KIT | KIT-Bibliothek | Impressum

Technical note: Trend estimation from irregularly sampled, correlated data

Clarmann, T. von; Stiller, G.; Grabowski, U.; Eckert, E; Orphal, J.

Abstract (englisch):
Estimation of a trend of an atmospheric state variable is usually performed by fitting a linear regression line to a set of data of this variable sampled at different times. Often these data are irregularly sampled in space and time and clustered in a sense that error correlations among data points cause a similar error of data points sampled at similar times. Since this can affect the estimated trend, we suggest to take the full error covariance matrix of the data into account. Superimposed periodic variations can be jointly fitted in a straightforward manner, even if the shape of the periodic function is not known. Global data sets, particularly satellite data, can form the basis to estimate the error correlations. State-dependent amplitudes of superimposed periodic corrections result in a non-linear optimization problem which is solved iteratively.

Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung - Atmosphärische Spurenstoffe und Fernerkundung (IMK-ASF)
Publikationstyp Zeitschriftenaufsatz
Jahr 2010
Sprache Englisch
Identifikator DOI: 10.5194/acp-10-6737-2010
ISSN: 1680-7316
URN: urn:nbn:de:swb:90-AAA1100801275
KITopen ID: 110080127
HGF-Programm 12.04.01; LK 01
Erschienen in Atmospheric Chemistry and Physics
Band 10
Heft 14
Seiten 6737-6747
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page