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The Lu(lll) binding mechanisms by trioctahedral smectite
hectorite in aqueous systems were investigated by extended
X-ray absorption fine structure (EXAFS) spectroscopy.
Coprecipitated hectorite (Lu755Hec), its precursor phase (Lu/
Brucite), and the surface sorbed hectorite (Lu/SHCa1)

were prepared as oriented samples to collect polarized
EXAFS (P-EXAFS) data. EXAFS analysis indicated that Lu(lll) is
6-fold coordinated by oxygen in Lu/Brucite and in Lu755Hec,
and surrounded by Mg/Si shells. The angular dependence of the
0 and Mg coordination numbers for Lu/Brucite hinted an
Lu(Il) incorporation in brucite layers. Mg and Si cationic shells
were detected at distances suggesting a clay-like octahedral
environment in Lu755Hec. EXAFS data for Lu/SHCa1 were
consistent with Lu(lll) forming inner-sphere surface complexes
at hectorite platelets edges, but slightly above/below the
octahedral plane. Finally, Lu(lll) polyhedra share edges(s) and
corner(s) with Si tetrahedra upon sorption to silica (Lu/

Silica). Lu(lll) binding to silicate oligomers or to silicate groups
of the clay basal planes and formation of Lu(lll) surface
complexes during the coprecipitation experiment are marginal.

Introduction

Clay minerals can be major sorbing solids in geological and
engineered barriers of high-level nuclear waste (HLW)
repositories, depending on the repository concept. They may
also form as secondary phases upon alteration of the HLW
matrix in the presence of groundwater (I). For example, the
magnesian smectite hectorite (Nag 33[Lio 33M g 6,514010(OH)2])
is frequently observed in HLW glass alteration experiments
(2). The precipitation of such clay phases can lead to a
significant retention of long-lived and radiotoxic radionu-
clides (RN), including actinides (An) (3), as clays are known
toretain cations in aqueous systems via a variety of molecular-
level binding mechanisms. Specifically, RN may be retained
by formation of surface complexes, but also by incorporation
into the bulk structure of clay minerals by coprecipitation,
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resulting in long-term immobilization, especially if a (meta)-
stable solid solution forms.

The retention of trace elements by clay minerals is
controlled by their formal valence and ionic charge, which
also depends on the physicochemical conditions in natural
systems. Under reducing conditions, Am, Cm, and some of
Pu may occur as trivalent cations. In 6-fold coordination by
oxygen, the ionic radii of these trivalent actinides (r'%)
@'(Am(II) = 0.98 A; r'(Cm(IID)) = 0.97 A, rV'(Pu(1ID)) = 1.00
A (4), and of their nonradioactive chemical surrogates (5)
the lanthanides (r¥'(Ln(II)) > 0.86 A), are somewhat larger
than that of major cations of clay octahedral sheets (e.g.,
(Mg(ID) = 0.72 A, rM(Li(1)) = 0.76 A, r''(Fe(Il)) = 0.78 A).
However, the difference cannot preclude some incorporation
of Ln(TI) and An(IIT) in octahedral sites but the substitution
may be hindered by large structural strains (6). For example,
investigations (7) on Cu, Zn, Cd, and Pb coprecipitated with
hectorite showed that the smaller Cu (r''(Cu(Il)) = 0.73 A)
and Zn (V'(Zn(Il)) = 0.74 A) were more easily incorporated
in clay octahedral sites than the larger Cd (r'(Cd(II)) = 0.95
A) and Pb (rY'(Pb(II)) = 1.14 A). Recently, time-resolved laser
fluorescence spectroscopy data collected for Eu(Il) (rV'(Eu-
(ID)) = 0.95 A) and Cm(III) coprecipitated hectorite (8, 9)
indicated that the heavy ions were located in bulk solids.
Data were consistent with Ln/An present in octahedral sites
from the early stage multistep synthesis protocol, but no
definite proof could be given. Therefore, the reality of a Ln(I1I)
or An(IIl) incorporation in the clay octahedral sheet should
be demonstrated.

In the present study, the Lu(IIl) uptake site by copre-
cipitation with and by sorption on hectorite was deciphered
by extended X-ray absorption fine structure (EXAFS) spec-
troscopy. Powder EXAFS spectroscopy provides a spectro-
scopic signature of the molecular environment of X-ray
absorbing atoms, hence it readily discriminates distinct
sorption mechanisms. However, powder EXAFS analysis for
absorbing atoms located in the clay octahedral sheets may
be tricky, as these atoms are surrounded by neighboring
cations located in the octahedral layer (R ~3.05—3.10 A) and
in the tetrahedral layer (R ~3.20-3.25 A). The EXAFS
contributions of these shells may overlap, complicating the
structural analysis of the crystallochemical environments.
However, these distinct shells may be singled out by polarized
EXAFS (P-EXAFS) spectroscopy, as amply demonstrated for
metal cations sorbed on hectorite (10). The contribution from
cations in the tetrahedral sheet is minimized when the
experimental angle (o) between the hectorite layer plane
and the electric field vector of the X-ray beam equals 0°, and
enhanced at oo = 90° (11). The opposite angular dependence
is observed for cations located in the octahedral sheet. Thus,
the dissimilarities in molecular environments of Lu(IIl) either
sorbed on, or coprecipitated with, hectorite could be revealed
using P-EXAFS spectroscopy. These results demonstrate for
the first time that large Lu(II) can be incorporated in the
clay octahedral sheet.

Experimental Section

Sample Preparation. All solutions were prepared with Milli-Q
water (18 M-cm™!) and reactants of ACS or higher grade. A
Lu(IIl) (0.08 M) stock solution was prepared by dissolving
Lu,03 in 2% perchloric acid. Hectorite was coprecipitated
(12) in the presence of Lu(IIl) (sample Lu755Hec). Briefly, a
Lu(II)-containing brucite precursor (Mg:Lu molar ratio of
755:1) was freshly precipitated and washed 4 times with
Milli-Q water. The resulting slurry was refluxed (100 °C) under
constant stirring in the presence of LiF. After 30 min, a silica
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sol (Ludox HS-30, Aldrich) was added and the suspension
reacted for additional 48 h. Any remaining precursor phase
(brucite) was removed by washing the resulting hectorite
with HCI (pH 3). A Lu(III)-containing brucite (Mg:Lu molar
ratio 0of290:1; sample Lu/Brucite) was also freshly precipitated
and washed several times with Milli-Q water, and used as a
reference compound. Lu(IIT) was sorbed on hectorite (sample
Lu/SHCal) by contacting the aqua ions with the <2 ym
fraction of the reference clay mineral hectorite SHCa-1
(Source Clay Repository) ([Lu] =90 uM, 2 g/L hectorite, pH
7.3, 0.5 M NaClO,). Details on the clay purification and
characterization can be found elsewhere (13). Finally, Lu(III)
aquo ions were sorbed on silica sol ([Lu] = 1.7 mM, 38 g/L
silica, pH 7.5, no background electrolyte; sample Lu/Silica)
for 72 h under a nitrogen atmosphere. This last reference is
expected to mimic the environment of Lu(III) bound to silica
groups, either on hectorite basal planes, or to any amorphous
silica phase left from the clay synthesis.

Lu755Hec and Lu/Brucite were characterized by X-ray
diffraction XRD) (Bruker D8 Advance, CuKa) and attenuated
total reflectance—Fourier transform infrared (ATR—FTIR)
spectroscopy (Bruker IFS 55) prior to EXAFS experiments.
Self-standing films were prepared by slow filtration of Lu/
Brucite, Lu/SHCal, and Lu755Hec suspensions on cellulose
nitrate filters (0.025 ym, Millipore). This protocol readily
provided highly textured self-supporting films to perform
P-EXAFS experiments. The Lu/silica suspension was filtered
to obtain a dry pellet for powder EXAFS characterization.
The precipitation of Lu(OH);(s) during the sorption experi-
ments was ruled out based on thermodynamic considerations
(14) for Lu/SHCal and by the absence of the characteristic
absorption bands (3330 and 3210 cm™!) (15) on the infrared
spectrum collected for the Lu/silica filtered suspension.

EXAFS Spectroscopy. Lutetium Ly;-edge (9.244 keV)
EXAFS spectra were collected on the FAME beamline (14) of
the ESRF (Grenoble, France) with a storage ring energy of 6
GeV and a ring current of ~200 mA. Energy calibration was
done by setting the K-edge of a Cu foil at 8.979 keV. All spectra
were collected in fluorescence-yield detection mode using
a 30-element Ge solid-state detector (Canberra). Powder
EXAFS spectra were collected for the Lu(Ill) stock solution
(sample Lu(Ill),q) and for Lu/silica. P-EXAFS spectra were
recorded at angles oo = 35, 55, and 80° for all films, and at
o = 10° for Lu/brucite and Lu755Hec. The spectrum at 10°
for Lu/SHCal was extrapolated from spectra collected at
higher angles (13).

Analysis of the EXAFS data was performed following
standard procedures by using Athena and Artemis interfaces
to the Ifeffit software (17). The EXAFS spectra were apodized
with a Kaiser-Bessel window and Fourier transformed. The
Fourier transform (FT) envelopes display amplitude maxima
or peaks at apparent distances (R + AR) that differ from half
the length of the scattering path (R equals the absorber —
backscatter distance for single scattering) by ~ —0.3 Abecause
of phase shift of the EXAFS waves (18). Data fit was performed
in R-space using phase and amplitude functions calculated
with fefff8 (19). The amplitude reduction factor (Sy?) was set
to 1.0 to correctly reproduce the number of Lu(IIl) neigh-
boring O atoms in water, in agreement with previous studies
(20, 21). For a given film, the data were fit simultaneously at
all angles, using a single value for AE (edge-shift between
theoretical and experimental data), and for a given shell, a
common bond length and Debye—Waller factor (accounting
for static and thermal disorder) (10) at all angles. The fit
quality was quantified by the Rifactor (22). The experimental
uncertainty on o in the P-EXAFS measurements is estimated
to +1° or less. The uncertainty on the EXAFS-derived
structural distances is estimated to +-0.02 A and the precision
on the number of neighboring atoms to £20%. Note that Mg
(Z=12) and Si (Z = 14) cannot be discriminated solely by
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FIGURE 1. (a) k’-weighted Lu Ly-edge EXAFS spectra for Lu(lll)
in solution (Lu(lll),,), Lu(lll) sorbed on silica sol (Lu/silica),
Lu-containing precursor (Lu/brucite) at o = 35° Lu(ll)
coprecipitated with hectorite (Lu755Hec) at oo = 35°, and Lu(lll)
sorbed on hectorite (Lu/SHCa1) at oo = 35°. (b) Experimental
(solid lines) and simulated (dotted lines) amplitudes and
imaginary parts of the Fourier transforms.

the phase and amplitude of their EXAFS contribution.
However, the differences in Mg and Si coordination (6-fold
vs 4-fold) and in Mg—O and in Si—O interatomic distances
add constraints on the nature of the backscattering shells for
sorbed cations.

Results and Interpretation

X-ray Diffraction and Infrared Spectroscopy. The infrared
spectra collected for Lu/brucite and for freshly precipitated
brucite were identical (Figure S1 in Supporting Information
(SD). The sharp band at ~3695 cm™! corresponds to the
hydroxyl stretching frequency (23) thus clearly identifying
the main phase as brucite in Lu/brucite. The Lu755Hec solid
phase was identified as hectorite (Figure S1 in SI) from the
characteristic absorption bands (24) displayed in the spec-
trum: —OH stretching (~3675 cm™!) and deformation
(~651 cm™!) bands of the Mg;OH units, and Si—O stretching
(~987 and ~694 cm™!) bands. Residual amorphous silica
was also observed (~795 and ~1125 cm ™) (25), but none of
the spectra displayed the characteristic —OH absorption
bands for Lu(OH)s(s) (3330 and 3210 cm™?) (15). The X-ray
diffractogram for Lu/brucite (Figure S2) matched the XRD
pattern expected for brucite (26). The XRD pattern for
Lu755Hec (Figure S2) exhibited a peak at 13.4 + 0.2 A that
is consistent with a dy; basal spacing characteristic of natural
and pure synthetic hectorite (7, 12, 27).

The presence of Lu(IIl) led to no significant modification
either in the infrared spectra, or on the XRD patterns,
confirming its presence in trace amount and dispersed within
the matrices. Consequently, the presence of Lu(IIl) did not
significantly influence the hectorite formation or degree of
crystallinity. This corroborates previous investigations on
the small impact of heavy metal cations (Cd, Cu, Pb, Zn) at
trace concentration on the hectorite structure (7).

EXAFS Spectroscopy. The EXAFS spectrum for Lu(III)4q
displays a single wave frequency with monotonically de-
creasing amplitude for k>3 A~! (Figure 1), consistent with
the presence of a single ordered coordination shell of water
oxygens. This interpretation is confirmed by the presence of
a single major peak at ~1.8 A on the FT. Only very weak
contributions can be observed for higher distances arising
either from multiple scattering (MS) within the first coor-
dination sphere, or from single scattering paths from next
hydration spheres. The spectrum could be correctly modeled
assuming a number of oxygens Np = 8.0(1.6) at a Lu—O
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TABLE 1. Quantitative EXAFS Analysis for the First FT Peak for All Samples®®

01 shell 02 shell

sample o  FTrange (A-") fitrange (A)° Ru_oi (A) No: AA)  Ru_o (A) Ne: *(AY)  AE?(eV) R

Lu/SHCa1 10° 3.7—-94 1.5—-4.2 2.19(2) 2.8(2) 0.005" 2.33(2) 4.0(2) 0.005" 4.1(2) 0.004

35° 2.7(1) 4.2(1) 0.002

b5° 2.6(1) 4.3(1) 0.003

80° 2.5(1) 4.6(1) 0.002

Lu755Hec  10° 3.9-98 1.5 -4.2 2.19(1) 5.4(3) 0.010 1.9(6) 0.014

35° 5.5(3) 0.008

b5° 5.6(4) 0.011

80° 5.5(2) 0.014

Lu/brucite  10° 3.8—-9.6 1.6 —4.3 2.26(2) 6.5(1.3) 0.010 3.5(2) 0.006

35° 6.1(1.2) 0.004

b5° 5.6(2) 0.006

80° 5.3(1.1) 0.009

Lu/silica 35° 3.9-9.0 1.5 -4.2 2.22(1) 5.5(1.1) 0.011 3.9(1.1) 0.008
Lu(llDaq 35° 3.8—-125 1.7 -23 2.31(2) 8.0(1.6) 0.008 3.9(2.4) 0.0008

2 The data were fit over the entire fit range considering all shells from Table 1 and 2 for the films and Lu/silica. > Number
in parentheses at the end of value indicates the uncertainty. R + AR interval for the fit. “ Threshold energy E, taken as
zero crossing of the second derivative. ¢ Figure of merit of the fit (20). “Values coupled during the fitting procedure.

TABLE 2. Quantitative EXAFS Analysis of Higher Atomic Shells®?

T1

T2

Lu/silica

a Ru-silA) Nsiy (A RusalA) Nsi @ (AY) Ry silA) Nsiz #(AY) Ry olA) No2 (A

35° 3.04(2) 0.8(2) 0.009 3.50(2) 1.6(3) 0.009 3.77(2) 1.5(7) 0.009 4.12(2) 3.1(1.2) 0.009
Lu755Hec

a Riy-mg (A) Ny @A) RusilA) Ns; @A) Ru_sialA) Nsi3 @ (A)  Ru_sulA) Nsis a* (A?)
10° 3.12(2) 0.5(1) 0.008 3.35(2) 0.9(4) 0.008 3.82(2) 1.4(3) 0.008 4.35(2) 2.0(8) 0.008
35° 0.9(2) 1.3(3) 1.2(5) 1.9(7)
55° 1.4(3) 1.5(5) 0.9(7) 1.9(1.0)
80° 1.9(4) 2.0(3) 0.5(5) 2.3(6)

Lu/Brucite

o8 Riu-mg (A) Ny a (AZ) HLu—oz(A) No: a (AZ) RLu—oa(A) No; 7 (AZ)

10° 3.29(1) 2.2(4) 0.005 4.18(2) 5.1(1.7) 0.009 4.52(2) 5.2(2.1) 0.009

35° 1.9(4) 5.1(1.8) 5.3(2.2)

55° 1.7(3) 4.7(1.5) 4.1(1.7)

80° 1.4(3) 3.9(1.5) 3.0(1.8)

Lu/SHCa1

[0 RLu—Mg(A) Nig (A Ru-silA) Nsiz @ (A2 Ru-silA) Nsiz o (AY)

10° 3.16(2) 3.0(6) 0.005 3.33(1) 2.2(4) 0.005 3.95(1) 1.5(4) 0.007

35° 2.8(4) 2.0(4) 1.6(3)

55° 2.8(6) 1.8(1) 2.1(2)

80° 2.6(2) 1.5(3) 2.0(3)

?The data were fit over the entire fit range considering all shells from Table 1 and 2 for the films and Luisilica. LA C
shell was considered to fit the data for Lu755Hec (Nc = 0.6(1), Ri,—c = 2.88(2), 0> = 0.008 A?) and Lu/brucite (Nc = 1.1(2),
Riu—c = 2.84(1), 0> = 0.005 A?). * Number in parentheses at the end of value indicates the uncertainty.

230 distance Ry,_o = 2.31(2) A (Table 1). These results compare related to the presence of next-nearest Siand/or O neighbors. 240
231 well with reported distances and coordination numbers Furthermore, these more distant peaks are slightly asym- 241
232 (20, 28). metric, suggesting the presence of more than two next-nearest 242
233 The EXAFS spectrum for Lu/silica has distinct nodes, e.g., shells. The first FT peak was well modeled by a shell of 5.5(1.1) 243
234 at k~7.5and ~9.5 A~!, which are absent from Lu(IIl),q (Figure O atoms at Riy_o; = 2.22(1) A (Table 1). Both No; and Riy_o: 244
235 1), and therefore cannot be attributed only to MS within the are consistent with Lu(IIl) 6-fold coordinated by O (4). The 245
236 first coordination sphere. Instead, they can be attributed to next-nearest contribution was modeled assuming Si shells 246
237 next-nearest shells. Indeed, the FT displays a peak at ~1.8 located at 3.04(2) and 3.50(2) A. Finally, the FT peak at ~3.6 247
238 A originating from the oxygen coordination sphere and A could be adequately fitted by combining a Si (Rpu_siz = 248
239 additional contributions at ~2.9 and ~3.6 A that may be 3.77(2) A) and a possible O (Ry,-02 = 4.12(2) A) shell. 249
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The EXAFS data indicate that Lu is bound to a solid silica
phase. The ~6 O in the Lu first coordination sphere compare
well with data reported for Yb-, Er-, Dy-, and La-bearing
silicate glasses (29—31) and for Cm-bearing borosilicate glass
(32). The Si detected as next neighbors in Lu/silica correspond
to silica units, possibly binding the Lu polyhedra by sharing
edge(s) and corners (Ro_s; = 1.64 A) (31), with geometries
ranging from aligned to bent. The first Lu—Si distance is
short (Ri,—sii = 3.04(2) A) and may only be explained by Si
tetrahedra sharing edges with Lu polyhedra. The longer Ry,
=3.77(2) A is slightly smaller than the upper limit on Lu—Si
distance obtained for Lu and Si polyhedra sharing corners
and in an aligned geometry (Riy—o0 + Ro-si = 2.22 + 1.64 =
3.86 A). This binding mode may account for Ry, sz by
slightly tilting the Si tetrahedron. Finally, the Lu—Si distance
0f3.50(2) Ais close to the value reported for Dy-doped silicate
glasses (Rpy—si = 3.60 A) (31), and to the value expected for
corner sharing in a bent geometry. Important cancellation
effects may arise in the vicinity of Lu from these various
geometries and lead to low numbers of detected backscat-
terers.

The EXAFS spectra collected at a = 35° (powder and
polarized EXAFS data are identical at this angle) for Lu/
brucite, Lu755Hec, and Lu/SHCal all display distinct fre-
quencies (Figure 1), especially at high k (e.g., ~7.5 A™). As
for Lu/silica, these features can be related to the presence
of several cationic shells, since MS paths have no large
amplitude at high k. These spectra are all distinct from each
other, e.g., in the [6.5—10 AN range, which points to distinct
crystallochemical environments, and possibly distinct cat-
ionic shells. All FTs display a first peak originating from O
coordinated to Lu. The Lu—O distances obtained by fitting
(Table 2) vary between 2.19(2) A in Lu755Hec and Lu/SHCal
and 2.33(2) Ain Lu/SHCal. The short distance is characteristic
of 5- to 6-fold coordination, and the longer is characteristic
of 7- to 8-fold coordination (4). This is in agreement with N
values from EXAFS analysis (Table 2). A beating node is
present on the inverse FT of the Lu/SHCal first peak, hinting
a split of this shell in two subshells, contrary to Lu/brucite
and Lu755Hec. The spectral modeling indicated the presence
of ~3 (No;) and 4—5 O (Ng,) backscatterers at 2.19(2) and
2.33(2) A, respectively. This split is typical of cations sorbed
on solid phases (10), with some O atoms belonging to bound
water molecules (Ng,) and some belonging to the sorbent
surface (No;). Additionally, N, is typical for the hydration
shell of Ln(IIl) forming inner-sphere surface complexes (33)
at a Lu—O distance characteristic for Lu(IIl),q ions.

AllFTs display additional contributions at higher distances
originating from the presence of next-nearest atomic shells.
Only Mg and Si shells were considered to fit well the Lu755Hec
and Lu/SHCal spectra. In contrast, O shells were used beyond
the nearest Mg shell for Lu/brucite. The type of neighbors
and the distance from the absorbing atom vary from sample
to sample (Table 2), corroborating the presence of distinct
crystallochemical environments. The fits were also improved
by addition of a C shell for Lu/brucite (~1 atom at Ry,—¢c =
2.84(1) A) and Lu755Hec (<1 atom at R, c = 2.88(2) A). The
physical origin of this shell is unclear, but it may correspond
to the formation of carbonate species at the high pH during
the synthesis. Finally, no neighboring Lu atom was detected
in any compound, thus precluding the precipitation of
Lu(OH);(s).

Small but significant angular dependences can be ob-
served on all sets of P-EXAFS spectra (Figure 2a). The variation
in amplitude and sometimes position of the oscillation
maxima with o (e.g., ~4 and ~5 A~!) indicates an anisotropic
Lu binding environment in each sample. These oscillation
shifts indicate the presence of multiple atomic shells with
distinct orientations, meaning that the atoms are structurally
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FIGURE 2. (a) Polarized EXAFS spectra for the Lu-containing

6
k(A"

precursor  (Lu/brucite), Lu(lll) coprecipitated hectorite
(Lu755Hec), and Lu(lll) sorbed on hectorite (Lu/SHCa1). (b)
Amplitudes and imaginary parts of the Fourier transforms. Insert
shows the first peak inverse FT for Lu/SHCa1 at oo = 35°.

bound to the mineral phases. Besides, these spectral dichro-
isms confirm the texture quality of all self-standing films.

The amplitude of the Lu/brucite FT peaks near ~1.8 A (O
shell) and ~3.0 A (Mg shell) decreases with increasing a
(Figure 2b), supporting an anisotropic environment around
Lu. Back-Fourier transforms of the second FT peak contain
isosbestic points (Figure S3), for which the EXAFS oscillations
are independent of a. These points are much sensitive to
defaults in spectral normalization and their observation
attests for the reliability of the data analysis. The octahedral
environment suggested from the O shell EXAFS analysis,
together with the decrease in O and Mg coordination numbers
with increasing o, strongly suggest a Lu incorporation in
brucite layers. Additionally, this decrease in number of
detected Mg backscatterers with increasing o values (Table
2) hints an in-plane orientation of the Mg neighbors.

Whereas the amplitude of the Lu755Hec first FT peak is
almost unaffected by the variation of a (Figure 2b), the
amplitude of the peak at R + AR ~2.8 A increases and its
amplitude maximum is shifted to greater distances, sug-
gesting the presence of two overlapped contributions (11).
A broad feature is present at higher distances and is almost
unaffected by a variations. An overlap of several next-nearest
shells, e.g., Mg/Si; and Mg/Si,, may account for this FT
contribution. The dichroism is obvious as indicated by the
back-Fourier transforms of this broad feature, which also
contain isosbestic points (Figure S3). Data modeling con-
firmed a nearly spherical distribution of the O atoms ligated
to Lu, as hinted by the absence of N angular dependence
(Table 1). In contrast, Nygsi;, and to a lower extent Nygsiz,
displayed clear angular dependences, pointing to a local
anisotropic environment around Lu. Finally, the broad feature
athigher distances was successfully fitted with Si shells (Ry,-sis
=3.80(2) A and Ryusiu = 4.35(2) A).

The amplitude of the Lu/SHCal FT peak near ~1.8 A
increases and its amplitude maximum is shifted to greater
distances with a (Figure 2b), corroborating the presence of
different backscatterers (11), i.e., a split in two O subshells.
Additional contributions originating from nearest cationic
shells can be observed at ~2.9 and ~3.5 A: these were modeled
considering Mg/Si neighbors at 3.16(2) A and 3.33(1) A, and
a possible Si shell located at 3.95(2) A. The reliability of the
data analysis is again attested from the back-Fourier transforms
(Figure S3). The Lu(Ill) environment in Lu/SHCal is significantly
different from that of Lu755Hec, which is also different from
that of Lu/brucite. None of these samples showed evidence for
Lu bound to a solid silica phase (Lu/silica).
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Discussion

The multistep synthesis protocol resulted in Lu(IIl) being
sequentially occluded in several distinct environments from
the brucite precursor to the fully crystallized clay phase (8, 9).
In the precursor, the Lu coordination sphere is made by a
single O shell and the spectral simulations pointed to a
brucite-like octahedral environment. Additional information
can be derived from the EXAFS-derived interatomic distances
and the knowledge of the brucite structure. Brucite (Mg(OH),)
is made up of Mg—Og octahedra (Ryg—o = 2.10 A) sharing
0—0edges (Ro-0=2.78 A, Ryg-mg=3.14 A) (34). The simplest
hypothesis is to assume that Lu substitutes for Mg in the
brucite octahedral sheet, the Lu octahedra sharing O—0 edges
with Mg octahedra. The EXAFS-derived Lu—Mg distance may
thus be obtained by replacing Mg by Lu and summing up
the distances from Mg and from Lu to the middle of the
shared edge, keeping identical Ry_o. The distance between
Lu and the shared edge equals: v/(2.26% — (2.78/2)?) = 1.78
A. Consequently, the calculated Lu—Mg distance equals (3.14/
2) 4 1.78 =3.35 A, only slightly longer than the experimental
distance. Additionally, the increase between Ry, v in brucite
(3.14 A) (39 and Ry,-mg in Lu/brucite (3.29(1) A) ap-
proximately matches the increase in ionic radii (r''(Mg(Il))
=0.72A, r"'(Lu(1I1)) = 0.86 A) (4). These considerations imply
that Lu substitutes for Mg at the octahedral site.

An important structural change from the starting precur-
sor to the crystallized clay mineral is the reduction of the
Mg—Mg interatomic distance from 3.14 A in brucite (34) to
3.04 A in hectorite (35). Due to its large ionic radius, Lu(III)
should have a limited structural compatibility for clay
octahedral sites and local structural deformation and/or a
release of Lu(IIl) to the supernatant (9) upon clay formation
may be expected. Yet, the presence of significant residual
fraction of Lu/brucite precursor or of surface-sorbed or
aqueous Lu(IIl) can be ruled out, as these species would
have resulted in a second O shell at R > 2.26(2) A. The obvious
dissimilarities in EXAFS spectra among Lu755Hec, Lu/silica,
and Lu/SHCal also rule out compelling Lu(IIl) adsorption
on the hectorite surfaces, or on any remaining amorphous
silica. The detection of Mg and Si as next-nearest neighbors
indicates that Lu(III) is structurally associated with hectorite,
and the angular dependence on Ny sii and Nygsi, further
highlights the local anisotropic environment. An incorpora-
tion in the hectorite tetrahedral layer can be clearly ruled out
owing to size mismatch, and thus Lu(III) may be located in
clay octahedral sites.

The simplest hypothesis is to assume that Lu substitutes
for Mg and is located at the center of an octahedron (R0
= 2.19(1) A) sharing O—0 edges with Mg octahedra (Ryg—o
=2.08A (35)). The expected Lu—Mg distance may be obtained
by replacing Mg by Lu and summing up the distances from
Mg and from Lu to the middle of the shared edge, keeping
identical Ro-o. The length of the O—0O edge shared between
Mg octahedra equals Ro_o = 2 x +/(2.082 — (3.04/2)?) = 2.84
A. The distance between Lu and the shared edge then equals
V(2.19? — 1.42%) = 1.67 A. Consequently, Ryy—wig = 1.52 + 1.67
=3.194, only slightly longer than the experimental distance.
The small difference can be easily accounted for by some
structural relaxation around Lu, possibly involving Lu shift
from the center of the octahedral sheet. The Si tetrahedra
may then be moved away from their regular position, resulting
in Ryy-si2 (Lu755Hec) longer than Ry,-s; (hectorite). However,
in that case 6 in-plane Mg and 4 out-of-plane Si (35) would
be expected to surround Lu, far more than actually obtained
from EXAFS simulations. Actually, Li(I) may be coincorpo-
rated with Lu(IIl) in adjacent octahedral sites for local charge
compensation. As Li is too light to be detected by EXAFS
spectroscopy, this co-incorporation may also account for
the small number of detected neighboring Mg. Also, Lu

incorporation would be met with significant structural strain
around Lu, and this structural disorder would ultimately
reduce the number of detected Mg and Si neighbors,
consistent with observations.

The presence of Lu(III) at clay octahedral sites may result
either from structural incorporation during crystal growth,
or from diffusion into octahedral vacancies. However,
lanthanide diffusion to vacant octahedral sites may occur
only at relatively high temperatures, due to their large
hydration energies (36, 37). Hence, Lu(Ill) very likely
substitutes for cations at octahedral position in brucite and
remains in the layer during hectorite crystallization.

Polarized-EXAFS data indicated that Lu(IIl) remains
hydrated upon sorption on hectorite (Lu/SHCal), with Lu—O
distances (Ry,—01 = 2.33(2) A) typical of solvated cations,
meaning that Lu did not diffuse into clay octahedral sites.
However, the presence of Mg and Si cationic shells and their
anisotropic distribution rule out the formation of outer-
sphere surface complexes. By reference to Lu/Silica, Lu(III)
binding to Si oligomers or to silanol groups of the hectorite
silica sheet can also be dismissed. Consequently, the forma-
tion of inner-sphere surface complexes near surface-exposed
Mg appears as the only plausible Lu retention mechanism.
Because Mg octahedra are only exposed at hectorite edges,
Lu(IIl) can only be retained at these layer edges.

Additional constraints on the nature of the Lu(III) surface
complexes can be derived from the absence of angular
dependence on Nygsii and from the preferential in-plane
orientation of the Mg/Si, shell. A spherical Mg distribution
around Lu might account for the absence of Nyg/si1 angular
dependence. However, a spherical Mg distribution for edge-
sorbed Lu would imply a spherical Si distribution, contrary
to observations. The alternate interpretation is to assume
Lu—Mg pairs oriented at the magic angle (~54.7°) with respect
to the normal of the clay layer (the apparent contribution of
a shell is invariant at this angle (11)). Lu may be located out
of the hectorite platelet median plane, close to the extension
of the tetrahedral layer. This description would also be
consistent with the preferential in-plane orientation of the
Si shell.

In the simplest hypothesis, Lu polyhedra bind the hectorite
surface via short Lu—0 bonds (R.,_o; = 2.19(2) A) and share
0—0 edges with Mg octahedra (Ryg-o = 2.08 A (35)) and
corners with Si tetrahedra (Rs_o = 1.62 A (38)). The EXAFS-
derived Lu—Mg distance may thus be obtained by summing
up the distances from Mg and from Lu to the middle of the
shared edge (Ro—o = 2.84 A): Riy-mg = 1.52 + 1.67 = 3.19 A.
This value is very close to the experimental distance (3.16(2)
A) and agrees with the distance reported for Y forming inner-
sphere surface complexes at the hectorite layer edges (3.16
A) (10). By reference to the local environment of Y-sorbed
hectorite, the intermediate Lu—Si distance (Rpy-mg/siz = 3.33(1)
A) maybe attributed to corner sharing between Si tetrahedra
and Lu adsorbed at Mg octahedra edges. Finally, Riy-sis =
3.95(2) A may correspond either to distant Si shells from the
hectorite surface, or to Lu polyhedra binding to silanol groups
of the tetrahedral sheet in a Lu—O—Silinear geometry, leading
t0 Riy—si & Rsico + Ruu—o = 1.62 + 2.33 = 3.95 A.

Implication for the Fate of Lanthanides in Clay Minerals.
Our results show that Lu incorporation in clay octahedral
sites is possible, as anticipated from Pauling’s empirical rules
based on crystal chemistry (39), but would result in large
strain. The low Nygsii and Ny angular dependences
suggest that Lu incorporation in hectorite (Lu755Hec) is
achieved at the expense of the structure, which may be highly
distorted. Consequently, it is anticipated that such a sub-
stitution would be even more difficult for larger cations, i.e.,
with lighter lanthanides and actinides. According to Miller
et al. (36, 37), the incorporation into clay octahedral sheet
is possible for the large Yb(I1D) (r¥'(Yb(III)) = 0.87A (4)), Ho(IID)
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(rVI(Ho(IID)) = 0.90 A (4)), and Eu(IIl). However, their diffusion
from the interlayer oxygen surfaces, upon ion exchange, to
octahedral vacant holes, upon heat treatment, is very limited
owing to the high hydration energies of these cations.

Based on crystal chemistry (39), lighter lanthanides and
actinides may be incorporated in the clay octahedral sheet,
but the substitution may be very limited (36, 37). However,
it can be guessed that the clay mineral may not effectively
crystallize in the co-precipitated RN vicinity. Instead, a
localized clay-like precipitate may very likely form as a
consequence of the high local structural deformation.
Nevertheless, such domains would be randomly distributed
in the bulk clay structure and have little impact on the clay
formation or crystallinity. Such co-precipitates would lead
to effective long-term RN immobilization.
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