smaller than 3, the Fano factor is lowered and the minimum conductivity increases.
These findings are in accordance with the evanescent wave theory describing trans-
port at the Dirac point in perfect graphene. When L is large enough, we see a signif-
icant reduction of the Fano factor at the Dirac point, reaching a value of 0.23, which
is in good agreement with recent models taking into account smooth potential disor-
der like charge puddles [68]. Finally, in the case of non-parallel contacts, quantized
transverse modes being mixed up, the measured Fano factor is no longer maximum at
the Dirac point and almost gate-voltage independent, even though a clear maximum
resistance is observed.
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