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Magnetic properties of 6 nm maghemite nanoparticles (prepared by microwave plasma synthesis) have

been studied by ac and dc magnetic measurements. Structural characterization includes x-ray diffraction

and transmission electron microscopy. The temperature scans of zero field cooled/field cooled (ZFC/FC)

magnetization measurements show a maximum at 75 K. The ZFC/FC data are fitted to the Brown-Néel

relaxation model using uniaxial anisotropy and a log-normal size-distribution function to figure out the

effective anisotropy constant Keff. Keff turns out to be larger than the anisotropy constant of bulk

maghemite. Fitting of the ac susceptibility to an activated relaxation process according to the Arrhenius

law provides unphysical values of the spin-flip time and activation energy. A power-law scaling shows a

satisfactory fit to the ac susceptibility data and the dynamic critical exponent (zv� 10) takes value

between 4 and 12 which is typical for the spin-glass systems. The temperature dependence of coercivity

and exchange bias shows a sharp increase toward low temperatures which is due to enhanced surface

anisotropy. The source of this enhanced magnetic anisotropy comes from the disordered surface spins

which get frozen at low temperatures. Memory effects and thermoremanent magnetization experiments

also support the existence of spin-glass behaviour. All these magnetic measurements signify either

magnetic blocking or surface spin-glass freezing at high and low temperatures, respectively. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4724348]

I. INTRODUCTION

Nanoparticle magnetism is one of the most interesting

fields in magnetism due to its dramatic changes as compared

to bulk magnetism.1–3 Spinel ferrite nanoparticles exhibit a

variety of magnetic phases due to symmetry breaking and

competing exchange interactions on the nanoparticle sur-

face.4,5 Kodama et al. have proposed a model of surface

spin-glass freezing in nickel ferrite nanoparticles due to dis-

order and broken bonds with a concomitant reduction of sat-

uration magnetic moment.6,7 The influence of this disordered

surface layer increases with decreasing particle size taking

into account a shell/core morphology of irregularly frozen

spins in the glassy shell and of collectively ordered spins in

crystalline core.8,9

Maghemite (c-Fe2O3) nanoparticles have been investi-

gated intensively over the last years due to their potential

applications in biomedical diagnostics and therapy, magnetic

data recording and ferrofluids.10–15 c-Fe2O3 is one of the ferri-

magnetic materials ordered with inverse spinel structure, but

with vacancies at the octahedral sites. In spinel ferrite struc-

ture, oxygen forms a face-centered-cubic (FCC)-lattice with

cations distributed over tetrahedral (A) and octahedral (B)

sites. The unit cell of a spinel ferrite consists of 32 oxygen,

16 trivalent iron, and 8 divalent transition metal ions like

nickel (NiFe2O4) or cobalt (CoFe2O4). Due to vacancies and

competing interactions among spins located on different sub-

lattices together with broken bonds, surface spins of maghe-

mite nanoparticles experience frustration and disorder.16 As

the particle size is reduced, disorder and frustration at the

nanoparticle’s surface becomes progressively dominant with

a tendency to form a spin-glass phase.17,18 Winkler et al.8

have reported spin-glass behavior in nickel oxide (NiO) nano-

particles, Peddis et al.9 in fine cobalt ferrite (CoFe2O4) nano-

particles and attributed the spin-glass phase to a random

freezing of surface spins. There are some theoretical models

to separate blocking and surface spin-glass behaviour in nano-

particles but it is not easy to prove it experimentally. In this

article, we will study the blocking state and ordering of the

disordered surface spins of fine maghemite nanoparticles by

analyzing dc and ac magnetic measurements.

II. EXPERIMENT

Fine maghemite nanoparticles have been prepared by

microwave plasma synthesis using a 2.45 GHz microwave

equipment and Fe(CO)5 as precursor material. The complete

synthesis process is described in detail in Ref. 19 and struc-

tural evaluation of the materials (made by the same synthesis

process) is reported elsewhere.20 Spinel structural phase was

identified by x-ray diffraction (XRD) (Bruker D8 Advance
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instrument) using Cu-Ka (k¼ 0.154 nm) radiation at ambient

conditions. Average particle size (6 nm) was evaluated by

Debye-Scherrer’s formula and compared with size-distribution

statistics taken from an image analysis of transmission electron

micrographs (TEM, model number CM20 from FEI with

200 kV acceleration voltage and LaB6 cathode). Magnetic

measurements were taken by using superconducting quantum

interference device (SQUID)-magnetometry (Quantum

Design, MPMS-XL-7) with maximum applied field of 67 T in

the temperature range 4.2–300 K. The ac susceptibility meas-

urements were performed by the same magnetometer in the

frequency range 0.1–1000 Hz and in the temperature range

4.2–300 K. Due to the narrow size-distribution, our prepared

maghemite nanoparticles are good model substances for a reli-

able distinction between freezing and magnetic blocking which

is proved by simulations.

III. RESULTS AND DISCUSSION

Figure 1 shows the XRD diffraction pattern of maghe-

mite nanoparticles. Debye-Scherrer’s formula yields the av-

erage particle size of 6 nm. Figures 2(a) and 2(b) show the

TEM images of maghemite nanoparticles with a magnifica-

tion given by the scale of (a) 10 nm and (b) 2 nm, respec-

tively. Inset of Fig. 2(a) shows the particle size distribution

fitted with log-normal distribution. Average particle size

calculated from such a fit is 6.1 nm with a normalized stand-

ard deviation rD¼ 0.22 which is in agreement with the

XRD analysis. Figure 2(b) shows the TEM image at 2 nm

scale which indicates that the particles are of crystalline

form.

Now we will discuss the magnetic properties of these

maghemite nanoparticles in detail. Figure 3 shows the zero

field cooled hysteresis loops of maghemite nanoparticles at

300 and 4.2 K up to a maximum applied field of 65 T. Coer-

civity (Hc) comes out to be 11 and 546 Oe at 300 and 4.2 K,

respectively. At low temperature frozen surface spins are

pinned on the individual nanoparticle’s surface and experience

strong interactions with core spins. This effect causes a large

increase of coercivity (Hc) at low temperature T¼ 4.2 K.16

Saturation magnetization (Ms) is found to be 42 and

51 emu/g at 300 and 4.2 K, respectively. The values of saturation

magnetization at both temperatures are less than the saturation

magnetization of bulk maghemite (Ms (bulk)¼ 80 emu/g), which

is typical for maghemite nanoparticles due to spin-canting of sur-

face spins. The increase of saturation magnetization (Ms) at low

FIG. 1. X-ray diffraction spectra of maghemite nanoparticles.

FIG. 2. TEM image of maghemite nanoparticles at (a) 10 nm and (b) 2 nm

magnification scale, respectively. Inset in (a) shows the particle size distribu-

tion fitted with log-normal distribution.

FIG. 3. Hysteresis loops of maghemite nanoparticles at temperature T¼ 300

and 4.2 K.
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temperature 4.2 K is due to a decrease of thermal fluctuations of

magnetic moments on the surface.6,7

Figure 4 shows the experimental (solid triangles) and

simulated (hollow circles) zero field cooled/field cooled

(ZFC/FC) magnetization curves under applied field of 50 Oe

of maghemite nanoparticles. For ZFC/FC experimental

measurements, first the sample is cooled in zero field from

room temperature to 4.2 K. Thereafter 50 Oe magnetic field

is applied and magnetic moment is recorded with increasing

temperature to get the ZFC curve. For the FC curve, the sam-

ple is cooled from 300 K under the same 50 Oe field and

magnetic moment is recorded on decreasing temperature.

The ZFC curve reveals a maximum at temperature T¼ 75 K

which is the average blocking temperature (TB) of these

maghemite nanoparticles.

We have also compared our ZFC/FC experimental

results with the theory.21,22 For simulation, we have used the

Néel-Brown relaxation model adopting uniaxial anisotropy.

The assumed log-normal distribution function of particle

sizes is reproduced by a corresponding log-normal distribu-

tion function of blocking temperatures TB,

f ðTBÞdTB ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

2pr2
TB

p 1

TB
exp �

ln 2 TB

hTBi

2r2
TB

 !
dTB: (1)

This is acceptable since the average blocking temperature

hTBi scales with the average particle volume hVi¼phdi3/6.

The quasi-static ZFC/FC- magnetization scans measured by

a SQUID magnetometer rely on a characteristic measure-

ment time sm� 100 s in relation with the atomic spin preces-

sion time s0� 10�10 s,

hTBi ¼
Keff

kBln sm

s0

� � hVi: (2)

According to the model for non-interacting particles, the

ZFC susceptibility is given by23

vZFCðTÞ ¼
Ms

2

3Keff
ln

sm

so

� �ðT
0

TB

T
f ðTBÞdTB þ

ð1
T

f ðTBÞdTB

2
4

3
5:
(3)

For a certain temperature T the first and second term in

Eq. (3) correspond to de-blocked superparamagnetic and fro-

zen blocked particles, respectively.

According to the same model, the FC susceptibility is

given by23

vFCðTÞ ¼
Ms

2

3Keff
: ln

sm

so

� �
1

T

ðT
0

TBf ðTBÞdTB þ
ð1
T

f ðTBÞdTB

2
4

3
5:
(4)

The best fit of the model to experimental ZFC/FC data yields

Keff¼ 9.8� 1005 erg/cc and an average particle size hdi¼ 7 nm.

The increased value of fitted Keff with respect to bulk maghe-

mite KBulk¼ 4.7� 104 erg/cc (Ref. 5) arises from an additional

surface anisotropy caused by random frozen surface spins.7

There is a difference between the experimental and simulated

FC curves. The difference comes because the model assumes

only non-interacting single-domain particles. The experimental

field cooled (FCexp.) curve flats immediately below the blocking

peak but the simulated FC curve (FCsimul.) continues to increase

and flattens at much lower temperatures. The flattening of the

FCexp. curve just below the blocking peak is an indication of the

presence of interparticle and/or surface spin-glass freezing in

these nanoparticles.16–18

To investigate in detail the spin-glass behaviour, we have

measured the frequency dependence of ac susceptibility. For ac

susceptibility measurements, first the sample is cooled from

room temperature to 4.2 K in zero applied field and then ac sus-

ceptibility is measured with increasing temperature. Figure 5(a)

shows the frequency dependence of in-phase ac susceptibility of

maghemite nanoparticles in the frequency range 0.1–1000 Hz

and for ac signal amplitude A¼ 5 Oe.

The ac susceptibility scales with frequency according to

Eq. (5) by replacing sm ! 1/x, with a maximum at a fre-

quency dependent blocking temperature hTBi � TS which

shifts towards higher temperature with increasing frequency.

Arrhenius law is fitted to the temperature dependence of the

ac susceptibility peak and presented in the inset of Fig. 5(b).

Arrhenius law is defined as

s ¼ 1=xp ¼ so : exp
Ea

kBTs

� �
; (5)

where so is the atomic spin flip time, Ea¼KeffV is the activa-

tion energy, Ts is the peak temperature, and kB is the Boltz-

mann constant. It gives unreasonable values for spin-flip

time so¼ 3� 10�18 s and for the activation energy (in Kelvin

units) Ea/kB¼ 3637 K. These wrong findings indicate that

the maximum of ZFC and ac susceptibility does not corre-

spond to only a thermally activated process.

Dynamic scaling law is usually applied to investigate spin-

glass systems. The frequency shift is also fitted to a dynamic

scaling law as defined in Ref. 24 and shown in Fig. 5(b),

FIG. 4. Solid triangles: Experimental ZFC/FC susceptibility curves under

applied field of 50 Oe of maghemite nanoparticles. Hollow circles are simu-

lations of ZFC and FC curves, respectively, under field H¼ 50 Oe using

Eqs. (3) and (4). Simulation parameters are listed in the figure.
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sðf Þ ¼ s� � To

Tsðf Þ � To

� �zv

: (6)

In Eq. (6), s(f) is the frequency dependent relaxation time of

frozen spins, s* is related to the coherence time of coupled

individual spins in the nanoparticle, To is the “static” (f! 0)

spin-glass freezing temperature, “zv” the critical exponent

(ranging from 4–12 for different spin-glass systems25,26),

and Ts(f) is the frequency dependent freezing temperature as

given by the maxima of the v0(T)-plots (see Fig. 5(a)). Scal-

ing law indicates that there is a critical slowing down of

relaxation time near the spin-glass transition temperature To.

We have taken Ts(f) as the maximum of ac susceptibility

curve. The result of the fit is shown in Fig. 5(b). It yields the

transition temperature To¼ 70 K which is in good agreement

with the blocking temperature peak (TB) of the dc measure-

ments (see Fig. 4). The fitted spin flip time is s*� 10�06 s

and zv� 10. The increased value of spin flip time s* is due to

frozen agglomerates of highly disordered and frustrated sur-

face spins which have a much longer relaxation time than

the individual spins. The fitted critical exponent (zv� 10)

falls in the spin-glass regime which indicates the existence

of spin-glass freezing in these maghemite nanoparticles. The

origin of spin-glass freezing in uncoated fine nanoparticles is

the random freezing of disordered and frustrated spins at the

surface of individual nanoparticles.5,16,27

Temperature dependent hysteresis parameters (especially

coercivity) provide additional information about the frozen sur-

face spins and their interactions with the core spins. Figure 6

shows the temperature dependent coercivity (Hc) and the

exchange bias field (Hexc.) of maghemite nanoparticles. Coer-

civity (Hc) is vanishing in the temperature range 75–300 K due

to superparamagnetic de-blocking behaviour which is in agree-

ment with the ZFC/FC measurements (see Fig. 4). Collapse of

coercivity (Hc) is interpreted as thermal de-blocking of the

giant core spin above the blocking temperature TB¼ 75 K.

Therefore in the zero coercivity region, the nanoparticles

behave superparamagnetic and the core spin of every nanopar-

ticle can easily follow the external magnetic field.28 Below the

blocking temperature (T< 75 K), coercivity (Hc) shows a

sharp increase (up to 538 Oe) with decreasing temperature.

This sharp increase is again due to the enhanced surface anisot-

ropy (in accordance with simulation results) and pinning

effects at the nanoparticle’s surface which causes hindrances

for the core spin to follow the external magnetic field.

Freezing of surface spins by cooling in zero field causes

an exchange bias effect (represented by the exchange bias field

Hexc.) which is manifested by a horizontal shift of the hystere-

sis loop upon field cooling of nanoparticles.29,30 The exchange

bias field (Hexc.) experiences a sharp increase at low tempera-

ture and vanishes above 30 K as shown in Fig. 6. The inset

shows a detail of the hysteresis of maghemite nanoparticles

after ZFC and FC (@ 5 T) at temperature T¼ 4.2 K near the

coercive field in magnified view. It verifies the exchange bias

(Hexc.) effect in these nanoparticles. The increased core-shell

interactions are responsible for the sharp increase of the

exchange bias field at low temperatures. As the temperature

increases, the core-shell interaction becomes quenched above

30 K due to start of de-blocking of surface spins. Martı́nez

et al.16 also reported a sharp increase of exchange bias and

coercivity at low temperatures in maghemite nanoparticles.

The presence of exchange bias and sharp increase in coercivity

at low temperatures indicates that the spin-glass freezing

FIG. 5. (a) Frequency dependence of in-phase ac susceptibility of maghe-

mite nanoparticles, (b) fitting of the dynamic scaling law (Eq. (6)) to the fre-

quency dependent ac susceptibility of maghemite nanoparticles. Inset shows

the (unphysical) fitting by Arrhenius law (Eq. (5)).

FIG. 6. Temperature dependence of coercivity (Hc) and exchange bias field

(Hexc.) of maghemite nanoparticles. Inset: Coercivity region of hysteresis

loops after ZFC and FC (5 T) at 4.2 K, respectively. Note the asymmetric

horizontal shift of FC hysteresis loop due to the exchange bias effect.
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(as indicated by fitting of scaling law) comes from the random

freezing of surface spins on the individual nanoparticle surface.

High field irreversible magnetic behaviour of nanopar-

ticles and an opening of hysteresis loop up to the high fields

accounts for an enhanced surface anisotropy. Figure 7 shows

the positive branch of the hysteresis loop at 4.2 K and inset
shows the low temperature region of ZFC/FC magnetization

under applied field of 5 T for maghemite nanoparticles.

The zero field cooled hysteresis loop at 4.2 K is irreversible

up to a field of 5 T which is caused by frozen surface spins at

low temperatures. Inset shows the low temperature region of

the ZFC/FC magnetization under high field H¼ 5 T. ZFC and

FC branches are open even at the highest field 5 T. Again, this

irreversible behavior is due to the addressed surface effects and

in agreement with the simulation results as already discussed.

We have also checked existence of memory effects in our

sample, which are more unique fingerprints of spin-glass behav-

ior.31,32 In the memory experiment, a measuring protocol at two

temperature scans is performed, one is the reference curve and

the other is memory curve (for which the system is halted below

spin-glass temperature for a specified time). To get the reference

curve, sample is zero field cooled from room temperature to

4.2 K in zero applied field and then out-of-phase ac susceptibility

is recorded immediately on increasing temperature. For the

memory curve, the sample is also zero field cooled to a certain

waiting temperature (in our case 35 and 40 K) and halted there

for some specific time (in our case 2 h). After this, the cooling is

continued to 4.2 K and then out-of-phase ac susceptibility is

recorded on increasing temperature.32,33 Here we have measured

the out-of-phase ac susceptibility because it is directly related to

the corresponding relaxation losses in the sample. Any difference

between the reference and memory curve indicates the presence

of a memory effect in the sample. Figure 8 shows the difference

of out-of-phase ac susceptibility (f¼ 10 Hz, A¼ 5 Oe) memory

curve (when the system is halted at 35 and 40 K for 2 h) with

respect to the reference curve.

The difference between the corresponding memory and

reference curve shows a dip near the waiting temperatures (35

and 40 K), which demonstrates the existence of memory effect

of the system onto the earlier stop at the corresponding wait-

ing temperature. Bisht and Rajeev34 have reported memory

and aging effects in fine 5 nm NiO nanoparticles and attrib-

uted them to spin-glass freezing at the nanoparticle’s surface

at low temperatures. In the memory curve, magnetic moment

decreases near the waiting temperature because the system

remembers of its (originally disordered) magnetic state at the

waiting temperature. The waiting temperatures (35 and 40 K)

have been chosen below the onset of spin-glass freezing and

below the turn-on of the coercivity enhancement temperatures

(see Fig. 6). At these temperatures, disorder among surface

spins develops due to an increase of the spin-glass correlation

length on the surface of the particles.

Since the early days of spin-glass research, thermorema-

nent magnetization (TRM) has been discovered as a selective

method to study the magnetic relaxation in spin-glasses. We

have used relaxation of the thermoremanent magnetization at

different temperatures to study the relaxation of core and sur-

face spins.31,33,35 Figure 9 shows the time dependent TRM

of maghemite nanoparticles at different temperatures. For

these measurements, the sample is field cooled in 50 Oe from

room temperature to the measuring temperature (20–150 K)

and thereafter field is switched off and the magnetic moment

is recorded as a function of time.

At 20 K, both surface and core spins are frozen along ran-

dom directions and become blocked along their anisotropy

axes. There is slow-down of magnetization relaxation with

increasing time upon removal of external magnetic field. The

slope of the TRM curve changes near the spin-glass as well as

at the blocking temperature as indicated by rectangles in

Fig. 9. First in the 30–40 K temperature region, the TRM curve

changes with the quench of core-shell interactions which is

consistent with the vanishing exchange bias field (Hexc.) in the

same temperature region (see Fig. 6). Near the blocking tem-

perature (TB¼ 75 K), the surface spins are already de-blocked

from their anisotropy axes, therefore the change of the slope of

TRM curve at this temperature originates from the de-blocking

of the individual nanoparticle’s gaint core spin and is also in

agreement with the vanishing coercivity (Hc) above the block-

ing temperature (see Fig. 6).

FIG. 7. Upper branch of the hysteresis loop of maghemite nanoparticles at

temperature T¼ 4.2 K. Inset: Low temperature region of the splitted ZFC/

FC magnetization under applied field H¼ 5 T.

FIG. 8. Difference of out-of-phase ac susceptibility memory curve (when

the system is halted at 35 and 40 K for 2 h) and the respective reference

curves of maghemite nanoparticles.

113911-5 Nadeem et al. J. Appl. Phys. 111, 113911 (2012)

Downloaded 07 Jun 2012 to 143.50.21.40. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



IV. CONCLUSION

In this study, maghemite nanoparticles have been prepared

by microwave plasma synthesis which avoids agglomeration

of particles due to charging in the plasma. The magnetic prop-

erties are investigated in detail. ZFC measurements show a

well-defined blocking temperature at T¼ 75 K which indicates

the narrow particle size distribution as it is evidenced by TEM

analysis and in good agreement with ZFC/FC simulations. The

simulated dc FC susceptibility curve flattens at a much lower

temperature than in the experiment (TB¼ 75 K) which indi-

cates the presence of an additional cooperative phenomenon

which is interpreted as a spin-glass state in contrast to interpar-

ticle interactions. Fitting of ZFC/FC curves yields an increased

value of the effective anisotropy constant (Keff) with respect to

bulk maghemite. The frozen surface spins act as pinning cen-

ters on the surface and modifies the exchange interaction with

the core spins (exchange bias). Freezing also mediates an addi-

tional contribution to the on-site magnetocrystalline anisotropy

of the core spins. Simulations also show a discrepancy of the

FCsimul. susceptibility scan with the experimental FCexp. It is

attributed to the surface spin-glass state and rules out interpar-

ticle (dipolar) interactions, since the temperature of the

observed features is relatively high (35–40 K). Arrhenius law

does not fit frequency dependent ac susceptibility. Such an

attempt gives unphysical values of spin-flip time (so) and acti-

vation energy (Ea) in contrast to a successful fit to a dynamic

scaling law with a critical dynamic exponent zv� 10.

Exchange bias (Hexc.) shows a sharp increase at low tem-

perature due to turn-on core-shell interactions. Disorder and

frustration on the surface of the nanoparticles prevents nuclea-

tion of groups of reversed spins at the core-shell-interface

which is manifested by the sharp increase of coercivity at low

temperatures. A direct proof of spin-glass effects is given by

the observation of memory effects in zero field cooling.

Relaxation of the TRM is reflected by a change of the mag-

netic viscosity (the slope of TRM curves) near the spin-glass

and blocking temperatures, respectively. In conclusion, micro-

wave plasma-deposited maghemite nanoparticles are good

archetypes for an investigation of cooperative magnetic phe-

nomena beyond the conventional magnetic blocking effect.
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