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Abstract. In the 2002 Antarctic polar vortex enhanced HOCl
mixing ratios were detected by the Michelson Interferom-
eter for Passive Atmospheric Sounding both at altitudes of
around 35 km (1000 K potential temperature), where HOCl
abundances are ruled by gas phase chemistry and at around
18–24 km (475–625 K), which belongs to the altitude domain
where heterogeneous chlorine chemistry is relevant. At alti-
tudes of 33 to 40 km polar vortex HOCl mixing ratios were
found to be around 0.14 ppbv as long as the polar vortex was
intact, centered at the pole, and thus received relatively lit-
tle sunlight. This is the altitude region where in midlatitudi-
nal and tropic atmospheres peak HOCl mixing ratios signifi-
cantly above 0.2 ppbv (in terms of daily mean values) are ob-
served. After deformation and displacement of the polar vor-
tex in the course of a major warming, ClO-rich vortex air was
more exposed to sunlight, where enhanced HOx abundances
led to largely increased HOCl mixing ratios (up to 0.3 ppbv),
exceeding typical midlatitudinal and tropical amounts signif-
icantly. The HOCl increase was preceded by an increase of
ClO. Model runs could reproduce these measurements only
when the Stimpfle et al. (1979) rate constant for the reac-
tion ClO+HO2→HOCl+O2 was used but not with the cur-
rent JPL recommendation. At an altitude of 24 km, HOCl
mixing ratios of up to 0.15 ppbv were detected. This HOCl
enhancement, which is already visible in 18 September data,
is attributed to heterogeneous chemistry, which is in agree-
ment with observations of polar stratospheric clouds. The
measurements were compared to a model run where no polar
stratospheric clouds appeared during the observation period.
The fact that HOCl still was produced in the model run sug-
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gests that a significant part of HOCl was generated from ClO
rather than directly via heterogeneous reaction. Excess ClO,
lower ClONO2 and earlier loss of HOCl in the measurements
are attributed to ongoing heterogeneous chemistry which is
not reproduced by the model. On 11 October, polar vortex
mean daytime mixing ratios were only 0.03 ppbv.

1 Introduction

The HOCl catalytic cycle (Solomon et al., 1986) is an im-
portant mechanism for mid-latitude stratospheric ozone loss
(Lary, 1997):

ClO + HO2 → HOCl + O2 (R1)

HOCl + hν → OH + Cl (R2)

Cl + O3 → ClO + O2 (R3)

OH + O3 → HO2 + O2 (R4)

Net: 2O3 → 3O2 (R5)

Other HOCl removal reactions are

HOCl + OH → H2O + ClO (R6)

and

HOCl + O → ClO + OH, (R7)

which is more efficient at higher altitudes if enough atomic
oxygen is available. Further, in winter polar stratospheric
vortices HOCl is generated by heterogeneous chemistry:

ClONO2(g) + H2O(l, s) → HOCl(g) + HNO3(l, s) (R8)
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and further converted to Cl2, a precursor of ozone depleting
ClOx radicals, via the heterogeneous reaction

HOCl(g) + HCl(l, s) → Cl2(g) + H2O(l, s) (R9)

(Hanson and Ravishankara, 1992; Abbatt and Molina, 1992;
Crutzen et al., 1992; Prather, 1992), where (g), (l), and (s) in-
dicate gaseous, liquid or solid phase, respectively, for typical
polar stratospheric conditions.

However, there do not exist many experimental data which
can be used to study polar stratospheric HOCl chemistry
quantitatively. Midlatitudinal HOCl measurements are avail-
able from balloon- and airborne infrared solar absorption
measurements (Larsen et al., 1985; Toon et al., 1992), space-
borne infrared solar occultation measurements (Raper et al.,
1987), and balloon-borne far infrared limb emission mea-
surements (Chance et al., 1989; Traub et al., 1990; John-
son et al., 1995). Arctic stratospheric balloon-borne infrared
limb emission measurements were analyzed for HOCl by
von Clarmann et al.(1997). Kovalenko et al.(2007) have
found that the rate constant for Reaction (R1) as suggested
by Stimpfle et al.(1979) is more consistent with both infrared
solar occultation and far infrared emission measurements of
HOCl than the current JPL recommendation (Sander et al.,
2006). The first global HOCl distribution was measured
with the Michelson Interferometer for Passive Atmospheric
Sounding (MIPAS) (von Clarmann et al., 2006). These data
give evidence of enhanced abundances in the Antarctic po-
lar vortex at an altitude of approximately 18–24 km (475–
625 K). This enhancement was attributed to heterogeneous
chemistry, since polar stratospheric clouds had been ob-
served in advance of these measurements (Höpfner et al.,
2004) (see also Fig.1). In this paper, the temporal devel-
opment of Antarctic stratospheric HOCl abundances is ana-
lyzed in more detail and put into the context of MIPAS ClO
(Glatthor et al., 2004) and ClONO2 (Höpfner et al., 2004)
measurements. In order to better understand the temporal de-
velopment of the measured abundances of chlorine species,
these are compared to those calculated with the Karlsruhe
Simulation Model of the Middle Atmosphere (KASIMA;
Kouker et al.1999; Ruhnke et al.1999a; Reddmann et al.
2001).

2 The Antarctic winter 2002

While some indication of perturbed dynamics had been ob-
served already in the early phase of the Antarctic strato-
spheric vortex in Austral winter 2002, the vortex behaved
more or less as usual from mid-winter up to around 20
September (Figs.2 and 3). Enhanced ClO in the altitude
region between 16 and 23 km gave evidence of chlorine ac-
tivation (Glatthor et al., 2004). PSCs were observed until 22
September (Höpfner et al.2004; see Fig.1), making hetero-
geneous chemistry possible. In the course of a major warm-
ing around 20 September (Allen et al., 2003; Krüger et al.,
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Fig. 1. Time series of relative PSC coverage (ratio of the number of
MIPAS measurements containing a PSC signal and the entire num-
ber of measurements) poleward of 55◦S at altitudes from 14 to 26
km in September 2002. Since the vertical extent of the instanta-
neous field of view of MIPAS is about 3 km at the tangent point,
the highest altitudes where PSCs occurred can be determinedat an
uncertainty of 1.5 km. A measurement is considered PSC measure-
ment where the ratio of mean spectral radiances in the interval from
788.2 to 796.25 cm−1 and from 832.3 to 834.4 cm−1 is lower than
the threshold value of 4.0 (Spang et al., 2004). Open triangles indi-
cate availability of MIPAS data.
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2005; Charlton et al., 2005), planetary waves of wavenum-
ber 1 to 3 (Wang et al., 2005) caused a displacement, de-
formation, and, at above the 650 K potential temperature
level (above approximately 25 km), even a split of the po-
lar vortex. The time of the major warming event coincides
with the time of chlorine deactivation via ClONO2 formation
(Höpfner et al., 2004; Richter et al., 2005). During the ma-
jor warming the vortex was severely weakened above 900 K,
leading to excessive mixing of midlatitudinal air into the vor-
tex (Konopka et al., 2005).
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Fig. 2. The development of the Southern polar vortex in September 2002 at 1000 K potential temperature based on potential vorticity (PV)
data provided by ECMWF. The red belt represents the vortex boundary, defined as -1282.6 Km2kg−1s−1

< PV <855.1 Km2kg−1s−1. Open
boxes represent the geolocations of the MIPAS daytime measurements, while x symbols represent MIPAS nighttime measurements.
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Fig. 2. The development of the Southern polar vortex in September 2002 at 1000 K potential temperature based on potential vorticity (PV)
data provided by ECMWF. The red belt represents the vortex boundary, defined as−1282.6 km2 kg−1 s−1<PV<855.1 km2 kg−1 s−1. Open
boxes represent the geolocations of the MIPAS daytime measurements, while x symbols represent MIPAS nighttime measurements.

3 MIPAS measurements

The data set discussed in this paper was measured with the
Michelson Interferometer for Passive Atmospheric Sound-
ing (MIPAS), which is a limb emission spectrometer de-
signed for measurement of trace species from space (Fischer
et al., 2008). It is part of the instrumentation of the Environ-
mental Satellite (Envisat), which was launched into its sun-
synchronous polar orbit on 1 March 2002. Data presented
here were recorded from 18 September to 27 September 2002

and 11 October to 13 October 2002. The data version used
is V2 HOCl 2, as described invon Clarmann et al.(2006),
where the HOCl data analysis is reported in detail. The pre-
cision and total error of a single HOCl profile are estimated
at 0.05–0.08 ppbv and 0.05–0.09 ppbv, respectively, at an al-
titude resolution of about 9 km.

ClONO2 measurements have been provided byHöpfner
et al. (2004). The single profile precision (total error) is es-
timated at 4–10% (6–11%) at an altitude resolution of 3.3–
3.8 km. ClO has been analyzed byGlatthor et al.(2004).
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1820 T. von Clarmann et al.: HOCl in the Antarctic Stratosphere

T. von Clarmann et al.: HOCl in the Antarctic Stratosphere 11

18-09-2002,  475 K

-35-25

19-09-2002,  475 K

-35
-25

20-09-2002,  475 K

-3
5

-2
5

-25

21-09-2002,  475 K

-3
5

-25

22-09-2002,  475 K

-35
-25

23-09-2002,  475 K

-3
5

-2
5

24-09-2002,  475 K

-3
5

-2
5

25-09-2002,  475 K

-35

-2
5

26-09-2002,  475 K

-3
5

-2
5

27-09-2002,  475 K

-35-25

11-10-2002,  475 K

-3
5

-25

-2
5

12-10-2002,  475 K

-3
5

-25

-25

 3224

Fig. 3. Same as Fig. 2 but for 475 K potential temperature. The vortexboundary region is defined as -45.0 Km2kg−1s−1
< PV < -30.0

Km2kg−1s−1

.

www.atmos-chem-phys.org/acp/0000/0001/ Atmos. Chem. Phys., 0000, 0001–15, 2009

Fig. 3. Same as Fig.2 but for 475 K potential temperature. The vortex boundary region is defined as
−45.0 km2 kg−1 s−1<PV<−30.0 km2 kg−1 s−1

.

The single profile precision (total error) in the lower strato-
sphere is estimated at 19–31% (29–36%) at an altitude res-
olution of 4 km. ClO mixing ratios measured by MIPAS
before 20 September and from 25 September onwards are
in agreement with measurements by the Submillimeter Ra-
diometer (SMR) on the Odin satellite (Ricaud et al., 2005).
Unfortunately, no SMR measurements have been published
for the 22–24 September period.

This study is entirely based on polar vortex averages and
their temporal development (Fig.4). For definition of the
vortex edge, a procedure similar to that described byNash
et al. (1996) but with slightly modified parameter settings
(Glatthor et al., 2005) was used. This resulted in a threshold
of −45×10−6 km2 kg−1 s−1 at 475-K potential temperature
level for vortex air, which is conservative in a sense that the
risk that vortex edge air is considered as vortex air is small.

Atmos. Chem. Phys., 9, 1817–1829, 2009 www.atmos-chem-phys.net/9/1817/2009/
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Fig. 4. Means of measured Antarctic vortex daytime mixing ratio profiles of HOCl, ClO, and ClONO2, (left panels, top to bottom), as
well as HOCl+ClO+ClONO2, HNO4 and temperature (right panels, top to bottom) for the periods 18-21 September, 22-24 September,
25-27 September, and 11-13 October. Error bars represent the uncertainties of the meanvalues in terms of standard deviation divided by
the square root of the number of averaged profiles. They include both measurement error and natural variability within the sample. For
the HOCl+ClO+ClONO2 profiles, the ClO and ClONO2 profiles first were degraded to the HOCl altitude resolution to allow meaningful
summation.
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Above 700 K, the extrapolation scheme as suggested byLait
(1994) was applied. This resulted in a vortex air threshold of
−1282.6×10−6 km2 kg−1 s−1 at the 1000-K potential tem-
perature level. Potential vorticity data were taken from the
T106 (1.25◦

×1.25◦ grid) ECMWF analyses.

In order to avoid diurnal sampling artifacts, only day-
time measurements (about 10:00 a.m. local time, solar zenith
angles smaller than 94.5◦ to 95.9◦, depending on altitude)
are considered. In particular, trapping of ClO in the dimer
ClOOCl, which is not measured by MIPAS, is negligible
then at least for altitudes above about 30 km (Ruhnke et al.,
1999b). Error bars of daily or episode mean values are the

statistical uncertainties of the mean values, i.e. the standard
errors of the mean. Due to irregular non-random sampling
along the Envisat orbits, the actual variability of the atmo-
spheric state within the polar vortex is assumed to be un-
derestimated, because the true standard error of the mean,
σstd.err, depends not only on the standard deviationσ and the
sample sizen but also on the average inter-location correla-
tion coefficientr̄:

σstd.err =

√
σ 2(1 + (n − 1)r̄)

n
(1)

Since there is no obvious robust way to estimater̄, we ignore

www.atmos-chem-phys.net/9/1817/2009/ Atmos. Chem. Phys., 9, 1817–1829, 2009
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it and obtain the usual formulation of the standard error,

σstd.err =
σ

√
n

(2)

and thus underestimate the standard errors of the mean for
positive average correlation coefficients, which might be
introduced by sampling along Envisat orbits (c.f., e.g.Jones
et al.1997and references therein for discussion for a slightly
different but related problem). As a consequence, the mean
profiles do not necessarily represent the entire vortex but may
contain local phenomena, and the non-representativeness
might not be fully accounted by the standard errors. How-
ever, since HOCl, ClO, ClONO2 and HNO4 mean values
have been obtained from the same observations, direct com-
parison of these species without sampling artifacts between
species is possible.

4 Model calculations

The KASIMA model used in this study is a global circula-
tion model including stratospheric chemistry for the simula-
tion of the behaviour of physical and chemical processes in
the middle atmosphere (Kouker et al., 1999; Ruhnke et al.,
1999a; Reddmann et al., 2001). The meteorological compo-
nent is based on a spectral architecture with the pressure alti-
tudez=−H ln(p/p0) as vertical coordinate whereH=7 km
is a constant atmospheric scale height,p is the pressure, and
p0=1013.25 hPa is a constant reference pressure. A horizon-
tal resolution of T42 (2.84◦

×2.84◦) has been used. In the
vertical regime, 63 levels between 7 and 120 km pressure
altitude and a 0.75 km spacing from 7 up to 22 km with a
quadratic increase above were used. For the present studies,
the version as described inReddmann et al.(2001) is ap-
plied, but using ERA-40 analyses up to 18 km, the relaxation
term up to 1 hPa and the prognostic part of the model up to
120 km. This version yields realistic mean age of air values
(Stiller et al., 2008) as opposed to models using analyses di-
rectly (see for exampleMonge-Sanz et al.2007).

The chemical module consists of a stratospheric chemistry
scheme including all important species belonging to the oxy-
gen, nitrogen, hydrogen, chlorine and bromine families rep-
resented by 63 chemical species or families, which are in-
volved in 107 bi- and termolecular reactions, 45 photodisso-
ciation and 10 heterogeneous reactions taking place on sur-
faces of polar stratospheric clouds (PSC) and on liquid sul-
furic acid aerosols (Ruhnke et al., 1999a). The existence
of NAT and ice is calculated with a thermodynamical ap-
proach assuming no supercooling according to theHanson
and Mauersberger(1988) parameterisation for nitric acid tri-
hydrate (NAT) and theMarti and Mausersberger(1993) pa-
rameterisation for ice. The rate constants of the gas phase and
heterogeneous reactions are taken fromSander et al.(2003).
The photolysis rates are calculated online with the fast-j2
scheme ofBrian and Prather(2002). In order to allow reason-
ably large timesteps (6 min) for the integration of production

and loss rates the family concept is applied to [Ox] = [O3]
+ [O(3P)] + [O(1D)], [ClOx] = [Cl] + [ClO] + 2×[ClOOCl],
[HOx] = [H] + [OH] + [HO 2], [NOx] = [N] + [NO] + [NO 2]
+ [NO3] and [BrOx] = [Br] + [BrO].

The global model runs used in this paper were initialised
from a long-term KASIMA simulation on 16 Septem-
ber 2002, 00:00 UT. To simulate as realistic distributions of
chemical species inside the polar vortex as possible those
trace species which are measured by MIPAS (CH4 and N2O
(Glatthor et al., 2005), O3 (Glatthor et al., 2006), HNO3
(Mengistu Tsidu et al., 2005; Wang et al., 2007), HNO4
(Stiller et al., 2007), NO and NO2 (Funke et al., 2005), N2O5
(Mengistu Tsidu et al., 2004), ClO (Glatthor et al., 2004),
ClONO2 (Höpfner et al., 2004, 2007), HOCl (von Clarmann
et al., 2006)) are re-initialised on 17 and 18 September in-
side the daytime polar vortex with MIPAS daytime aver-
ages. As each air parcel is exposed to sunlit conditions dur-
ing these two days, this procedure leads to a complete re-
initialisation of the entire vortex with MIPAS/Envisat data.
Re-initialisation of [ClOx] is particularly difficult, since this
ClO is the only ClOx component measured by MIPAS. Re-
initialisation of [ClO] alone while keeping total [ClOx] con-
stant does not help because the analytical repartitioning of
[ClOx] which is implied by KASIMA’s family concept would
immediately restore the original KASIMA values except for
changes related to re-initialised non-ClOx species which af-
fect the partitioning. Instead, the total [ClOx] was scaled ac-
cording to MIPAS ClO volume mixing ration (VMR). The
goal of re-initialisation is to be able to attribute differences
between the measured and the modeled atmospheric state to
processes happening during the observed episode.

To ensure comparability and to reduce sampling artefacts,
KASIMA vortex averages are calculated for the MIPAS geo-
locations, after interpolating the model results to these lati-
tudes and longitudes. This approach of matched instead of
random sampling (i.e. the use of model output at longitudes
and latitudes of the MIPAS measurements) implies that dif-
ferences between measured and calculated means of mixing
ratios can be more significant than the combined standard er-
rors suggest, because the latter have a common correlated
sampling component. Since the position of the vortex in
KASIMA is not always identical with that of the ECMWF
analyses used as a selection criterion for MIPAS measure-
ments, geolocations outside of the KASIMA model vortex
have been disregarded.

In order to adjust the altitude resolution of the mod-
eled profiles to that of MIPAS, MIPAS averaging kernels
were applied to the model results. MIPAS data used for
re-initialisation, however, are by definition provided at the
MIPAS vertical resolution. In order to avoid inappropri-
ate double smoothing, the modeled profiles are decomposed
into an initial component (18 September data) and a time-
dependent component (difference between the actual mod-
eled profiles and the initialisation profiles from 18 Septem-
ber) and the MIPAS averaging kernels are only applied to
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the latter component. For some applications where gains and
losses of multiple chlorine species are compared, both the
measured and modeled data are further degraded to the MI-
PAS HOCl vertical resolution.

5 The temporal development of HOCl, ClO,
and ClONO2 VMR inside the polar vortex

The first available MIPAS data of this data set fall in the pe-
riod of 18-24 September 2002. MIPAS HOCl measurements
for this time are characterized by a pronounced double max-
imum structure (Fig.4, upper left panel). First, we discuss
the development of the upper maximum above 30 km, which
is ruled by gas phase chemistry (ReactionsR1–R7). Then,
there follows the discussion of the lower stratospheric HOCl
maximum which is associated with additional heterogeneous
chemistry (ReactionsR8–R9). Due to irregular spatial sam-
pling, the temporal development also includes a spatial com-
ponent and thus cannot be understood as a pure time series.

5.1 Gas phase chemistry regime

On 18–19 September the Antarctic vortex still was intact
and centered over the South pole. HOCl peak vortex day-
time daily mean mixing ratios were found at 33–40 km al-
titude, reaching approximately 0.13±0.03 ppbv (Fig.4, top
left panel, blue lines). These values are lower than those
measured in the midlatitudinal or tropic stratosphere, where
peak mixing ratios up to 0.23 ppbv were measured at these
altitudes (von Clarmann et al., 2006). This is explained by a
reduced availability of HOx at polar latitudes (about 40 pptv
compared to 150 or 200 pptv at daytime midlatitudes or trop-
ics, respectively, as calculated by KASIMA). Polar vortex
daytime mean mixing ratios of ClO were 0.35±0.1 ppbv at
33 km altitude between 18 and 21 September. In polar re-
gions with little sunlight during polar winter, ClO is partly
buffered in its reservoir ClONO2 (Fig.4, middle left and bot-
tom left panels, blue lines, and Fig.5, middle and lower pan-
els).

From 20–21 September, the vortex started to be distorted
and displaced. During 22–24 September, as the vortex distor-
tion continued during the major warming, ClO mixing ratios
increased to values of around 0.5±0.2 ppbv at 33 km (Fig.4,
middle left panel, black lines, and Fig.5). During these days,
a monotonic increase of ClO VMR is observed at all levels
above 27 km. This enhancement of ClO VMR was balanced
by a reduction of the photochemically unstable ClONO2 by
approximately 0.15 ppbv below∼35 km, while for higher al-
titudes the source of the excess ClO is not quite clear. During
this period, HOCl VMR started to increase. Increasing CH4
and decreasing CO mixing ratios (appr. 0.3 to 0.4 ppmv and
0.2 to 0.15 ppmv, respectively, at 1000 K) indicate, that the
vortex was severely destabilized during the major warming
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Fig. 5. Time series of HOCl (top panel), ClO (middle panel) and
ClONO2 (bottom panel) daily vortex daytime averages in the po-
lar vortex at 1000 K, corresponding to approximately 33 km al-
titude. Solid symbols are MIPAS measurements, open symbols
are KASIMA calculations. Open circles refer to model calcula-
tions with Reaction (R1) rate constants as measured byStimpfle
et al.(1979) (larger HOCl and lower ClO values), while small open
squares are model calculations based on the reaction rate as recom-
mended bySander et al.(2006).

above 900 K, and midlatitudinal air was mixed into the vor-
tex.

From 24 to 25 September, when the major warming moved
parts of the vortex to lower latitudes, measured HOCl vol-
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ume VMRs increased rapidly at 1000 K (Fig.4, top left
panel, green lines, Fig.5). The reason is, that the sounded
airmasses were more exposed to sunlight, which triggered
more efficient HOx chemistry. The displacement of the vor-
tex to lower latitudes and related exposure to sunlight are
even more pronounced in the following days: The excep-
tionally high HOCl mixing ratios from 25–27 September are
explained by midlatitudinal photochemistry, where in par-
ticular HOx chemistry is activated, in polar, thus ClO- and
ClONO2 rich, airmasses. MIPAS measurements of vortex
HNO4 (Stiller et al.2007, Fig. 4, middle right panel), which
also was observed to increase, support the explanation of ac-
celerated odd hydrogen chemistry.

HOCl mixing ratios outside the displaced and distorted
vortex were considerably lower (by approximately 20%).
This suggests that the highest atmospheric HOCl mixing ra-
tios are expected whenever polar air is moved towards lower
latitudes where enhanced exposure to sunlight increases the
efficiency of the HOCl cycle Reactions (R1)–(R4) by the in-
creasing availability of ClO and HO2. While certainly also
HOCl loss reactions are more efficient in the presence of sun-
light, availability of light causes a net increase of HOCl VMR
due to the large amounts of HOx in the sunlit stratosphere.

To analyze the development of the chlorine partitioning,
the sum of VMRs of ClONO2+ClO+HOCl was calculated
on the basis of MIPAS profiles degraded to the HOCl verti-
cal resolution in order to allow meaningful summation. Dur-
ing the entire period from 18 to 27 September, the VMR
of ClONO2+ClO+HOCl was observed to stay approximately
constant at about 30 km (Fig.4, top right panel and Fig.6),
which justifies confidence in the data set. ClO VMR ap-
peared to have increased during 22 and 24 September at
the cost of ClONO2, and shows some unexplained tempo-
rary high (24 September) and low (26 September) values
of which the significance is questionable. At the 1000 K
potential temperature level (appr. 33 km altitude) measured
VMR of ClONO2+ClO+HOCl seems to have increased on
24 September, due to enhanced ClO VMR. Large overlap-
ping error bars, however, indicate that this increase lacks sta-
tistical significance. The significance is even smaller than
the error bars suggest since the variability of vortex measure-
ments is underestimated due to non-random sampling given
by the Envisat round tracks. HOCl VMR increased contin-
uously from the beginning of the major warming to the end
of the measurement period on 27 September (Fig.5). Un-
fortunately, in the following phase of the split-vortex event,
due to instrument shut-down, no more MIPAS measurements
are available. From 11 October on, when MIPAS was oper-
ational again, the polar vortex had already dissolved above
approximately 28 km altitude, prohibiting further analysis of
the vortex airmasses there.

The measured and modeled temporal evolutions of the
vortex daytime mixing ratios of the three chlorine species
are in reasonable (ClO and ClONO2) to excellent (HOCl)
agreement, when the rate constants proposed byStimpfle
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Fig. 6. Measured (upper panel) and modeled (lower panel) tem-
poral development of chlorine partitioning in the polar vortex at
1000 K, corresponding to approximately 33 km altitude. Blue dots
indicate HOCl VMRs; red squares indicate the HOCl + ClO cumu-
lative VMR and green triangles indicate the HOCl+ClO+ClONO2
cumulative VMR. The lower panel also includes modeled HCl.
These model results are based on the Reaction (R1) rate constants
by Stimpfle et al.(1979). Error bars refer to the sums, not to the
components. All data have been degraded to the vertical resolution
of the HOCl retrieval in order to allow meaningful summation and
intercomparison.

et al.(1979) are used for Reaction (R1), as proposed byKo-
valenko et al.(2007). Using the rate constants of the cur-
rent JPL recommendation (Sander et al., 2003, 2006) leads
to significant underestimation of HOCl amounts. Despite
of re-initialisation some discrepancies are observed already
on 18 September, because different pressure and temperature
profiles in the model and MIPAS data sets cause some am-
biguities both in altitude assignment and conversion between
mixing ratios and concentrations. The original MIPAS data
and averaging kernels are provided as VMR on geometric
altitudes, the model is re-initialised on pressure levels and
chemistry is calculated on the basis of concentrations, and
the vortex mean values are represented as VMR in potential
temperature coordinates. Furthermore, there is one time-step
of six minutes between re-initialisation and model output.
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At isentropic surfaces higher than 1000 K only very few
MIPAS daytime vortex measurements were available be-
cause of the small extension of the vortex at these alti-
tudes then. Therefore, analysis of these data remains some-
what speculative. The destabilisation of the vortex and re-
lated mixing during the major warming were even more pro-
nounced at these high altitudes.

5.2 Heterogeneous chemistry regime

A lower stratospheric HOCl VMR maximum is visible at ap-
proximately 24 km in the 18–24 September data (Fig.4 upper
left panel, blue and black lines). This is an altitude domain,
where chlorine activation is driven by heterogeneous chem-
istry on PSC particles, which also affects HOCl chemistry,
either by Reaction (R8) or by Reaction (R1) after heteroge-
neous ClO formation. Last PSCs were observed by MIPAS
on 22 September (Fig.1). During 16 to 21 September MI-
PAS has detected some PSCs in the lowermost stratosphere
at and below 17–18 km. On 17–18 September a few PSCs
have been detected near the Peninsula region at altitudes up
to 20–21 km. Höpfner et al.(2006) have attributed occur-
rence of PSCs in this region to lee-waves triggered by the
Peninsulan topography. Until 15 September PSCs were de-
tected in MIPAS spectra even at tangent altitudes of about
23 km (Fig.1). On 13 September high-reaching PSCs cov-
ered the largest area.

The measured lower stratospheric HOCl maximum on
some days slightly exceeded even the upper maximum; day-
time daily mean values reached 0.15 ppbv. No substantial
variation between 10 a.m. and 10 p.m. measurements was
observed here. HOCl mixing ratios were observed to de-
crease by appr. 5 ppt per day until 24 September at 475 K
(Fig. 7, upper panel). From 25 September on, polar vortex
mean daytime HOCl mixing ratios were substantially lower
(20 pptv). HOCl follows the temporal development of ClO.
The rapid ClO decrease from 23 to 24 September goes along
with an increase of ClONO2. In the October measurements,
HOCl, ClO and ClONO2 VMRs are low due to the usual
chlorine deactivation into HCl.

Oscillations in the time series of measured ClO VMR, as
well as of HOCl+ClO+ClONO2, between 21 and 25 Septem-
ber and the discontinuity in the time series of HOCl between
24 and 25 September are partly attributed to irregular sam-
pling (Fig.8). This is particularly important since in this time
period the vortex was rather inhomogeneous, and varying
ozone concentrations led to different chlorine deactivations
paths in different parts of the vortex (Grooß et al., 2005).
Nevertheless, sampling artifacts would not obviously explain
the observed time lag between the strong ClO and HOCl de-
crease on 24 and 25 September, respectively. This time lag
suggests that HOCl was substantially destroyed within one
day and this loss could not be efficiently compensated by
production via Reaction (R1) in an atmosphere with low ClO
abundances.
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Fig. 7. Temporal development of HOCl (top panel), ClO (middle
panel) and ClONO2 (bottom panel) in the polar vortex at 475 K,
corresponding to approximately 18 km altitude. For detailed expla-
nation, see Fig.5.

.

The rapid HOCl loss mentioned above happened during
the vortex displacement, which had caused vortex air masses
to be more exposed to sunlight, thus accelerating all three
possible loss Reactions (R2), (R6) and (R7) which all de-
pend on sunlight, (R2) as photolysis reaction, (R6) by the
illumination-dependent [OH]/[HO2] ratio, and (R7) by UV-
illumination dependent availability of atomic oxygen. Due
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Fig. 8. Temporal development of chlorine partitioning in the polar
vortex at 475 K as measured by MIPAS (upper panel) and mod-
eled with KASIMA (lower panel), corresponding to approximately
18 km. For detailed explanation, see Fig.6.

to ongoing ClO-deactivation into ClONO2 (Fig. 4, mid-
dle and lower left panels, c.f.Höpfner et al.2004), suffi-
cient ClO abundances were no more available to compen-
sate the HOCl loss by any substantial HOCl build up via
Reaction (R1). HOx abundances as limiting reaction part-
ner of Reaction (R1) can be ruled out, since HNO4 still
was observed to increase (Fig.4, middle right panel). From
25 September on, HOCl was observed to further decrease in
this altitude range, and HOCl measurements on 11–13 Oc-
tober, which represent the Antarctic lower stratosphere after
the reformation of the polar vortex, are below 0.06 ppbv and
do not differ from the typical global values at these altitudes
(c.f. von Clarmann et al.2006). All this suggests that largest
HOCl abundances are to be expected during or immediately
after a PSC period in ClO-rich air.

Since PSCs appear in the model run only before
21 September (already reduced to one single occurrence at
50◦ S, 0◦ E by then) and not during the rest of the observa-
tion period, while still considerable HOCl levels are main-
tained, the part of HOCl also reproduced by the model must
have been generated from previously heterogeneously gener-

ated ClO via Reaction (R1) and not via direct heterogeneous
chemistry (ReactionR8). Similar as in the gas phase chem-
istry regime, rate constants byStimpfle et al.(1979) result
in significantly larger HOCl mixing ratios than those recom-
mended bySander et al.(2006), which agree better with the
18–21 September MIPAS measurements. Since the HOCl
abundance depends that strongly on the rate constants of gas
phase Reaction (R1), the assumption of indirect heteroge-
neous HOCl formation as described above rather than direct
heterogeneous HOCl formation via Reaction (R8) is further
supported.

During the observation period, the atmosphere was quite
warm (above 200 K at 23 km altitude in major parts of the
vortex with only a limited area over the Peninsula and Wed-
dell Sea with values of 190–200 K before 23 September),
which led to early evaporation of mountain-wave PSCs.
Thus, these PSCs were a localized phenomenon, and air was
processed only when passing the PSC area, without any pos-
sibility of further heterogeneous reaction along the trajectory.
The indirectly heterogeneously generated HOCl molecules,
i.e. those which are generated via Reaction (R1) from het-
erogeneously produced ClO, can even be produced when the
air parcels contain no more PSCs which could act as an im-
mediate HOCl sink via Reaction (R9).

From 22 September on, modeled HOCl mixing ratios are
larger than the MIPAS ones, and the onset of HOCl loss
seems to be delayed by about 2–3 days in the model cal-
culation. This is consistent with the earlier decline of PSC
occurrence in the model run. The heterogeneous HOCl loss
Reaction (R9) was still possible in the real atmosphere while
the PSC-free model atmosphere did not allow any hetero-
geneous reaction any longer. The average HOCl loss rates
of MIPAS and KASIMA from 23 to 27 September are quite
consistent (about−0.01 ppbv/day). A slight underestimation
of ClO mixing ratios along with overestimated ClONO2 in
KASIMA results can also be attributed to ongoing hetero-
geneous chemistry in the early observation period not repro-
duced by the model. Poor reproduction of measured ClO
values, however, also leaves room for speculation that the
quantitative understanding of ClO dimer chemistry is insuf-
ficient (von Hobe et al., 2007).

6 Conclusions

The temporal development of the HOCl enhancement at
1000 K potential temperature level during the vortex dis-
placement is understood as the triggering of midlatitudinal
chemistry through enhanced sunlight in ClO-rich originally
polar airmasses. Besides these illumination conditions, also
mixing of humid and methane-rich midlatitudinal air into
the vortex provided further HOx sources, making conditions
even more favorable for HOCl build-up. In agreement with
Kovalenko et al.(2007), we find that model calculations
based on Reaction (R1) reaction rate constants byStimpfle
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et al. (1979) reproduce the measurements better than those
based on the current JPL recommendation (Sander et al.,
2003, 2006). In the lower stratosphere, large HOCl abun-
dances are attributed to heterogeneous chemistry on PSCs
in the Peninsula region, a region where the stratosphere was
coldest during this episode, and where in addition lee-waves
may play a role. In the observation period, the HOCl abun-
dances were ClO, not HOx driven. Air transported through
local temperature minima with PSC occurrence, either due to
adiabatic lofting above tropospheric weather systems or due
to mountain waves, encounters favorable conditions for large
HOCl abundances, because after passing the PSC area the air
is PSC-free. Thus sink Reaction (R9) has not to be consid-
ered further. Moreover, these mountain wave PSCs do not
occur directly over the South pole but at latitudes of about
60◦ S to 70◦ S, where illuminational conditions are more fa-
vorable of subsequent homogeneous HOx chemistry, which
transfers a portion of the heterogeneously generated ClO into
HOCl.
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U., Höpfner, M., Kellmann, S., Kiefer, M., Linden, A., Milz, M.,
Steck, T., Stiller, G. P., Mengistu Tsidu, G., and Wang, D. Y.:
Mixing processes during the Antarctic vortex split in Septem-
ber/October 2002 as inferred from source gas and ozone distri-
butions from ENVISAT-MIPAS, J. Atmos. Sci., 62, 787–800,
2005.

Glatthor, N., von Clarmann, T., Fischer, H., Funke, B., Gil-López,
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Puertas, M., and Engel, A.: Global distribution of mean age of
stratospheric air from MIPAS SF6 measurements, Atmos. Chem.
Phys., 8, 677–695, 2008,
http://www.atmos-chem-phys.net/8/677/2008/.

Stimpfle, R. M., Perry, R. A., and Howard, C. J.: Temperature-
dependence of the reaction of ClO and HO2 radicals, J. Chem.
Phys., 71, 5183–5190, 1979.

Toon, G. C., Farmer, C. B., Schaper, P. W., Lowes, L. L., and Nor-
ton, R. H.: Composition measurements of the 1989 Arctic winter
stratosphere by airborne infrared solar absorption spectroscopy,
J. Geophys. Res., 97, 7939–7961, 1992.

Traub, W. A., Johnson, D. G., and Chance, K. V.: Stratospheric
Hydroperoxyl Measurements, Science, 247, 446–449, 1990.

von Clarmann, T., Wetzel, G., Oelhaf, H., Friedl-Vallon, F., Linden,
A., Maucher, G., Seefeldner, M., Trieschmann, O., and Lefèvre,
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