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Abstract 

For microfluidic applications the residence time distribution (RTD) of laminar 

flow in rectangular channels is of interest. The exact velocity profile for this type of 

flow consists of an infinite series and does not allow analytical evaluation of the 

RTD curve. In this paper we adopt a simpler binomial product profile which was 

proposed in literature and serves as good approximation. This allows us to determine 

in an analytical manner approximate expressions for the diffusion-free RTD of fully 

developed laminar flow in a straight rectangular channel of arbitrary aspect ratio. 

Since the evaluation of this RTD is computationally elaborate because it involves the 

Gauss hypergeometric function, we fit it by an empirical model which is suitable for 

engineering applications. We find that for a Newtonian fluid there is a narrowing of 

the RTD as the aspect ratio decreases from unity (square channel) to zero (parallel 

plates). We investigate the range of applicability of the diffusion-free RTD and show 

that it is a good estimation for liquids in a certain range of Reynolds numbers, whose 

limits depend on the length-to-hydraulic-diameter ratio of the channel. 

Keywords: laminar flow, convective transport, dispersion, mixing, residence 

time distribution, rectangular channel 
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1. Introduction 

Technical applications of chemical reaction engineering often rely on the 

interaction between chemical kinetics and fluid dynamics. In chemical reactors, 

the interplay between both processes is often characterized in terms of the reactors 

residence time distribution (RTD). The differential residence time distribution is a 

probability density function that describes the amount of time that fluid elements 

spend within the reactor. The RTD is of fundamental importance for estimating 

the yield and selectivity of any reaction in a certain reactor. Since Dankwerts 

(1953) analyzed in his seminal paper a number of important RTDs, this concept 

has become both a fundamental part of any textbook on chemical engineering and 

an important measure for characterization of any technical chemical reactor. A 

recent review on residence time theory and its applications in such diverse fields 

as chemical and biochemical process engineering, chromatography, medicine, 

geosciences and oceanography is given by Nauman (2008), while a 

comprehensive review with focus on straight and curved channels can be found in 

Nigam and Saxena (1986). 

In classical large scale chemical reactors the fluid flow is usually turbulent and 

the RTD is often described by the tank-in-series model or the one-dimensional axial 

dispersion model (Levenspiel, 1999; Fogler, 1992). Within the last two decades the 

field of micro process engineering emerged, which utilizes miniaturized devices for 

process intensification. The lateral dimensions of reaction channels in such devices 

are typical on the order of 0.1  1 mm and the flow is predominantly laminar. The 

RTD caused by the velocity profile of fully developed laminar flow in a straight duct 

with no-slip boundary conditions is known only for certain cases, where the velocity 

profile depends on one coordinate only (i.e. the flow in a circular pipe and in a semi-

infinite planar channel). In miniaturized devices, the size and geometry of the 
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channels is often determined by the fabrication techniques available for the 

microchannel manufacturing. Often the shape of the channel cross section is square 

or rectangular, but may be trapezoidal or triangular as well. The knowledge of the 

RTD of laminar flow in straight channels with non-circular cross-section is thus not 

only of academic interest but of significant practical importance. This holds not only 

for microreactors, but for microfluidic devices in general, where separation or mixing 

applications are frequent (e.g. in lab-on-a-chip systems). The relevance of the RTD in 

microfluidics devices is also reflected by a recently increasing number of 

experimental studies on this topic, see e.g. Trachsel et al. (2005), Lohse et al. (2008), 

Bošković and Loebbecke (2008), Stief et al. (2008), Adeosun and Lawal (2009), 

Cantu –Perez et al. (2009) to name a view. One of the problems limiting the 

effectiveness of microfluidics devices is the dispersion of material occurring in 

pressure-driven flow through microchannels. This makes it impossible to deliver 

sample material intact from one place in the microfluidics network to another 

without significant wastage (Vikhansky, 2009). It is evident that an analytical theory 

for the RTD imposed by the laminar velocity profile in non-circular channels would 

be very useful in order to further quantify the degree of mixing and dispersion in 

microfluidics processes. 

In this paper we determine by an analytical procedure approximations to the pure 

convective (diffusion-free) RTD of fully developed laminar flow through a straight 

rectangular channel with arbitrary aspect ratio. To this end we approximate the exact 

laminar velocity profile in a rectangular channel, which involves an infinite series of 

trigonometric and hyperbolic functions, by a binomial product. This allows us to 

evaluate the RTD analytically and express it in terms of the Gauss hypergeometric 

function. We show that this RTD can well be approximated by a simpler model, 

which is suitable for engineering applications. We investigate the range of 
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applicability of the diffusion free RTD for practical applications and show that it may 

serve as good approximation for liquid systems in a certain range of Reynolds 

numbers. 

The outline of the rest of this paper is as follows. In Section 2, we determine the 

RTD for the approximate velocity profile and present the simplified engineering 

model. In Section 3, we present results for the RTD of a Newtonian fluid in 

rectangular channels with different aspect ratio and investigate the range of 

applicability of the pure convective RTD theory. Finally, we conclude in Section 4. 

2. Theory 

2.1. Fundamental definitions of residence time distribution 

For pure convective transport the cumulative residence time distribution function 

( )F t  describes the fraction of fluid that leaves the reactor with age less than t  and is 

thus given by  

total

( )
( )

Q t
F t

Q
  (1) 

Here, ( )Q t  is the volumetric flow rate associated with a residence time t  or lower 

and totalQ  is the total volumetric flow rate. The differential residence time distribution 

function ( )E t  is related to the cumulative residence time distribution by  

d ( )
( )

d

F t
E t

t
  (2) 

Since ( )E t  has unit of time-1, the non-dimensional differential RTD 

m( ) ( )E t E t    (3) 

is more useful for comparing different reactors. E  is a function of the non-

dimensional time m/t t   and fulfils the conditions 
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0 0

( )d ( )d 1E E     
 

    (4) 

Here, 

m

0

( )dt t E t t



   (5) 

is the mean or average residence time. For incompressible flow it is equal to the 

mean hydrodynamic residence time total/V Q , where V  is the reactor volume. 

In this paper we consider the laminar flow of a Newtonian fluid with constant 

viscosity through a straight channel with constant cross section A  and are interested 

in the RTD of a non-diffusive tracer substance. If the ratio of the length to the 

hydraulic diameter of the channel is sufficiently long then entrance effects can be 

ignored and the cumulative RTD can be computed via Eq. (1) from the fully 

developed velocity profile. For laminar flow through a pipe it is (Bosworth, 1948; 

Dankwerts, 1953) 

F

F

F3

0

( )E

 

 
 






 




 (6) 

and 

F

F

F2

0

( )
1

2

F

 

 
 






 
 



 (7) 

Here, F
  is the so-called first appearance time. This is the non-dimensional time 

when E  and F  first differ from zero and is thus the dimensionless residence time 

of the fastest moving fluid. F
  is equal to the ratio between the mean and maximum 

velocity m max/U U , which takes a value of 0 5.
F

   for a circular pipe. For the 

laminar flow between parallel plates (and in a falling film) it is (Levenspiel, 1979) 
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F

1

2
F F

F3

0

( ) 1
1

2

E

 

  
 

 






   
   

  

 (8) 

and 

F

1

2
F F

F

F

0

( ) 2
1 1

3 2

F

 

  
 

  




    
     

   

 (9) 

where F 2 / 3  . Since E  and F  are always zero for F
  , we give in the sequel 

the functional relationships for F
   only and denote both by E

  and F  , 

respectively. 

 

2.2. RTD in a rectangular channel with Purday’s velocity profile 

We consider a rectangular channel with half-width w  and half-height h  as 

displayed in Fig. 1, where we assume 0w h  . The origin of the coordinate system 

is located in the channel center so that w z w    and h y h   . Then, the laminar 

Poiseuille velocity profile of a Newtonian fluid with constant viscosity is (Holmes 

and Vermeulen, 1968; Shah and London, 1978) 

 
 

 

 

( 1)/2

3
1,3,5

max ( 1)/2

3
1,3,5

cosh / 2( 1)
1 cos / 2

cosh / 2
( , )

( 1) 1
1

cosh / 2

k

k

k

k

k y w
k z w

k k h w
u y z U

k n h w
















 
 

 
 
 

 





 (10) 

Since this velocity profile is given by an infinite series, an analytical evaluation of 

the residence time distribution via. Eq. (1) seems impossible. Saxena and Nigam 

(1983) have numerically computed the RTD for a square channel using the velocity 

profile given by Eq. (10) with h w . The numerically computed RTD functions 

were fitted to Nauman’s (1977) model for diffusion-free RTD as 

1.908 2

0.2316 0.0111
( ) 1F 

 

     (11) 
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for F 0.477   . 

(appropriate place for Figure 1) 

Since Eq. (10) involves considerable computational complexity, Purday (1949) 

proposed the following approximation 

max m

1 1
( , ) (1 )(1 ) (1 )(1 )n m n mm n

u Y Z U Y Z U Y Z
m n

 
       (12) 

Here, it is /Y y h , /Z z w . The values of the exponents n  and m  depend on the 

channel aspect ratio /h w  , where 0 1  . At this stage we let these 

relationships undefined and refer to Section 3. In the present subsection we derive, to 

our knowledge for the first time, the RTD for the velocity profile given by Eq. (12). 

For this purpose we consider the curves ( , )Z Z Y   where maxu u U    is 

constant. Here,   is in the range 0 1  . From Eq. (12) we obtain 

11

max,
1

1 1

n n mm

n n

Y Y
Z

Y Y





   
           

 (13) 

where 1/

max, (1 ) nY     is the value of Y  for 0Z  . 

We consider an axial portion of the rectangular channel with length L . Then, the 

minimum and mean residence time are F max/t L U  and m m/t L U , respectively. 

The residence time of fluid elements moving with velocity u  is 

max min/ /t L U t    so that the non-dimensional residence time can be expressed 

as 

m F

m max

1 Ut

t U




 
    (14) 

For the Purday velocity profile of Eq. (12) we have 

F m
F

m max 1 1

t U m n

t U m n
   

 
 (15) 
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The flow rate ( )Q t  associated with fluid moving with a velocity maxu U  is 

given by 

max,

max

0 0

( ) d 4 (1 )(1 )d d

Y Z

n m

A
Q t u A wh U Y Z Z Y

 



       (16) 

We perform the integration with respect to Z  and obtain with total m4Q whU  from 

Eq. (1) the result 

max,

F 0

1
(1 ) 1 d

1

Y m
n Z

F Y Z Y
m








  
   

 
  (17) 

Inserting Eq. (13) in Eq. (17) gives 

 
max,

1

max,

max,

F 0

1 1
1 d

1 1

Y n n m
n n

n

Y Y
F m mY Y Y

m Y









 

       
  (18) 

and with the substitution 
max,( / )ns Y Y   

   
1 1 111

max, max,

max, max,

F max,0

11 1
1 1 1 d

1 1

n nm n

nm n mm
n

m Y mY
F Y s s Y s s s

n m m Y

 

 




 


  

        
  (19) 

With F
   /  it is 1/

max, F(1 / ) nY      and Eq. (19) becomes 

F F F
1 2

F

1 1 1
1 1 1

1

m n

mnm
F J J

n m m

  

   



       
          

       
 (20) 

where 

 

 

1
1 1 11

1

0

1
1 1 1

2

0

1 1 1 d

1 1 1 d

m
Fn m

m
Fn m

J s s s s

J s s s s














  
     

  

  
     

  





 (21) 

The integrals 1J  und 2J  can be evaluated by the following integral representation 

(Andrews et al., 1999, p. 65) 

     
1

11

2 1

0

( ) ( )
1 1 d , ; ;

( )
s s sx s F x

     
  



     
  

  (22) 

Here,   is the Gamma function and 



   

9 

 
 

   

   

 2 1

0

2

, ; ;
!

( 1) ( 1)
1 ...

1! 2! ( 1) 2!

k

k

k k x
F x

k k

x x

  
  

  

    

  





    

   

 
   




 (23) 

is the Gauss hypergeometric function. In this paper we assume that  ,   and 

     are real parameters with none of them being zero or a negative integer. 

Then, the series (23) converges for 1x   (Andrews, 1998, p. 361). In the Appendix 

we list some properties of the Gauss hypergeometric function that will be used in the 

sequel. 

For shortage of notation we define 1/a m , 1/b n , 1c a b    and 

F1 /     so that Eq. (20) becomes 

  1 2

F

1
1 (1 )

1

a bb
F a J J

a

       
 (24) 

By comparing 1J  and 2J  with Eq. (22) we obtain 

   

 
 1 2 1

1
, ; ;

a b
J F a b c

c

  
 


 (25) 

and 

   

 
 

   

 

2 2 1

2 1 2 1

1 1
, 1; 1;

1

1
( , , ; ) ( , ; 1; )

a b
J F a b c

c

a b c b
F a b c F a b c

c c

   
   

 

    
       

 (26) 

In Eq. (26) we used the property of the Gamma function ( 1) ( )x x x     and 

relation (A.6). 

Introducing Eq. (25) and Eq. (26) in Eq. (24) and rearranging yields 

   

 
 

   

 

2 1 2 1

F

0F

1 11
(1 ) , ; ; ( , ; 1; )

1
1

!

a b

a b k

k

a b
F F a b c F a b c

c c

a k b kab c k

c k c k k





 

 



     
         

       
   

   


 (27) 

respectively 
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   
 

1 11 1 1 1

1 11 1
0F

1 1 1 1
1 1 1

! 11

m n k

F F

k

m k n k m n k
F

m n k m n km n k

 

  

     


  


          
       

          
  (28) 

The differential RTD can be computed via 

2d ( ) d ( ) d ( )d (1 )

d d d dF

F F F
E



  

  
   
  

 
 (29) 

The result reads 

   

 
 

   

 

3 1

2 1 2 1

F

1
3

2
0F

2 21
(1 ) , ; ; ( 1, ; ; )

1

(1 )
!

a b

a b k

k

a b
E b F a b c a F a b c

a b

a k b kab

a b k k






  

  



   
          

    
 

  


 (30) 

and in terms of   

   
 

1 11 1 1

1 1 F F

3 1 1
0

1
1

!

m n k

k

m k n k
E m n

k m n k


 

 

     
  

 


     
  

    
  (31) 

It can be shown that ( )E   fulfils both conditions of Eq. (4). The non-dimensional 

variance of this RTD is given by 

F

2 2 2

0

( 1) d ( 1) dE E  



    
 

      (32) 

Evaluation of this integral yields 2

   , as is typical for non-diffusive laminar 

flows (Nauman, 1977). 

2.3. Simplified engineering RTD model 

The Gauss hypergeometric function must be evaluated numerically. For 

engineering applications it is therefore useful to approximate the differential and 

cumulative RTD by simpler expressions. A semi-empirical model based on 

characteristic parameters of the RTD (mean, minimum, maximum residence time) 

and on an empirical exponent to permit better fitting was proposed by Ham and 

Platzer (2004). However, the model turned out not to be useful in the present context 

because it involves the maximum residence time which tends to infinity here. So a 
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new simplified model is proposed in this subsection. 

The differential RTD for a planar channel in Eq. (8) and Eq. (31) suggests a fit 

by a family of curves of the form 

1

q

F

p

A
E



 



  
  

 
 (33) 

While this model has four parameters, due to the two conditions from Eq. (4) only 

two parameters can be chosen freely. We select F , because it has as has non-

dimensional first appearance time a clear physical meaning, and p , where we 

require 2p  . The conditions of Eq. (4) yield 

 

 

1

F 2 1

0

2

F 2 1

0

d 1, , ;1 1
1

d 2, , 1;1 1
2

p

p

A
E F p q p

p

A
E F p q p

p





 

  



 



 

  


   






 (34) 

With Eq. (A.2) it follows 

 
   

1
F

1 ( 2)( 1) 11
F F F

1

F

1 ( 2)
1

1 ( 2)( 1)

pp

p

p
E

p p





  

 

   




    
  
      

 (35) 

The corresponding cumulative RTD is given by 

 
   

1 1
F 1F F

2 1 F1

F

1 ( 2)
1 ( 1,1 ( 2)( 1), ; )

( 2)( 1)

pp
F F p p p

p p

  


 

 

 



    
      

     
 (36) 

Since F  is already determined by Eq. (15), only p  remains as free parameter. We 

note that for 1

F1 (1 )p      it is 0q   and the value of F( )E     is infinite, 

while it is finite for larger values of p . Eq. (8) and Eq. (31) suggest 3p  . Then Eq. 

(35) becomes 

1
F 2

F F

3

1
1E





 

 

 

   
  

 
 (37) 
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For F F 0.5    Eq. (37) becomes identical to the RTD for laminar flow in a pipe 

(cf. Eq. (6)), while for F F 2 / 3    it becomes identical to the RTD for laminar 

flow between parallel plates (cf. Eq. (8)). 

3. Results and discussion 

3.1. Laminar flow of a Newtonian fluid in a rectangular channel 

To utilize the results of the previous section, we require relations for the 

dependence of the exponents m  and n  in Eq. (12) on the aspect ratio  . Purday 

(1949) used 2n   and applied the principle of minimum energy dissipation to obtain 

m  for five distinct values of  , see Table 1. Natarajan and Lakshmanan (1972) 

solved the momentum equation by a finite difference method for eight different 

values of the aspect ratio in the range 0.05 1   and matched the velocity profile 

to the empirical Eq. (12). They proposed the relations 

1.4

2 for 0 1/ 3

2 0.3( 1/ 3) for 1/ 3 1

1.7 0.5

n

m



 

 

 
 

   

 

 (38) 

and report good agreement of the respective velocity profiles with the experimental 

data of Holmes and Vermeulen (1968) for different values of the aspect ratio. Table 1 

lists the values of m  and n  which arise from Eq. (38) for certain values of  . 

Once m  and n  are given, the first appearance time F  can be computed by Eq. 

(15). The results for F  are listed in Table 1 and are compared with the exact values 

from the velocity profile of Eq. (10) (see, Shah and London, 1978). Fig. 2 displays 

F  versus   in graphical form and compares the values of Purday (1949) and 

Natarajan and Lakshmanan (1972) with the correlation  
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 2 3 4 5max

m

1 3
1 0.546688 1.552013 4.059427 3.214927 0.857313

2F

U

U
    


        (39) 

proposed by Spiga and Morini (1994). These authors determined exact values of 

max / mU U  for ten different aspect ratios in the range 0 1   and fitted these data by 

Eq. (39) with an accuracy of 0.06%. Fig. 2 indicates that the values for m  and n  

proposed by Purday (1949) result in good agreement of F  with the exact values 

only for 1/ 3  . Instead, Eq. (38) yields reasonable accurate results for all aspect 

ratios as the approximate values of 1

max m F/U U    are within 0.9% of the exact 

results in Table 1. However, with today’s computer power a careful repetition of the 

study of Natarjan and Lakshmanan (1972) may yield even better fits for m  and n  

and thus F . Here, we use Eq. (30) and Eq. (27) in conjunction with Eq. (38) to 

determine the RTD for different values of the aspect ratio. We denote this RTD as 

the Purday-Natarjan-Lakshmanan (PNL) RTD. For computation of the PNL-RTD the 

Gauss hypergeometric function needs to be evaluated. For this purpose we use the 

FORTRAN program hyp.f of Forrey (1997). 

(appropriate place for Figure 2) 

In Fig. 3 we show the results for the cumulative and differential PNL-RTD for 

rectangular channels with different aspect ratio and compare these curves with the 

RTD for laminar flow in a circular channel and between parallel plates. Interestingly, 

for F   the value of E  is finite for a circular channel but is infinite for the planar 

and rectangular channel, regardless of the aspect ratio. Characteristic for the RTD of 

the rectangular channels is the sharp drop from the infinite value of ( )E   at F   

towards values of less than 1 for F 0.3   . As the aspect ratio decreases from 

unity toward zero, the RTD shifts to the right due to the increase of F  from 0.477 
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toward 0.667, see Table 1. Fig. 3 shows that for a rectangular channel the RTD is the 

widest for a square channel and the narrowest for a planar channel. Notably, the 

difference of the RTDs for a square channel and a rectangular channel with 0.5   

is smaller than that for a rectangular channel with 0.125   and the flow between 

parallel plates. It is also interesting to note that for F   the RTD for a rectangular 

channel with aspect ratio 0.5   is very similar to that for a circular channel. 

Natarajan and Lakshmanan (1972) note that the exponent m  in Eq. (38) 

becomes very large for low values of   so that it is 1 1mZ  except for points near 

the wall. Then Eq. (12) becomes max/ 1 nu U Y  , which is the same as for flow 

between parallel plates. Though not shown in Fig. 3, we evaluated F   as given by 

Eq. (27) for values of   smaller than 0.125. We found that in the absence of 

diffusion the RTD for a rectangular channel becomes virtually identical to that for the 

flow between parallel plates if 0.02  . This result is interesting, since it is known 

that in the presence of molecular diffusion the Taylor dispersion of a flow between 

two infinite plates and in an infinite thin rectangular channel differs by a factor of 

about eight (Doshi et al., 1978; Desmet and Baron, 2002). Thus in the presence of 

diffusion, the very small side walls of the rectangular channel have an enormous 

influence on the dispersion. 

Characteristic for diffusion-free laminar flows is the long tail of the RTD which 

makes all moments of degree two and higher infinite (Nauman, 1977). While in the 

main diagram of Fig. 3 b) the different RTD profiles collapse to a single curve for 

1.5  , the log-log inset graphics shows that the profiles are slightly different for 

large values of  . However, the slope in the rectangular channel is similar to that for 

a circular pipe and parallel plates, which obey a relationship 3E    for large 
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values of  . 

(appropriate place for Figure 3) 

Fig. 3 shows that the RTD gets broader as the aspect ratio increases from zero to 

one, because F  decreases as   increases (cf. Fig. 2). Saxena and Nigam (1983) 

explained the broader RTD in a square channel as compared to a circular channel by 

the fact that - for the same cross-sectional area - the wetted periphery in case of a 

square channel is 2 / 1.128   times higher. This will cause a higher fraction of 

the fluid to be at lower axial velocity. Therefore for the same cross-sectional area and 

volumetric flow rate, the fluid elements flowing at the centre of the tube will move at 

a faster rate to compensate the higher fraction of fluid at lower velocity. If we 

compare a rectangular channel with a square channel of the same cross-sectional 

area, then the ratio between the wetted perimeter of both channels is 

/ 0.5(1 ) /P P    . This ratio is larger than one for 1   and tends to infinity 

for 0  . Thus, for a given cross-sectional area the periphery of a rectangular 

channel is always larger than that of square channel. Nevertheless, the RTD of the 

square channel is broader than that of the rectangular channel. This renders the 

argumentation of Saxena and Nigam (1983) invalid. By Eq. (14) it is F m max/U U   

so that the broadness of the non-dimensional RTD is only determined by the ratio 

between the mean and maximum velocity in the channel. 

We now investigate in how far the exact PNL-RTD can be fitted by the model of 

Eq. (35). For this purpose we first consider a square channel and compare in Fig. 4 

the exact PNL-RTD with the model of Saxena and Nigam (1983) given by the 

derivative of Eq. (11) and with the present model for different values of p , namely 

3p  , 2.8p   and 2.5p  . For a square channel it is 11/ 5m n   and 
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F 121/ 256   so that for 3p   it is 14 /121q   . Therefore the exponent q  in 

model (35) is positive and the RTD is finite for F   whereas the RTD based on 

the Gauss hypergeometric function is infinite, see Fig. 4. For this reason the present 

model with 3p   is not a good fit for a square channel. The condition that the RTD 

is infinite for F   is F F(2 ) / (1 )p     , i.e. for a square channel 2.896p  . For 

2.5p   we obtain 0.44215q  , which is very close to 0.5  (i.e. the exponent for the 

parallel plates case). However, the performance of the model for this value of p  is 

poor, see Fig. 4. The model of Saxena and Nigam performs much better, but has the 

disadvantage that it yields a finite value for F   which is not correct. For 2.8p   

Eq. (35) becomes 

0.10744

2.8

0.39814 0.47266
( ) 1E 

 



  
  

 
 (40) 

Fig. 4 shows that an excellent agreement with the PNL-RTD is obtained by Eq. (40), 

so that this equation is proposed as a simplified model for the diffusion-free RTD in 

a square channel. 

(appropriate place for Figure 4) 

We determined suitable value of p  for seven different values of the aspect ratio 

in the range 0 1   and found that an excellent agreement between the PNL-RTD 

and the simplified model is obtained for all cases when p  is computed as 

2( ) 3 0.4 0.2p       (41) 

Thus, the differential RTD for the diffusion-free laminar flow of a Newtonian fluid 

in a rectangular channel of arbitrary aspect ratio is well described by Eq. (35) when 

m  and n  are computed by Eq. (38), F  by Eq. (15) and p  by Eq. (41). 

In recent years several papers were published where the diffusion-free RTD for 
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laminar flow in small square or rectangular channels is determined by Eulerian CFD 

simulations and Lagrangian tracking of mass-less particles, both for single phase 

flow (e.g. Aubin et al., 2009) and for two-phase flow (e.g. Wörner et al., 2007). 

Aubin et al. (2009) determined the RTD for Newtonian and shear-thinning fluids for 

seven different values of aspect ratios in the range 0.05 1  . In their particle 

tracking method they applied a restitution coefficient of unity to the microchannel 

walls in order to avoid particle trajectories being trapped near the walls, where the 

local velocity is close to zero. They note that less than 2% of the particles are stopped 

between the channel inlet and outlet. For all differential RTD curves obtained, the 

maximum value and the variance 2

  are finite. Aubin et al. (2009) utilize these 

values of 2

  to determine a reactor Peclet number in order to quantify the degree of 

axial dispersion by the laminar flow. From their results they conclude that in order to 

narrow the RTD and to reduce the axial dispersion, microchannels with aspect ratio 

0.3   should be used. While this conclusion is in full accordance with the results 

of the present theoretical study, it is evident that the finite value of 2

  is an artifact. 

It is only due to the neglect of the 2% of particles in near wall regions with very high 

residence time that the value of 2

  is finite and not infinite as it is should be for a 

diffusion-free laminar flow. As a consequence, the values reported by Aubin et al. 

(2009) for the reactor Peclet numbers and the axial dispersion coefficients in 

rectangular channels with different aspect ratio are not physical but are only due to 

deficiencies of particle tracking methods for determining the RTD of diffusion-free 

processes. In the conclusions of his review, Nauman (2008) notes that modern CDF 

codes are actually quite sloppy with respect to calculate the RTD and speculates that 

codes have difficulties with the low velocities near solid boundaries. 

It is evident that for comparison with experimental RTD data obtained by tracer 
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experiments, CFD methods which incorporate diffusion in some way may yield more 

reliable RTD curves than pure convective models. Cantu –Perez et al. (2009) present 

a particle-tracking method which accounts for diffusion by a stochastic random walk 

process, and compare the RTD in rectangular microchannels with and without 

herringbone structures. A recent example for the more traditional way to account for 

the influence of diffusion on the RTD by solving the unsteady chemical species 

transport equation can be found in Adeosun and Lawal (2009), where the RTD in a 

microchannel T-junction is studied numerically and experimentally. 

3.2. Range of validity of convective RTD model 

The results obtained in the previous section may find practical application, 

provided that the assumptions of fully developed flow and negligible influence of 

molecular diffusion are fulfilled. The laminar flow can be considered as fully 

developed if the channel length L  is significantly larger than the entrance length eL . 

Morini (2004) used the approach of McComas (1967) and determined the entrance 

length for laminar flow in a rectangular channel from his numerical results for the 

fully developed velocity profile. We found that the data of Morini (2004) for 13 

different values of the aspect ratio in the range 0 1   can well be fitted the 

relation 

1

e

h h

0.305
0.033 0.0314 1 exp

0.165

L

d Re




   
     

  
 (42) 

Here, hd  is the hydraulic diameter and h h m /Re d U   is the Reynolds number. 

Though experimentally determined values of the entrance length are usually larger 

than suggested by the theory of McComas (1967), Eq. (42) nevertheless indicates 

that the entrance length is much smaller in low aspect ratio rectangular channels than 

in a square channel. 
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We now consider the second assumption, namely that of negligible molecular 

diffusivity D  of the chemical species. A detailed investigation on the influence of 

diffusion on the RTD of laminar flow in a circular pipe is given by Bosworth (1948). 

He notes that axial and radial diffusion modifies the differential RTD in certain ways. 

Due to longitudinal (axial) diffusion, some molecules have a residence time less than 

F  (the first appearance time in the absence of diffusion). Furthermore, the sharp cut-

off at the lower end of the differential RTD curve is replaced by one which is more 

gradual. In addition, as shown by Nauman (1977), the presence of diffusion causes 

an exponential tail of the RTD and reduces all moments to finite values. Bosworth 

(1948) showed that for laminar flow through a straight tube of diameter d  the effect 

of longitudinal diffusion is negligible for F360L t D  and that of radial diffusion 

for F36d t D . The condition for longitudinal diffusion may be readily applied to a 

rectangular channel and yields 

F

h h

129600L

d Pe


  (43) 

where h h m /Pe d U D  is the Peclet number. Transversal diffusion in a rectangular 

channel occurs in y  and z  direction. The more stringent condition for the neglect of 

transversal diffusion arises from the shorter channel dimension. Thus, we replace in 

Bosworth’s criterion d  by 2 (1 ) / 2hh d    and obtain 

2

h

h F

(1 )

5184

L
Pe

d






  (44) 

If we require e10L L  then the conditions (42), (43) and (44) can be combined 

as  

21 2

F

h h h F

0.305 360 1 (1 )
max 0.33 0.314 1 exp ,

0.165 5184

L Sc

Re Sc Re d

 



       
       

      

 (45) 
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Thus, the range of applicability of the present approximate RTD theory depends to a 

large extend on the value of the Schmidt number /Sc v D . For gases and gas 

mixtures the Schmidt number ranges from about 0.2 to 3 (Bird et al., 2002) and the 

conditions in (45) are never fulfilled for laminar flow since the effect of diffusion is 

always significant. For low viscosity liquids like water it is 1000Sc   and the 

conditions of inequality (45) are met over a certain range of Reynolds numbers, see 

below. For liquid mixtures values of Sc  up to 37000 are observed (Shaw and 

Hanratty, 1977) while for high viscosity liquids values as high as 61.4 10Sc    are 

reported (Trivedi and Vasudeva, 1974). Then, the range of validity of the pure 

convective RTD theory is further extended. 

From Eq. (45) we have three conditions that must be simultaneously fulfilled so 

that the diffusion-free RTD theory may be applied. A fourth condition arises from the 

demand that the flow is laminar. The question of laminar/turbulent transition of 

liquid flows in microchannels has motivated are large number of experimental 

studies which are discussed controversially in literature, see Hetsroni et al. (2005) for 

a review. Recent experiments performed by Wibel and Ehrhard (2009) in smooth 

rectangular microchannels with three different aspect ratios (1, 0.5, 0.2) show that 

similar to macroscopic channels  the laminar/turbulence transition occurs in the 

Reynolds number range 19002200. However, for aspect ratios departing from unity, 

the onset of turbulence occurs at larger values of hRe , and the width of the transition 

range increases. This implies that there exists no unique transition range for the three 

microchannels of different aspect ratio (Wibel and Ehrhard, 2009). In the sequel we 

assume therefore that the flow is laminar for h 1900Re  . 

In a log-log representation with h/L d  as abscissa and hRe  as ordinate, the three 

conditions in (45) and that of laminar flow represent four lines, which enclose an 
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area where the present convective RTD model may be used. In Fig. 5 we display this 

area for a square channel and for parallel plates for 1000Sc  . It appears that the 

assumption of negligible transversal diffusion defines an upper limit for h/L d , while 

negligible longitudinal diffusion is the relevant lower limit for h/L d  at small values 

of hRe  and fully developed flow at large values of hRe . It appears that with decease 

of   the range of applicability of the convective RTD model shifts to larger values 

of hRe  and lower values for h/L d . However, the range of applicability of the pure 

convective RTD model is rather limited when the criteria of Bosworth (1948) are 

applied. 

A simple comparison of the diffusive and convective time scales indicates that 

the effects of longitudinal and transversal diffusion are negligible for h h/ 1/L d Pe  

and 2

h h/ (1 ) / 4L d Pe , respectively. Probstein (2003) uses a ratio 10:1 to define 

“large/small compared with”. The conditions (43) and (44) from Bosworth’s analysis 

are, however, much more stringent and suggest a ratio of up to 86400:1 and 864:1 for 

longitudinal and transversal diffusion, respectively. If we adopt for the longitudinal 

direction a ratio of 1:10000 and for the transversal direction a ratio of 250:1 then the 

conditions (45) become 

1 2

2

h h h

0.305 1000 1 (1 )
max 0.33 0.314 1 exp ,

0.165 1000

L
Sc

Re Sc Re d

 
      

      
    

 (46) 

These conditions are much less restrictive than those in Eq. (45) so that the range 

of applicability of the diffusion-free RTD theory is enlarged, see Fig. 5. We expect 

that conditions (46) are sufficiently accurate for engineering applications, so that 

they can be used to estimate for given values of Sc  and h/L d  the range of Reynolds 

numbers where the diffusion-free theory may be applied. 
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(appropriate place for Figure 5) 

4. Conclusions 

From the present theoretical investigation the following conclusions can be drawn: 

1. Eq. (28) and Eq. (31) in combination with Eq. (38) and Eq. (15) represent 

a reasonable accurate approximation to the cumulative and differential 

diffusion-free RTD for fully developed laminar flow of a Newtonian fluid 

in a straight rectangular channel with arbitrary aspect ratio. Alternatively, 

the simplified model given by Eq. (35) can be used in combination with 

Eqs. (38), (15) and (41). 

2. For the fully developed flow of a Newtonian fluid in a rectangular 

channel there is a narrowing of the RTD as the aspect ratio decreases 

form unity (square channel) to zero (parallel plates). For mixing 

applications, a narrow RTD is preferred so low aspect ratio channels are 

recommended. 

3. The criteria of Eq. (46) define conditions where the present RTD theory 

for diffusion-free fully developed laminar flow in a rectangular channel is 

valid. These criteria can be used to estimate the valid Reynolds number 

range from given values of the Schmidt number and the ratio between 

channel length and hydraulic diameter. While the diffusion-free RTD 

theory is not valid for gas flows, it is a reasonable approximation for 

liquid flows where the Schmidt number is large. 

4. The present theory is not restricted to Newtonian fluids. Instead the 

results may readily be utilized to compute the RTD of any fully 
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developed laminar flow in a rectangular channel, whose velocity profile 

can be described or adequately fitted by Eq. (12). 

5. The method presented in Section 2.2 for determining the cumulative RTD 

from a given cross-sectional velocity profile may be applied for laminar 

flow in straight channels with other cross-sectional shape as well. While 

it may seldom be possible so solve the resulting integrals analytically, 

this can be done numerically. The family of RTD curves proposed in Eq. 

(35) may then be used to fit the numerical data. 
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Notation 

 

A  area of channel cross section, m2 

a  parameter in Gauss hypergeometric function, 1/a m , dimensionless 

b  parameter in Gauss hypergeometric function, 1/b n , dimensionless 

c  parameter in Gauss hypergeometric function, 1c a b   , dimensionless 

d  diameter of circular pipe, m 

hd  hydraulic diameter of rectangular channel, h 4 / ( )d hw h w  , m 

D  diffusion coefficient, m2/s 

E  differential RTD function, 1/s 

E  non-dimensional differential RTD function, mE t E  , dimensionless 

E  model RTD function, dimensionless 

F  cumulative RTD function, dimensionless 

2 1F  Gauss hypergeometric function 

h  channel half-height, m 

L  channel length, m 

eL  entrance length, m 

m  exponent in the Purday velocity profile, dimensionless 

n  exponent in the Purday velocity profile, dimensionless 

hPe  Peclet number, h h m /Pe d U D , dimensionless 

Q  volumetric flow rate, m3/s 

hRe  Reynolds number, h h m /Re d U  , dimensionless 

Sc  Schmidt number, /Sc D , dimensionless 

t  time or residence time, s 
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Ft  first appearance time, s 

mt  mean residence time, s 

u  axial velocity, m/s  

maxU  maximum axial velocity, m/s 

mU  mean axial velocity, m/s 

V  reactor volume, m3 

w  channel half-width, m 

y  co-ordinate in channel cross-section, m 

Y  Non-dimensional co-ordinate in channel cross-section, /Y y h , dimensionless 

z  co-ordinate in channel cross-section, m 

Z  Non-dimensional co-ordinate in channel cross-section, /Z z w , dimensionless 

Greek letters 

, ,    general parameters in Gauss hypergeometric function, dimensionless 

  Gamma function 

  non-dimensional residence time, m/t t  dimensionless 

F  non-dimensional first appearance timedimensionless 

 
F1 /    , dimensionless 

  velocity ratio, max F/ /u U    , dimensionless 

  kinematic viscosity, m2/s 

2

  variance of differential RTD, dimensionless 

  aspect ratio, /h w  dimensionless 
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Subscripts and superscripts 

F first appearance 

max maximum value 

m mean value 

  constant value of   

 circular channel 

 square channel 

 rectangular channel 

 planar channel 

Abbreviations 

RTD residence time distribution 

PNL Purday-Natarajan-Lakshmanan 
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Appendix: Properties of the Gauss hypergeometric function 

In this Appendix we list some properties of the Gauss hypergeometric function 2 1F . 

For further information we refer to textbooks, e.g. Andrews (1998) and Andrews et 

al. (1999). Special values of the Gauss hypergeometric function are 

 2 1 , ; ;0 1F      (A.1) 

and by the Gauss hypergeometric theorem 

 
   

   
2 1 , ; ;1F

   
  

   

   

   

 (A.2) 

The rule for differentiation of the Gauss hypergeometric function is 
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For the latter two identities see Eq. (9.14) and (9.15) in the book of Andrews (1998). 

From Oberhettinger (1972) it is by Eq. (15.2.23) 
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and by Eq. (15.2.25) 
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Introducing Eq. (A.4) in Eq. (A.5) gives 
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Figure captions 

 

Fig. 1: Sketch of rectangular channel with dimensions and co-ordinate system. 

 

Fig. 2: Dependence of the non-dimensional first appearance time F  on the aspect 

ratio  . Comparison of the approximations by Purday (1949) and Natarajan and 

Lakshmanan (1972) with exact values (Shah and London, 1978) and the fitting curve 

of Spiga and Morini (1994). 

 

Fig. 3: RTD curves for laminar flow in circular and rectangular channels with 

different aspect ratio: cumulative RTD (a) and differential RTD in linear (main 

figure) and log-log scale (inset figure) (b). 

 

Fig. 4: Non-dimensional differential RTD for a square channel. Comparison of the 

PNL-RTD (Eq. (31)) with the correlation of Saxena and Nigam (1983) (derivative of 

Eq. (11)) and with the present simplified model (Eq. (37)) for three different values 

of p . 

 

Fig. 5: Range of validity (enclosed area) of pure convective RTD theory for 

1000Sc   and rectangular channels with different aspect ratio (s.l.d. = significant 

longitudinal diffusion). 
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Figures 

 

 

Fig. 1: Sketch of rectangular channel with dimensions and co-ordinate system. 
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Fig. 2: Dependence of the non-dimensional first appearance time F  on the aspect ratio  . 

Comparison of the approximations by Purday (1949) and Natarajan and Lakshmanan (1972) 

with exact values (Shah and London, 1978) and the fitting curve of Spiga and Morini (1994). 
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Fig. 3: RTD curves for laminar flow in circular and rectangular channels with different aspect 

ratio: cumulative RTD (a) and differential RTD in linear (main figure) and log-log scale (inset 

figure) (b). 
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Fig. 4: Non-dimensional differential RTD for a square channel. Comparison of the PNL-RTD 

(Eq. (31)) with the correlation of Saxena and Nigam (1983) (derivative of Eq. (11)) and with 

the present simplified model (Eq. (37)) for three different values of p . 
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Fig. 5: Range of validity (enclosed area) of pure convective RTD theory for 1000Sc   and 

rectangular channels with different aspect ratio (s.l.d. = significant longitudinal diffusion). 
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Tables 

 

Tab. 1: Exponents m  and n  from Purday (1949) and Eq. (38) by Natarajan and 

Lakshmanan (1972) and comparison of the respective values of F  with exact data 

from Shah and London (1978) for different values of the aspect ratio  . 

 

  1/   

Variable Reference 1 2 3 4 5 10  

m 

Purday  2.37 3.78 5.19 6.60 13.60  

N&L 2.2 3.02 4.03 5.18 6.46 14.26  

n 
Purday 2 2 2 2 2 2 2 

N&L 2.2 2.05 2 2 2 2 2 

 Purday  0.469 0.527 0.559 0.579 0.621 0.667 

F  N&L 0.473 0.505 0.534 0.559 0.577 0.623 0.667 

 Exact (S&L) 0.477 0.502  0.564  0.625 0.667 

 


