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Abstract 

This paper presents a computational study of the co-current downward Taylor flow of gas 

bubbles in a viscous liquid within a square channel of 1 mm hydraulic diameter. The three-

dimensional numerical simulations are performed with an in-house computer code which is 

based on the volume-of-fluid method with interface reconstruction. The computed (always 

axi-symmetric) bubble shapes are validated by experimental flow visualizations for varying 

capillary number. The evaluation of the numerical results for a series of simulations reveals 

the dependence of the bubble diameter and the interfacial area per unit volume on the 

capillary number. Correlations between bubble velocity and total superficial velocity are also 

provided. The present results are useful to estimate the values of the bubble diameter, the 

liquid film thickness and the interfacial area per unit volume from given values of the gas and 

liquid superficial velocities. 

 

Topical Heading: Fluid Mechanics and Transport Phenomena 

Key Words: Taylor flow, mini-channel, multiphase monolith reactor, interfacial area 

per unit volume, computational fluid dynamics 

 

Introduction 

The hydrodynamics of gas-liquid two-phase flow in narrow channels has attained 

increasing interest within the last decade not only for nuclear reactors, power electronic 

devices and compact heat exchangers but also for chemical multiphase reactors such as 

monolithic reactors1 and micro-structured reactors2. While for the latter application channel 

dimensions are typically on the order of 100 µm, for heterogeneous catalyzed gas/liquid 

reactions channel dimensions are often on the order of 1 mm. Monolith reactors typically 



3 

 

consist of parallel, straight mini-channels with square cross section and with hydraulic 

diameters in the range of 0.5 to 3 mm. This size guarantees a reasonable balance between 

pressure drop and catalytic active area as well as mechanical stability. The most attractive 

gas/liquid flow regime for monolith reactors is Taylor flow due to the high gas/liquid and 

overall gas/liquid/solid mass transfer rates. The term Taylor flow was introduced by Irandoust 

and Andersson3 and refers to a special case of slug flow where the bullet-shaped bubbles 

(Taylor bubbles4) are separated by liquid slugs with no gas entrained. There is only a thin 

liquid film between the elongated part of the gas bubble and the channel wall. Other 

designations frequently used in literature for this type of flow are segmented flow and bubble 

train flow. 

While on an industrial scale monolith reactors operated in Taylor flow are nowadays 

used, for example, for the production of hydrogen peroxide5, they have been proposed as a 

possible reactor for Fischer-Tropsch synthesis6,7. Recent measurements during Fischer-

Tropsch synthesis showed enhanced reaction rates for a fixed-bed reactor with monolithic 

catalyst in the Taylor flow regime as compared to a stirred tank reactor with suspended 

powder catalyst8. Furthermore, higher C5C18 liquid fractions are obtained by conducting the 

Fischer-Tropsch reaction in a monolith catalyst with straight flow channels rather than a 

packed-bed of catalyst particles9. These results are attributed to the advantageous mass 

transfer characteristics of the monolith reactor in the Taylor flow regime. Various aspects of 

gas-liquid two-phase flow in structured packings, monolith reactors, and mini-channels are 

discussed in recent review papers by Pangakar et al.10, Kreutzer et al.11, and Angeli and 

Gavriilidis12. According to the latter review, the hydrodynamics of developed Taylor flow in 

circular channels is largely understood while more information and predictive models are 

needed for non-circular channels. 
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From an ideal point of view, the Taylor flow should consist of bubbles of identical size 

and shape that move along the channel with the same axial velocity and are separated from 

each other by liquid slugs of uniform length. The hydrodynamics of such a uniform bubble 

train flow is fully described by a unit cell which consists of one gas bubble and one liquid 

slug. Uniform bubble train flow allows estimation of the behavior of a single channel as well 

as the entire multichannel reactor by numbering-up the relevant transport phenomena of the 

unit cell. In technical multichannel applications, however, uniform bubble train flow is hardly 

achieved, because the bubble generation often leads to a distribution of bubble sizes13. 

For a better understanding of the basic hydrodynamic phenomena, experiments on Taylor 

flow are often performed in visually accessible single channels. Thulasidas et al.14 determined 

relations for main mass transfer parameters such as bubble size and shape, bubble velocity, 

and volume fraction of the gas on the basis of the superficial flow rates of gas and liquid. 

They considered co-current upward Taylor flow inside capillaries of circular and square cross 

section with hydraulic diameter of 2 mm. Recently, Tsoligkas et al.15 investigated the 

differences between up-flow and down-flow hydrodynamics in a single channel. In their 

experiments they considered the flow of water or an isopropanol/water mixture and air in 

square glass capillaries of 1.5 mm and 2 mm hydraulic diameter. In a follow up study16 they 

found for a capillary reactor with circular cross-section and diameter 1.69 mm significantly 

higher liquid-solid mass transfer rates for up-flow compared to down-flow. 

There exist a limited number of numerical studies on single Taylor bubbles or Taylor 

flow in small non-circular channels17-21. Commercial CFD codes, which apply the volume-of-

fluid (VOF) method for tracking the gas-liquid interface, are often used for numerical 

investigations. However, VOF methods without interface reconstruction have strong 

deficiencies22, and only VOF methods with geometric interface reconstruction give reliable 

and consistent results23. Many computational studies are difficult to be validated 
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quantitatively by experiments. Often, validation is restricted to integral flow quantities as 

functions of the capillary number. Examples are the ratio between bubble velocity and total 

superficial velocity and the non-dimensional relative bubble velocity. For validation of the 

computed bubble shape in many cases the maximum diameter of axi-symmetric bubbles is 

available only. In experiments, the data are usually obtained for a range of bubble and liquid 

slug lengths. An exact representation of the experiment in the computation is hardly possible, 

which allows qualitative comparison only. 

This paper presents a combined experimental and numerical investigation of the co-

current downward Taylor flow in a glass mini-channel having a square cross section of 1 mm 

× 1 mm. The fluids considered are nitrogen as gas and squalane (C30H62) as continuous liquid 

phase. Squalane is a viscous liquid and as an inert species serves as good solvent for Fischer-

Tropsch products 8,24. In the experiments, the gas and liquid superficial velocities are in the 

ranges of 0.050.2 m/s and 0.017–0.1 m/s, respectively. High-speed CCD camera images are 

used to roughly estimate the axial length of a unit cell and the gas holdup within the unit cell. 

Based on these parameters, a series of transient three-dimensional numerical simulations with 

a volume-of-fluid method are performed for two different values of the axial length of the unit 

cell and two different gas holdups within the unit cell. Comparisons of the experimentally 

obtained and computed gas bubble shapes serve as detailed validation of the numerical 

method and the in-house computer code. The numerical data are then used to analyze various 

flow quantities. 

Experimental section 

A test system was designed for the investigation of the gas-liquid two-phase flow consisting 

of a capillary setup and an image recording setup. The downward gas-liquid two-phase flow 

was studied in a square mini-channel made of glass (Hilgenberg GmbH). The inner and outer 
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dimensions of the square mini-channel were 1 mm  1 mm and 1.65 mm  1.65 mm, 

respectively. The length of the mini-channel was 300 mm, i.e. 300 times the hydraulic 

diameter. We assumed that this is sufficient for the flow to be fully developed after half of the 

length of the mini-channel. The mini-channel was embedded in transparent resin to enhance 

the mechanical strength and resistance to pressure. In test runs, the embedded mini-channel 

resisted pressure up to 60 bar; in this study, the experiments were performed at a pressure of 

20 bar. A simplified schematic diagram of the experimental setup is given in Figure 1 (for a 

detailed version including the complete instrumentation see Bauer25). The liquid was supplied 

from a tank and its flow rate was controlled by a high performance liquid chromatography 

(HPLC) pump (Knauer, model: WellChrom K-1800). The gas was supplied from a 

compressed gas cylinder and the flow rate was adjusted by a mass flow controller (Brooks, 

model: 5850 E or Bronkhorst, model F-232M). The gas and liquid were mixed together in a 

V-shape micro-mixer (Forschungszentrum Karlsruhe, IMVT). The micro-mixer consists of 

675 microchannels with cross-sections of 100 µm  70 µm for each fluid passage. The 

pressure within the mini-channel was adjusted with an overflow valve and measured at the 

channel exit. The gas-liquid separator was used to recycle the liquid. Temperature indicators 

provided the inlet and outlet temperatures while micro heat-exchangers could be used for 

experiments at elevated temperatures; in this study, all experiments were conducted at 25 °C. 

In the event of failure, the operator and the apparatus were protected by check valves, non-

return valves and a safety valve. Downward gas-liquid two-phase flow was visualized using a 

high-resolution high-speed CMOS camera (VDS Vosskühler Gmbh, model: HCC 1000) 

placed at the center of the mini-channel. The high-speed camera system consists of a high-

resolution CMOS camera, an IEEE1394 interface as well as control software for a PC under 

Windows. The image rate can be set at up to 462 frames per second (fps) with a resolution of 
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1024  1024 pixel or set up to 1825 fps with a resolution of 1024  256 pixel. Once recorded, 

the data are transferred from the camera memory to a laptop computer via an IEEE1394 

interface. The images are stored on the PC in bitmap file format. The embedded mini-channel 

was illuminated stroboscopically (Elmed Messtechnik, model: 06100016) with an exposure 

time of 10 µs. The resolution adjusted was 1024  256 pixels with a pixel size of 13.75 µm  

13.75 µm for all experiments. A recorded image showed 14 mm of the mini-channel length. 

The experiments were performed at a pressure of 20 bar for three different liquid 

superficial velocities (JL=0.017, 0.05 and 0.1 m/s) and for three different gas superficial 

velocities (JG=0.05, 0.1 and 0.2 m/s), resulting in nine different parameters sets. The total 

superficial velocity G LJ J J   was in the range of 0.0670.3 m/s while the volumetric flow 

rate ratio G /J J   was in the range of 0.3330.922. As shown in Figure 2 (a), Taylor flow 

occurred for all parameters studied. However, there exist considerable variations of the bubble 

length, the liquid slug length and the unit cell length for the different flow parameters. 

Numerical simulation 

Numerical method 

The computations are performed with an in-house computer code, called TURBIT-VOF, 

which was developed at the Forschungszentrum Karlsruhe (FZK). This code solves the 

Navier-Stokes equation with surface tension term in non-dimensional single field formulation 

for two incompressible Newtonian fluids with constant viscosity and coefficient of surface 

tension on a regular staggered Cartesian grid by a finite volume method. All spatial 

derivatives are approximated by central differences. Time integration is performed by an 

explicit third order Runge-Kutta method. A divergence free velocity field at the end of each 

time step is enforced by a projection method, in which the resulting Poisson equation is 
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solved by a conjugate gradient technique. The dynamic evolution of the interface is computed 

by a volume-of-fluid method with piecewise planar interface reconstruction. For further 

details about the governing equations and the numerical method we refer to Ghidersa et al.17 

and Öztaskin et al.26. 

Numerical and physical parameters 

In this section we present the computational set-up and the numerical and physical 

parameters for the simulations of co-current downward Taylor flow of squalane/nitrogen in a 

square vertical channel with side length W = 1 mm. Since the physical properties of squalane 

at a pressure of 20 bar are not available to our knowledge, in the simulations the known 

properties at standard conditions are taken, which are L = 802 kg/m3, L=0.029 Pas, and  

= 0.0286 N/m. Thus, the viscosity of squalane is about 30 times as much as that of water. For 

nitrogen at a pressure of 20 bar G = 23.6 kg/m3 and G=0.01804 mPas are used in the 

simulations. The ratio of hydraulic diameter to Laplace length, L G/ ( ( ))g     , is 

h / 0.517D   , which corresponds to an Eötvös number of 

2 2

h L G h( / ) ( ) / 0.267Eo D g D       . These values indicate that gravitational effects 

may not be neglected in a millimeter size channel, see also Tsoligkas et al.15. 

For the computational set-up, we follow the procedure of our previous papers17,19 and 

consider one unit cell, which consists of one gas bubble and one liquid slug. We use in axial 

(vertical) direction periodic boundary conditions to mimic the influence of the trailing and 

leading bubble in Taylor flow.  No-slip boundary conditions are applied at the four lateral 

walls of the square channel. There are two important parameters which have to be fixed in this 

set-up for any simulation run: the gas holdup in the unit cell (G) and the axial length of the 

unit cell (Luc). The latter length is given by the distance from the nose of one bubble to that of 
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the next bubble. Figure 2 (a) indicates a considerable variation of both, Luc and G in the 

experiment. Since long unit cells are computationally expensive, we restrict the present study 

to two medium values of the unit cell length, namely Luc/W = 4 and 6. These values are typical 

for values of   in the range of 0.5 0.8  in the experiments. We also consider two different 

values for the gas holdup, namely G = 0.2 and 0.4. This results in four different combinations 

of both parameters. 

For all cases, a uniform Cartesian grid consisting of cubic mesh cells was used, with y 

denoting the axial (vertical) direction and x and z the wall-normal directions. The mesh size h 

is determined as follows: A value for BU  was estimated from the experimental movies and 

the corresponding capillary number, L B /Ca µ U  , is computed. Then, based on Ca the 

bubble diameter BD  (i.e. the maximum bubble dimension in a horizontal direction) and the 

liquid film thickness LF B( ) / 2W D    were estimated from the experimental results of 

Thulasidas et al.14 (for upward flow). From our experience with previous simulations17,19,23 we 

know that about 3 to 4 mesh cells are at minimum required to resolve the liquid film. This 

yields a first estimate for h. In the present simulations Ca is in the range of 0.0450.66 and 

the values of DB/W are in the range of 0.80.95. The thickness of the liquid film LF /W  is 

then in the range of 0.10.025. A grid size of h/W  0.030.008 is therefore required to 

resolve the liquid film by three mesh cells. The higher value corresponds to a grid with 30  

30 mesh cells per channel cross section while the lower value requires 120  120 mesh cells. 

However, such a fine grid cannot be afforded if a series of simulations are to be performed. 

Therefore, as a compromise a grid size of h/W = 1/80 was chosen. For the small domain with 

non-dimensional size Lx / W  Ly / W  Lz / W = 1  4  1 this resulted in a grid with 80  320 

 80 mesh cells while for the large domain (1  6  1) a grid with 80  480  80 mesh cells 
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and thus about 3106 mesh cells in total were used. Here, xL , yL  and zL  denote the 

dimensions of the computational domain. The time step width was constant for each case and 

in the range of 0.17  0.4 s. 

The initial phase distribution of the simulations was defined by placing an elongated 

axisymmetric bubble of volume B G x y zV L L L  on the channel axis. The initial velocity field 

for both phases was given by fluids at rest, or, to save CPU time, by a constant axial velocity, 

or by a parabolic axial velocity profile within the channel cross-section (which was axially 

uniform). Starting from these initial conditions, the flow is driven by a constant source term in 

the axial momentum equation. This source term corresponds to the axial pressure drop along 

the unit cell. This two-phase pressure drop was not measured in the experiments. Therefore, 

for the simulations an estimated value was used, which accounts for the hydrostatic pressure 

difference and the pressure drop across the liquid slug but neglects the pressure drop along the 

bubble. In the transient simulations the evolution from the initial velocity field and prescribed 

bubble shape toward a fully developed Taylor flow was computed. Fully developed flow was 

assured by recording the mean axial gas and liquid velocities in the computational domain and 

continuing the simulation till both velocities approach constant terminal values. In the present 

paper only these fully developed flow results and the corresponding computed steady bubble 

shapes are discussed. To save CPU time, for some cases a new transient simulation was 

started from an already fully developed case. For that purpose the driving pressure gradient of 

the fully developed case was increased (or decreased) and the simulation was continued till 

constant terminal mean gas and liquid axial velocities were obtained again. 

At this point, we note a distinct difference between the experiments and the simulations. 

In the experiments, the flow rates are specified and the unit cell length, the gas-holdup and the 

pressure drop adjust accordingly. In contrast, in our simulations the length of the unit cell, the 
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gas holdup, and the pressure drop were fixed and the flow rates adjust accordingly. While the 

present simulation set-up is convenient to computationally mimic Taylor flow, it makes a real 

1:1 recalculation of certain experimental conditions difficult. 

In Table 1, we list the parameters of all simulation runs and the resulting superficial gas 

and liquid velocities. The terminal values of the capillary and bubble Reynolds numbers are 

given as well. Both are related in terms of B L h B L/Re D U La Ca    , where 

2

L h L/La D   is the Laplace number which is constant here (La = 27.27). In the numerical 

simulations, the capillary number was in the range of 0.045 ≤ Ca ≤ 0.66 while the range of the 

bubble Reynolds number was 1.22 ≤ ReB ≤ 17.9. The range of the Weber number was 0.055 ≤ 

We ≤ 11.7, where 2

L h B B/We D U Re Ca    . In a square channel, the bubble shape is axi-

symmetric in any axial cross-section for Ca  0.04. For Ca < 0.04 the bubble becomes non-

axisymmtric as it advances into the corners of the channel, as found numerically by 

Ratulowski and Chang28 and confirmed experimentally for co-current upward flow by 

Thuladisas et al.14. So, all present simulations correspond to the axi-symmetric bubble shape 

regime. 

Results 

In this section, we present and discuss the results of the experiments and numerical 

simulations. We are in particular interested in the influence of the capillary number on various 

quantities. First, the computed bubble shapes are compared with those from experiments and 

then relations between characteristic velocities of Taylor flow are considered. 

Influence of capillary number on bubble shape 

Figure 2 (b) shows the different gas and liquid superficial velocities in the experiments 

and simulations. Three cases were identified, for which the combination (JL, JG) was similar 
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in experiment and simulation; the corresponding experimental values are (0.017 m/s, 0.05 

m/s), (0.05 m/s, 0.1 m/s), and (0.1 m/s, 0.2 m/s). In Figure 3, we compare the bubble shapes 

of these experiments with that obtained in simulations with Luc = 6 mm for similar values of 

(JL, JG). Unfortunately, in the experimental images only the external wall border of the 

transparent mini-channel (1.65 mm) is visible, while the inner wall border (1 mm) cannot be 

recognized. In the numerical visualizations both, the inner and external wall borders of the 

mini-channel are indicated by lines. To allow for a reasonable visual comparison of the 

experimental and numerical images in Figure 3, the images are scaled by the external 

dimension of the mini-channel. Figure 3 shows that the change of the bubble shape, that is 

associated with an increase of the total superficial velocity in the experiment, is well 

reproduced by the numerical simulations. This agreement holds in particular for the shape of 

the bubble front and bubble back. In Figure 4 we compare the computed bubble shapes for all 

cases. This figure and Figure 3 show that with increasing value of Ca the bubble front 

becomes more pointed while the bubble rear becomes more flat. These results are in 

agreement with those of Taha and Cui18 who found that bubbles acquire spherical ends at low 

Ca, while the shape at the back of the bubbles changes from convex to concave at high Ca. 

This behavior is similar to that in circular channels27 and was also found in equi-triangular 

capillaries20. 

After this visual verification we use the simulations to evaluate data that have not been 

measured, e.g. the bubble diameter and the interfacial area per unit volume. In Figure 5, we 

show the ratio B /D W  as function of the capillary number. It is well known11,12 that the liquid 

film thickness increases with increasing Ca , hence the bubble diameter decreases. The 

numerical results in Figure 5 show that B /D W  depends not only on Ca  but also on the 

bubble size. The latter can be quantified by the volume-equivalent bubble diameter, 
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1/3

eq B(6 / )D V  , where 2

B G ucV L W . We note that for semi-infinite bubbles, the liquid film 

thickness and thus the bubble diameter is independent of the bubble length29,30. Hence, for 

eq /D W >>1 the ratio B /D W  should become independent of the bubble size and a function of 

Ca  only. Kreutzer et al.11 fitted data of experimental and numerical studies and proposed the 

following correlation for the bubble diameter in the diagonal direction of a square channel 

B,diag 0.4450.7 0.5exp( 2.25 )
D

Ca
W

    (1) 

Since in the present simulations the bubble shape is axi-symmetric we compared our 

numerical results for BD  with Eq. (1). Figure 5 shows that the bubble diameter obtained from 

our simulations was in general higher than suggested by Eq. (1). 

For mass transfer applications the interfacial area per unit volume is of great importance. 

In Figure 6 we display the values of i B uc/a A V  and B B B i G/ /a A V a    as evaluated from 

the different simulations as function of the capillary number. The interfacial area per volume 

of the unit cell ia  is, as expected, about two times higher for the cases with G 0.4   than for 

the cases with G 0.2  . For the same value of G , the values of ia  are slightly higher for the 

shorter unit cells. A comparison of all cases, for which the values of ucL  and G  are the same, 

shows that ia  increases slightly as the capillary number increases. The same trend is found for 

Ba . For a given capillary number the value of Ba  increases as G  and uc /L W  decrease. In 

general, larger values of Ba  indicate a higher degree of deformation of the bubble from the 

spherical shape, though Ba  also depends on eqD . Based on the present numerical results we 

propose the following correlation for the interfacial area per unit volume for co-current 

downward Taylor flow in a square mini-channel 
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0.875

i

2.9
a

W


  (2) 

The maximum relative error of this correlation is 10%. 

Influence of capillary number on bubble velocity 

We now investigate the dependence of the bubble velocity on the capillary number. Here, 

we consider the flow of two incompressible phases through a straight channel with constant 

cross section. From mass continuity it follows that the total volumetric flow rate at any axial 

position of the channel is equal to the total volumetric flow rate at the channel inlet31. 

Therefore, for Taylor flow it is slU J , where slU  is the mean axial velocity in the liquid 

slug31. Figure 7 displays the present numerical and experimental results for the velocity ratio 

B B sl/ /U J U U    as function of the capillary number. For the comparison only those 

experimental data are considered where the temporal variations of the bubble and slug length 

and the length of the unit cell are small. Since further experimental data are not available in 

literature for co-current downward flow, we additionally compare our results to those of two 

experiments for vertical co-current upward Taylor flow. Thulasidas et al.14 considered the 

flow of air and silicon oil through a square mini-channel with 2 mm hydraulic diameter. Liu et 

al.32 performed experiments in capillaries with circular and square cross section with 

hydraulic diameter in the range of 0.9  3 mm using air and three different liquids. They fitted 

their experimental data by the correlation 

B

0.33

J

1

1 0.61

U

J Ca



 (3) 

Eq. (3) is valid for 
4

J2 10 0.39Ca   , where J L / /Ca J Ca     is the capillary 

number based on the total superficial velocity. Eq. (3) is equivalent to the following relation 

between   and Ca  
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3

2

( 1)
4.47Ca






  (4) 

This relation, which is valid in the range of 
42.08 10 0.706Ca   , is plotted in Figure 7. It 

can be seen that the present experimental and numerical results for co-current downward flow 

are in the same range as the experimental data for co-current upward flow. However, the 

present numerical results agree better with the data of Thulasidas et al.14 than with the 

correlation of Liu et al.32. 

Relation between bubble velocity and total superficial velocity 

In practical applications the flow rates of the phases are often prescribed so that the 

superficial velocities LJ  and GJ  are given. Then, the total superficial velocity L GJ J J   

and the volumetric flow rate ratio G /J J   are known. Of interest are the resulting bubble 

velocity and the gas volume fraction of the Taylor flow. If either G  or BU  is known, then the 

other quantity can be computed from G G BJ U . Thus, we require a relation between BU  and 

J , such as in Eq. (3), or a relation between G  and J . Knowing BU  or G  one can compute 

the capillary number and then determine the bubble diameter and the liquid film thickness. 

Conversely, these relations can be used to estimate suitable values for LJ  and GJ  to establish 

a certain value of the liquid film thickness. 

In literature, two classical and closely related approaches exist to correlate the bubble 

velocity to the total superficial velocity. In the Nicklin equation33, this relation is given by 

B 1.2 0.35U J gD   (5) 

while in the more general drift-flux model of Zuber and Findlay34 it is 

B 0 G-JU C J U   (6) 
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Here, C0 is the distribution parameter and UG-J is the drift velocity. Thus, Eq. (5) is obtained 

from Eq. (6) by setting 0 1.2C   and by taking the drift velocity to be equal to the buoyant 

rise velocity of a bubble through a stagnant liquid in a tube of diameter D. The parameter C0 

is usually taken equal to the ratio between the maximum liquid velocity (at the axis) and the 

average liquid velocity and then ranges from 1.2 for turbulent flow to approximately 2 for 

laminar flow in a pipe. For mm size channels large variations of the values of C0 and UG-J are 

reported in literature. Ide et al.35 performed experiments for air-water flow in circular and 

rectangular capillaries with hydraulic diameter in the millimeter range. They found that the 

drift velocity is approximately zero, independent of the flow direction. Their experimental 

data are well correlated by B 1.2U J , both for circular and rectangular capillaries and for 

upward and downward flow. In other references C0 varies from 0.85 to 1.38, see the overview 

in Tsoligkas et al.15. The latter authors find that their experimental data for downward flow in 

a square channel (W = 1.5 mm and W = 2 mm) with two different liquid phases (water and an 

isopropanol-water mixture) can be fitted by three correlations where 01.1 1.29C   and 

G-J0.0027 m/s 0.064m/sU    . Notably, G-JU  is non-zero and negative since the bubble 

velocity is taken as positive in the downward direction and the bubbles would rise upwards 

due to buoyancy. In Figure 8, we compare our experimental and numerical results with the 

correlations of Tsoligkas et al.15. For 0.109m/sJ   the present numerical data are well fitted 

by 

 B 1.6 0.005m/s ,U J   (7) 

while for 0.109m/sJ   they are well fitted by 

 B 2.15 0.065m/sU J   (8) 



17 

 

Interestingly, there is no notable influence of the unit cell length and the gas holdup on 0C  

and G-JU . However, 0C  depends on the capillary number. This becomes apparent from Figure 

7, where the ratio B /U J  is not constant but depends on Ca . On one hand side, Eq. (7) and 

Eq. (8) indicate that for squalane the value of 0C  is much higher than for water. On the other 

side both correlations confirm the result of Tsoligkas et al.15 that in downward flow G-JU  is 

non-zero and negative. 

Relation between volumetric flow rate ratio and void fraction 

In this section we are interested in an equation that relates the unknown value of G  to a 

given value of  . We note that G B /U J   so that the ratio G/   is equal to the ratio 

B B sl/ /U J U U  which was investigated previously, see Figure 7. In Figure 9 we compare the 

values of G  and   from the present experiments and simulations with common correlations. 

The solid line corresponds to homogenous flow, where the phases move with the same 

velocity so that G   and sl BU U . The dashed line represents the Armand correlation36 

which was proposed for tubes of conventional size and is given by G 0.833  . From a 

recent experiment37 in a glass microchannel of rectangular cross-section (100 µm  50 µm) it 

was reported that the gas-holdup in nitrogen/water Taylor flow follows the Armand 

correlation. In that experiment UB was variied between 0.24 and 7.12 m/s leading to capillary 

numbers in the range of 0.0030.1 and bubble Reynolds numbers in the range of 20  700. 

The validity of the Armand correlation implies that the liquid film thickness (which was not 

measured in that experiment) is not a function of the bubble velocity. In the present study we 

have much lower bubble Reynolds numbers and find a clear dependence of the liquid film 

thickness (and bubble diameter) on the bubble velocity (and Ca) and the Armand correlation 
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is not valid. The Armand correlation corresponds to a constant ratio G sl B/ / 0.833U U    . 

In the present experiments and simulations, we always have G sl B/ / 0.833U U     as 

shown in Figure 9. In particular, we observe from the numerical simulations that these ratios 

depend on the capillary number, see also Figure 7. With increasing values of Ca  the ratios 

G sl B/ /U U    are decreasing, i.e., the difference between the bubble velocity and the mean 

velocity in the liquid slug is increasing. This behaviour is reasonable, because the bubble 

diameter DB decreases with increasing value of Ca (see Figure 5) and thus the bubble 

occupies a region in the cross-section of the duct with higher average velocity.  

Chung et al.38 found that their data for water-nitrogen flow in a 100 µm circular channel 

and a 96 µm square channel are fitted well by the relation 
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where 1 0.03C   and 2 0.97C   are constants determined from their experiment. Figure 9 

shows that for low Ca our numerical data are closer to the Armand correlation, while they 

shift toward Eq. (9) for larger Ca. We note that Eq. (6) can be recast to give the following 

relation between G  and   

G

0 G-J /C U J


 


 (10) 

This shows that for G-J 0U   the gas holdup does not only depend on   but also on J . The 

maximum value of J  in the present simulations is 0.34 m/s. The corresponding value of G-JU  

is 0.065 m/s, according to Eq. (8). Introducing both values in Eq. (10) and setting  

0C  to 1.6 and 2.15 according to Eq. (7) and (8) yields two straight lines. These two lines 

enclose the shaded area in Figure 9. This area roughly defines the parameter space with 
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respect to G  and   that can be realized for co-current downward Taylor flow of squalane 

and nitrogen in a square mini-channel with 1 mm hydraulic diameter for uc 6mmL  . 

Conclusions 

In the present paper a series of volume-of-fluid simulations of the co-current downward 

Taylor flow of squalane and nitrogen in a square channel with 1 mm hydraulic diameter were 

performed. For verification of the in-house computer code, the computed bubble shapes were 

compared to experimental flow visualizations and good agreement for different values of the 

capillary number was obtained. From the present numerical results, where the bubble shape is 

axi-symmetric and where the capillary number and bubble Reynolds number are in the range 

of 0.045 0.66Ca   and B1.22 17.9Re  , respectively, the following conclusions can be 

drawn: 

With increasing capillary number the liquid film thickness increases and the bubble 

diameter decreases. The curvature of the front meniscus increases with increasing Ca  while 

that of the back meniscus decreases. The interfacial area per unit volume ia  slightly increases 

with increasing Ca  for a fixed gas holdup G . For ia , a power law correlation in terms of the 

volumetric flow rate ratio   is proposed in Eq. (2) that approximates the numerical results 

with an error of less than 10 %. 

The ratio between bubble velocity BU  and total superficial velocity J  increases with 

increase of Ca  and is in the same range as experimental data for co-current upward flow. The 

relation between BU  and J  can be described by a drift-flux model, with different values for 

the distribution coefficient 0C  and the drift velocity G-JU  for values of J  smaller and larger 

than 0.109 m/s, see Eq. (7) and Eq. (8). The values of the distribution coefficient are rather 
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large ( 0 1.6C   and 0 2.15C  ), while the values for the drift velocity are negative for 

downward flow. 

It is found that the relation between G  and   cannot be described by a linear 

relationship such as the homogeneous model or the Armand correlation. For the same value of 

G  different values of   were obtained for different values of Ca . Therefore, improved 

correlations should be developed which take into account the capillary number JCa , which is 

based on the total superficial velocity as velocity scale. 
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Notation 
 

AB = bubble interfacial area, m2 

ai = interfacial area per volume of the unit cell, 1/m 

aB = interfacial area per bubble volume, 1/m 

C0 = distribution coefficient in drift-flux model 

Ca = capillary number, L B /Ca U   

CaJ = capillary number based on velocity J, J L /Ca J   

D = pipe diameter, m 

DB = bubble diameter, m 

Deq = volume-equivalent diameter, m 

Dh = hydraulic diameter, m 

Eo = Eötvös number, 2

L G h( ) /Eo g D     

g = gravitational acceleration, m/s2 

h = mesh width, m 

J  = total superficial velocity, G LJ J J  , m/s 

GJ  = gas superficial velocity, m/s 

LJ  = liquid superficial velocity, m/s 

ucL  = axial length of the unit cell, m 

x y z, ,L L L  = dimensions of the computational domain, m 

La = Laplace number, 2

L h L/La D   

p = pressure difference across the unit cell, Pa 

ReB = bubble Reynolds number, B L h B L/Re D U   

UB = bubble velocity, m/s 

UG-J = drift velocity in drift-flux model, m/s 

Usl = mean axial velocity in the liquid slug, m/s 

VB = bubble volume, m3 

W = inner side length of square channel, m 

We = Weber number, 2

L h B /We D U   

x,y,z = Cartesian co-ordinates, m 
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Greek letters 

  = volumetric flow rate ratio, G /J J   

LF  = liquid film thickness, m 

G  = gas hold-up 

  = Laplace length, m 

  = viscosity, Pa s 

  = non-dimensional bubble velocity, B /U J   

  = density, kg/m3 

  = coefficient of surface tension, N/m 

 

Subscripts 

B = bubble 

G = gas phase 

L = liquid phase 

sl = slug 

uc = unit cell 
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Figures 

 

 

Figure 1. Simplified schematic diagram of the experimental set up. 
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Figure 2. (a) Images with typical flow patterns for the different combinations of gas and liquid 

superficial velocity in the experiment (values of JL and JG are in m/s). (b) Superficial 

velocities JL and JG in experiment (filled circles) and simulation (open squares). The dashed 

lines represent lines of constant J = JL+JG while the dotted lines represent lines of constant  

= JG/J. The three dashed-dotted circles indicate experimental and numerical cases that are 

compared in Fig. 3. 
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Figure 3. Comparison of bubble shape in experiment (left) and simulation (right) for similar 

liquid and gas superficial velocities. (a) (JL, JG)Exp = (0.017 m/s, 0.05 m/s), (JL, JG)Sim = (0.03 

m/s, 0.046 m/s) (case 6_40_ B); (b) (JL, JG)Exp = (0.05 m/s, 0.1 m/s), (JL, JG)Sim = (0.046 m/s, 

0.098 m/s) (case 6_40_ D); (c) (JL, JG)Exp = (0.05 m/s, 0.2 m/s), (JL, JG)Sim = (0.061 m/s, 0.194 

m/s) (case 6_40_ E). For case denotations see Table 1. 
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Figure 4. Lateral view of the three-dimensional bubble shape for all simulation runs. With 

reference to Table 1 the figure shows from left to right cases 4_20_A, 4_20_B, 4_40_A, 

4_40_B, 6_20_A, 6_20_B (top row) and 6_40_A, 6_40_B, 6_40_C, 6_40_D, 6_40_E 

(bottom row).  
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Figure 5. Bubble diameter versus capillary number. Comparison of simulation results with Eq. 

(1) from Kreutzer et al.11. 

 

 

Figure 6. Simulation results for interfacial area per volume of the unit cell (ai=AB/Vuc) and 

interfacial area per bubble volume (aB=AB/VB) as function of the capillary number.  
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Figure 7. Ratio of bubble velocity to total superficial velocity versus capillary number. 

Comparison of present experimental (open circles) and numerical results (filled symbols) with 

experimental data of Thulasidas et al.14 and Eq. (4) according to Liu et al.32. 

 

Figure 8. Comparison of present experimental (+) and numerical results (circles and squares) 

for bubble velocity versus total superficial velocity, and approximation of the numerical 

results by the drift-flux model, Eq. (7) and Eq. (8). The dotted lines correspond to the fitting 

of the experimental data of Tsoligkas et al.15 by the drift-flux model. 
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Figure 9. Gas holdup in the unit cell versus volumetric flow rate ratio. Comparison of the 

present experimental and numerical results with the homogeneous model, the Armand 

correlation36 and Eq. (9) of Chung et al.38. The arrows indicate an increase of Ca in the 

simulations while the two lines enclosing the shaded area correspond to the fitting of the 

numerical data in Figure 8 by Eq. (7) and Eq. (8), respectively. 
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Tables 

Table 1: Overview on parameters and results of all simulation runs. For each case the denotation is as follows: the first and second numbers 

indicate the non-dimensional length of the unit cell Luc/W and the gas holdup G (in %), respectively, while the letter distinguishes cases with the 

same Luc/W and G but different prescribed pressure drop p. 

Case 

 

Luc/W 

[-] 

G 

[-] 

p 

[Pa] 

JL 

[m/s] 

JG 

[m/s] 

 

[-] 

Ca 

[-] 

ReB 

[-] 

DB/W 

[-] 

AB/W2 

[-] 

4_20_A 4 0.2 -199.5 0.0555 0.0236 0.299 0.120 3.26 0.931 4.43 

4_20_B 4 0.2 -754.4 0.2008 0.1292 0.391 0.655 17.86 0.794 4.83 

4_40_A 4 0.4 -199.5 0.0465 0.1002 0.683 0.254 6.93 0.880 8.37 

4_40_B 4 0.4 -245.7 0.0551 0.1517 0.734 0.385 10.49 0.840 8.58 

6_20_A 6 0.2 -337.8 0.0663 0.0310 0.319 0.157 4.29 0.904 6.29 

6_20_B 6 0.2 -753.5 0.1421 0.0839 0.371 0.425 11.60 0.830 6.69 

6_40_A 6 0.4 -62.6 0.0124 0.0177 0.588 0.045 1.22 0.953 11.48 

6_40_B 6 0.4 -168.8 0.0299 0.0462 0.607 0.117 3.19 0.956 11.53 

6_40_C 6 0.4 -230.6 0.0401 0.0671 0.626 0.170 4.64 0.945 11.69 

6_40_D 6 0.4 -267.2 0.0456 0.0984 0.684 0.250 6.81 0.894 12.10 

6_40_E 6 0.4 -373.8 0.0607 0.1938 0.762 0.491 13.40 0.827 12.62 

 


