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Abstract 

In this paper we study the diffusion-free liquid phase residence time distribution (RTD) of laminar 

Taylor flow in square mini-channels numerically and analytically. We evaluate the RTD caused by the 

non-uniform laminar velocity field for co-current upward and downward Taylor flow from detailed 

numerical simulations obtained with a volume-of-fluid method by diffusion-free Lagrangian tracking of 

a set of virtual particles. The numerical RTD curves are used to develop a compartment model for the 

RTD of a Taylor flow unit cell (which consists of one gas bubble and one liquid slug) in the fixed frame 

of reference. While the new model is conceptually similar to models from literature, it is refined with 

respect to (i) the delay time (i.e. the residence time of the fastest liquid elements, modeled by a plug 

flow reactor) and (ii) the difference in slope of the RTD at small and large residence times (modeled by 

two parallel continuous stirred tank reactors with different mean residence time). It is shown that the 

refined model fits the numerical unit cell RTD reasonably well for different flow conditions. From the 

unit cell RTD model, the RTD for two and three unit cells in series is computed by a convolution 

procedure. The agreement between the numerical and the convolution-based RTD for multiple unit 

cells is not satisfactory and indicates the inappropriateness of the convolution procedure for computing 

the diffusion-free RTD of multiple unit cells in Taylor flow. The failure of the convolution procedure is 

attributed to the dividing streamline, which separates in Taylor flow the liquid phase in two regions, 

one with recirculating and one with bypass flow. In the absence of diffusion, the diving streamline is 

never crossed. As a consequence, locations of tracer particles in neighboring unit cells are not 

independent which invalidates the unit cell convolution approach. 

 

Keywords: Residence time distribution; Taylor flow; Bubble train flow; Numerical simulation; Unit 

cell; Compartment model; Convolution 
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Nomenclature 

C  tracer concentration (mol/m3) 

csC  ratio between mean and maximum velocity in laminar channel flow 

Ca  capillary number 

Bd  bubble diameter at a certain axial position (m) 

B,maxd  maximum bubble diameter (m) 

hd  hydraulic diameter of channel (m) 

D  molecular diffusion coefficient of tracer in liquid phase (m2/s) 

E  residence time distribution (1/s) 

Fh  thickness of liquid film between gas bubble and channel wall (m) 

J  total superficial velocity (m/s) 

GJ  superficial velocity of gas phase (m/s) 

LJ  superficial velocity of liquid phase (m/s) 

refL  reference length scale (m) 

SL  liquid slug length (m) 

travelL  axial travelling distance of particles to determine the RTD (m) 

UCL  length of unit cell (m) 

n  number of CSTRs or unit cells in series 

crossN  number of unit cells particles must travel to obtain the RTD 

PN  number of particles 

Pe  Peclet number 

Q  volumetric flow rate (m3/s) 

BRe  bubble Reynolds number 

t  time (s) 

reft  reference time scale (s) 

Δt  time step width (s) 

classΔt  time interval of classes in the RTD (s) 

BU  bubble velocity (m/s) 

FU  mean velocity in liquid film at a certain axial position (m/s) 

LU  mean liquid velocity in the computational domain (m/s) 

L,maxU  maximum axial velocity in the liquid slug (m/s) 

fd

L,maxU  maximum axial velocity in fully developed Poiseuille flow (m/s) 

refU  reference velocity scale (m/s) 

V  volume (m3) 

Δx  mesh size (m) 
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Greek symbols 

  weighting factor in PDD model 

  pre-factor of maximum bubble diameter in PDD model 

  Dirac delta function 

  gas volume fraction in the unit cell 

  ratio 
fd

L,max L,max/U U  

  dynamic viscosity (Pa s) 

  density (kg/m3) 

  coefficient of surface tension (N/m) 

  mean residence time (s) 

B  bubble break through time (s) 

D  delay time (s) 

F  mean residence time of liquid film/corner flow (s) 

h  mean hydrodynamic residence time (s) 

S  mean residence time of liquid slug (s) 

 

Subscripts 

B bubble 

F liquid film 

G gas phase 

L liquid phase 

p particle 

ref reference value 

S liquid slug 

UC unit cell 

 

Abbreviations 

CSTR continuous stirred tank reactor 

PD peak-decay 

PDD peak-decay-decay 

PFR plug flow reactor 

RTD residence time distribution 
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1. Introduction 

Segmented gas-liquid flow is a common two-phase flow pattern in narrow channels. It is also 

denoted as Taylor flow or bubble train flow and consists of a sequence of elongated gas bubbles 

which almost fill the entire channel cross section (Taylor bubbles). The individual bubbles move along 

the channel while they are separated by liquid slugs. Taylor flow is of technical relevance e.g. for 

miniaturized multiphase reactors [1-5] and multiphase monolith reactors [6-8]. It has been considered 

for production of H2O2 [9] and is finding increasing interest for potential use in Fischer-Tropsch 

synthesis [10-13]. 

In Taylor flow, the length of the liquid slugs and the size of individual bubbles underlie variations. 

The variation of the bubble size results in a variation of the translational velocity of individual bubbles. 

This may lead to coalescence and thus a further change of the bubble size and slug length 

distribution. A useful abstraction of real Taylor flow is perfect Taylor flow, where the bubbles are 

assumed to have identical size, shape and velocity and where the length of all liquid slugs is the 

same. Then, the hydrodynamics of Taylor flow is fully described by a unit cell (UC) which consists of 

one bubble and one liquid slug. 

For the design and optimization of micro-structured chemical reactors, the ability to reliably predict 

the RTD is of great importance. In Taylor flow, the RTD of the continuous liquid phase is of major 

interest, since the variation of the residence time of the gas phase is small and its mean value is given 

by the ratio between channel length and bubble velocity. Desirable is a plug flow behavior of the liquid 

phase with a narrow RTD. Sun et al. [14] recently investigated the influence of the RTD on the 

synthesis of biodiesel in capillary micro-reactors operated with Taylor flow. They found that the RTD in 

the micro-channel reactor was remarkably decreased compared to the RTD which is required in batch 

systems to obtain a high yield under the same reaction conditions. However, the RTD of the micro-

reactors had to be controlled to avoid the saponification of the biodiesel. While this example 

demonstrates the practical importance of the RTD, there are, unfortunately, only very few 

experimental data on the liquid phase RTD available in literature for miniaturized multiphase reactors 
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such as monolith reactors. This may be attributed on one hand to the difficulties of performing local 

measurements of the RTD in narrow channels and on the other hand to the only recently increasing 

interest in this topic. As a consequence, reliable and validated general models for the RTD in multi-

phase micro-structured reactors are missing. This is in particular true for channels of non-circular 

cross-section, which are quite common in monoliths and micro-structured reactors. In rectangular 

channels, the film thickness at the circumference of the bubble is not constant. The resulting so-called 

corner flow can be significant [15] and makes the application of RTD models for circular channels 

inappropriate. 

In experiments the RTD is often measured by a stimulus-response technique, where a specific 

quantity of a tracer is introduced at the system inlet as a short duration pulse or a step function and 

where the time variation of the tracer concentration is recorded at the outlet. This procedure is well 

suited for macro-reactors, where the reactor volume is much larger than the volume of the tracer 

measurement device. However, for micro-structured reactors, the reactor volume is usually smaller 

than the volume of the measuring unit. This means that the response of the tracer may already be 

influenced by the measurement configuration itself. Therefore, for RTD measurements in small 

channels optical methods should be preferred which measure directly inside the channel. 

Measurements of the liquid phase RTD in two-phase flow through narrow channels or monolith 

reactors are reported in [2, 16-24]. As compared to single phase flow, the RTD of Taylor flow is very 

narrow [24], which is a distinct advantage. 

An alternative way to determine the RTD is by means of computational fluid dynamics (CFD). 

There exist two principle options. The first one is the numerical simulation of the stimulus-response 

experiment, i.e. setting a short concentration pulse at the inlet of the computational domain, computing 

the unsteady concentration field of the tracer within the domain and evaluating it at the outlet. This 

approach has been used in a modified form in [25, 26] to determine the reactor residence time for 

Taylor flow in a circular micro-channel from the RTD of a single unit cell by a convolution procedure. 

The second possibility is the particle tracking method. Here, virtual particles are released at the inlet 

and are advected by the local velocity field which is interpolated from the Eulerian grid. Molecular 
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diffusion can be modeled by a random walk of the tracer particles [27-30]. The relative importance of 

advective and diffusive transport is characterized by the Peclet number B h /Pe U d D . Here, BU  is 

the bubble velocity, hd  the hydraulic diameter of the channel and D  the molecular diffusion coefficient 

of the tracer in the liquid phase. The RTD obtained by a particle tracking method that does not take 

into account molecular diffusion is representative for an infinite value of the Peclet number. 

An overview on models for the RTD in Taylor flow can be found in [15, 31]. Early studies by Thiers 

et al. [32] and Snyder and Adler [33, 34] aimed to predict axial dispersion in segmented flow through 

tubes in order to support the optimal design of continuous flow analyzers. In [32] perfect mixing 

between the slugs and the film is assumed and a tank-in-series model connected by the film 

surrounding the bubbles is derived. Pedersen and Horvath [35] developed a two-region model 

consisting of the recirculating liquid bulk and the liquid film. Both regions are assumed perfectly mixed 

and the transfer between both is modeled by an adjustable mass transfer coefficient. Salman et al. 

[36] developed a numerical model for predicting the RTD of Taylor flow which is valid for low values of 

Pe . The model assumes liquid slugs of uniform concentration and liquid films around the bubble that 

can be adequately described by a one-dimensional convection-diffusion equation. For values 10Pe   

the model can be simplified and an analytical solution is derived, which represents the RTD of a unit 

cell by a tank-in-series model, consisting of a plug flow reactor (PFR) and a continuous stirred tank 

reactor (CSTR). In a more recent paper, Salman et al. [26] numerically evaluated RTDs for a wide 

range of Peclet numbers and compared it with predictions from three literature models (CSTR-PFR 

model, two-region model [35], and the model of Thulasidas et al. [16]). They found that the shape of 

the RTD and the performance of the different models strongly depend on B F /U h D , i.e. the Peclet 

number based on the liquid film thickness Fh  between the bubble and the channel wall. Muradoglu 

and co-workers performed extensive two-dimensional computational studies on the axial dispersion in 

segmented gas liquid flow in straight [27] and serpentine channels [28, 37]. They considered a frame 

of reference moving with one segment (which consists of two half bubbles and one liquid slug) and 

investigated in detail the effect of Peclet number, capillary number and segment size. For high Peclet 

numbers a model for the tracer concentration in the i -th segment is proposed which involves the liquid 
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film thickness as main parameter. Wörner et al. [38] developed a particle method for evaluating the 

liquid phase RTD from detailed numerical simulations and gave results for the diffusion-free RTD in 

co-current upward Taylor flow in a square mini-channel ( hd  = 2 mm). Similar to [36], the unit cell RTD 

is modeled by the PFR-CSTR in series compartment model. In practice, a channel with Taylor flow 

contains tens or hundreds of unit cells. A common approach is to compute the RTD of the entire 

channel from the RTD of the unit cell by means of a convolution method, see e.g. [26, 35]. 

The general motivation of this paper is to contribute to the development of models that can predict 

the RTD in Taylor flow from given fluid properties and known integral flow parameters such as the 

superficial velocities of the phases only. Unlike other studies from literature, we restrict ourselves first 

to the case of the diffusion free RTD, i.e. the RTD that is caused by the spatially non-uniform velocity 

distribution of the Taylor flow (limit Pe ). If this diffusion free RTD can be properly modeled in a 

mechanistic way for different hydrodynamic conditions, then in a second step the model can be 

extended to account for the effect of diffusion. In this context, the present paper has two specific 

objectives. First, we refine the unit cell RTD model from [38] to be valid also for downward flow and 

second, test if the diffusion-free RTD for a number of unit cells in series can be reliably predicted from 

the unit cell RTD model by a convolution procedure. In section 2 we present RTD compartment 

models for a single Taylor flow unit cell and discuss issues related to the numerical simulation of 

Taylor flow and the numerical evaluation of the RTD. Section 3 is devoted to the analytical modeling of 

the diffusion-free RTD in Taylor flow. This section covers the development of a refined unit cell model, 

a model for multiple unit cells and the discussion of the results. In section 4 we present the 

conclusions. 

2. Theory and numerical method 

2.1. Compartment RTD models for a single Taylor flow unit cell 

The differential RTD of a chemical reactor, ( )E t , is a probability distribution function that 

describes the amount of time that fluid elements spend inside the reactor [39, 40]. For laminar channel 

flow, the RTD often shows a characteristic behavior, namely ( )E t  is zero for small values of t , 
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becomes positive at the delay time D  (also denoted as first appearance time) where it has its highest 

value and decreases towards zero for very large values of t . This behavior can be described by a 

PFR-CSTR in series compartment model (see sketch in Fig. 1) whose RTD is [39] 

PFR

PFR-CSTR PFR
PFR

CSTR CSTR

0 for  

( ) 1
exp for  

t

E t t
t






 




  
  
 

 (1) 

Here, PFR  and CSTR  are the mean residence time of the PFR and CSTR, respectively. 

Salman et al. [36] adopted this concept to model the liquid phase RTD of a Taylor flow unit cell. 

The PFR corresponds to the delay time, i.e. the residence time of the fastest liquid fluid elements, 

which is modeled as 

B
PFR D

B

L

U
    (2) 

Due to the recirculation, the liquid in the slug is well mixed [41], so that each slug can be considered 

as a CSTR. In [36] the mean residence time of the liquid slug is modeled as 

S F
CSTR S

B

/V A

U
    (3) 

In the latter two equations, BL  is the bubble length, SV  the volume of the liquid slug, and FA  the cross-

sectional area of the liquid film. Wörner et al. [38] evaluated the diffusion-free liquid phase unit cell 

RTD from numerical simulations of co-current upward Taylor flow in a square mini-channel and found 

that the model in [36] underestimates D  and overestimates the steepness of the exponential decay. 

In [38] the delay time is modeled by the bubble break-through time 

UC
D B

B

L

U
    (4) 

This is the time the bubble needs to cover a distance of one unit cell length UCL . For the mean 

residence time of the liquid slug two different models are proposed in [38], namely S UC L/L U   and 

S UC /L J  , respectively. Here, G L B L(1 )J J J U U       is the total superficial velocity, and LU  

and   denote the mean liquid velocity and gas volume fraction in the computational domain, 
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respectively. For the remainder of the paper we will denote the model with S UC /L J   and D B   as 

WGO model (according to the initials of the three authors of [38]). 

 

(Approximate location for Fig. 1) 

 

2.2. Numerical simulation of Taylor flow 

In this paper we compare analytical RTD models with RTD data evaluated from detailed numerical 

simulations. These are performed with an in-house computer code [42-45], which uses an interface 

reconstructing volume-of-fluid method to solve the single-field Navier-Stokes equations with surface 

tension term for two incompressible immiscible fluids with constant fluid properties (i.e. density, 

viscosity, surface tension) in non-dimensional form. The code has been comprehensively validated, 

both by test problems and by experiments. An example is the planar Bretherton problem, where the 

computed liquid film thickness is in excellent agreement with analytical and numerical results for a 

wide range of capillary numbers [45]. For upward Taylor flow in a square mini-channel ( hd = 2 mm) a 

comprehensive code-to-code comparison with three major commercial CFD codes was performed 

indicating a good performance of the in-house code [46]. For co-current downward Taylor flow in a 

square mini-channel ( hd = 1 mm) very good agreement with experimental bubble shape visualizations 

is obtained for different flow rates [47]. 

The set-up of the simulations for Taylor flow in a square mini-channel is described in [38, 44] and 

is only shortly repeated here. The co-ordinate system is Cartesian and the computational domain is a 

rectangular box. At the four channel side walls no-slip boundary conditions are applied while in 

(vertical) axial direction ( y ) periodic boundary conditions are used. The simulations start from fluid at 

rest with a bubble placed in the center of the computational domain and are continued until BU  and 

LU  are constant in time. The bubble volume corresponds to a gas holdup   of about 33% . The 

channel cross-section is square with hydraulic diameter h 2mmd  . The reference length and velocity 
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scale that are used to normalize the governing equations are ref hL d  and ref 0.0264m/sU  , 

respectively, resulting in the reference time scale ref ref ref/ 0.0757st L U  . The physical properties of 

the phases are 
3

L 957 kg/m  , 
3

G 11.7 kg/m  , L 0.048 Pa s   , G 0.184 mPa s   , and 

0.02218 N / m  . For these conditions, three cases are considered in this paper which differ with 

respect to the value of UCL  and the flow direction, see Tab. 1. Case A and B are for co-current upward 

flow and correspond to case A2 and E in [38], respectively, while case C is for co-current downward 

flow. In all cases the grid is uniform with mesh size ref / 48x L   which is sufficiently fine as 

demonstrated by a grid refinement study, see [38]. In Tab. 1 various parameters of the three cases are 

listed. Note that for all cases the capillary number is about 0.2 so that the bubble shape is axi-

symmetric, i.e. its cross-section at any axial position is circular. 

 

(Approximate location for Tab. 1) 

 

2.3. Numerical evaluation of the diffusion-free RTD in Taylor flow 

Wörner et al. [38] developed a method for evaluating the (diffusion-free) liquid phase RTD in a 

Taylor flow unit cell from the instantaneous three-dimensional velocity and volume fraction field, 

provided by a detailed numerical simulation. The method relies on the introduction of a set of 

equidistantly distributed virtual tracer particles in the volume occupied by the liquid phase within a 

single flow unit cell. The RTD is obtained by statistical evaluation of the time required by the particles 

to travel an axial distance UCL , and by an appropriate weighting procedure which takes into account 

the axial velocity at the initial particle position in order to obtain the “mixing cup” RTD [48]. The method 

is only useful for fully developed Taylor flow, where BU  is constant and the bubble shape and the 

velocity field are steady in a frame of reference moving with the bubble. The method for evaluation of 

the RTD involves three parameters. The first parameter is the particle Courant-Friedrich-Levy number 

P P P /CFL t x  u  which determines the time step width Pt  that is used for the particle tracking 

(here it is P 0.2CFL  ). 
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The second parameter PN  defines the number of particles per unit length. It determines the 

distance between neighboring particles in the three coordinate directions and thus the initial positions 

of the particle set. Here, we use P 48N  . With this value the number of particles released in the liquid 

phase ranges from 69 883 (case A) to 123 663 (case B), depending on the length of the unit cell. An 

increase of PN  (and thus the number of particles that are released in the liquid) has only a very small 

effect on the RTD. Essentially, it only increases the value of the largest recorded particle residence 

time. This is because the increase of PN  is associated with a decrease of the distance between the 

initial positions of the particles. Thus, some particles are initially located closer to the no-slip wall. 

These are advected with a smaller velocity and need more time to travel an axial distance UCL  which 

results, therefore, in larger residence times. We evaluated the variance of the numerical RTD for 

different values of PN  and found that the variance is finite and strongly increases with increasing 

number of particles. This is a direct consequence of the lower wall distance of some particles and the 

associated longer residence time. It is well known, that in the absence of diffusion the variance of the 

RTD in laminar flow is infinite [49]. This behavior is thus correctly captured by our numerical RTD 

evaluation procedure as PN  increases. 

The third parameter is classΔt  and serves to create a suitable histogram from the set of traveling 

times of all particles. It divides the time axis in equal sized intervals denoted as classes. By sorting the 

residence time of all particles in classes and subsequent normalization of the resulting histogram, the 

RTD is obtained. Since the particle traveling times are discrete real numbers, in the limit of classΔ 0t   

rather spiky and discontinuous histograms result, where most of the classes are empty (because for a 

finite number of particles no travel time falls in these tiny intervals). Fig. 2 illustrates the influence of 

classt  on the numerical RTD curve for case C. It is evident that class D / 3t   , D / 2  and D , 

respectively, yield quite different values of E  in neighboring classes. Increasing the value of classt  

smoothes the RTD curve, but decreases the resolution and lowers the height of the peak value. 

However, the area of the first three non-zero classes for class D / 3t   , the area of the first two non-

zero classes for class D / 2t    and the area of the first non-zero class for class Dt    are all equal, see 
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Fig. 2. Nevertheless, the sensitivity of the numerical RTD curve with respect to classt  makes an 

objective comparison with analytical RTD models somewhat difficult. 

A particle that leaves the computational domain through one of the two faces with periodic 

boundary conditions re-enters it through the opposite face. Thus a particle may travel an axial distance 

that is larger than the length of the computational domain. We define the axial distance that any virtual 

particle must travel before its residence time is recorded by travel cross UCL N L , where crossN  . We 

checked that the RTD evaluated from case A with cross 2N   is the same as RTD evaluated with 

cross 1N   from a case that is equivalent to case A, but contains two unit cells in the computational 

domain [50]. Thus, setting cross 1N   allows evaluating the RTD for axial distances corresponding to 

multiple unit cells. In section 3.2, this procedure is used for evaluating the numerical RTD for 2 and 3 

unit cells. Within a reasonable upper limit of Lagrangian time steps (which is here set to 300 000), all 

releases particles cross the domain for cross 1N   and 2 , whereas for cross 3N   it are still more than 

98%. In any case, no particle hits the wall.  

 

(Approximate location for Fig. 2) 

 

3. Model refinement and discussion 

In this section we develop a refined analytical model for the diffusion-free liquid phase RTD in a 

Taylor flow unit cell and then utilize this model to obtain the RTD for a series of unit cells by a 

convolution procedure. 

3.1.1. Modeling of the delay time 

In Fig. 3 we compare the unit cell RTD of the WGO model (solid line) with the numerical RTD 

curve (shaded area) for case C. The dashed vertical line denotes the bubble break-through time. It is 

evident that some liquid needs less time than the bubble to pass the channel. Thus, this liquid moves 

with a velocity that is larger than BU . Therefore, the bubble break-through time differs from the delay 
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time and a more general model for D  is required which accounts for the actual maximum liquid axial 

velocity in the unit cell. 

 

(Approximate location for Fig. 3) 

 

For any fully developed laminar flow through a straight channel there exists a linear relationship 

between the mean and maximum velocity of the form mean cs maxU C U . The value of the constant csC  

depends on the shape of the channel cross-section and is e.g. cs 0.5C   for a circular and cs 0.477C   

for a square channel [51]. In Taylor flow, the mean liquid velocity within the liquid slug is L,meanU J . 

Thus, if the liquid slug is long enough for the velocity profile to become fully developed, it is 

fd

L,max cs/U J C . For shorter liquid slugs the maximum liquid velocity may be smaller, say 

fd

L,max L,maxU U  with 0 1  . In Fig. 4 we show the profiles of the magnitude of the axial velocity in 

the middle of the liquid slug for the three cases; the horizontal lines denote the maximum velocity in a 

fully developed laminar flow with the same flow rate. It is evident that the velocity profiles are not 

parabolic but rather flat while the maximum velocity is smaller than 
fd

L,maxU . Thus, the liquid slug 

(whose length is smaller than hd  in all present cases) is too short for the velocity profile to become 

fully developed. This result is consistent with experiments [41, 52]; in [41] e.g. it is reported that the 

Poiseuille profile within the liquid slug is fully developed for S h/ 1.5L d  . 

 

(Approximate location for Fig. 4) 

 

For the very short liquid slug of case A it is by incident L,max BU U . For the longer liquid slugs of 

cases B and C, the velocity profile tends to become more parabolic and L,maxU  is larger than BU  so 

that modeling the delay time by the bubble break-through time is not appropriate. To obtain a more 
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general model for the delay time, which is valid for upward and downward flow and any length of the 

liquid slug, we set 
D UC L,max/L U  . This yields together with 

fd

L,max L,max cs/U U J C    the result 

cs uc
D

C L

J



  (5) 

In the following, we will denote the model with D  given by Eq. (5) and S UC /L J   as peak-decay 

(PD) model. This name reflects that the RTD consists of one peak followed by an exponential decay. 

In the PD model   is a yet unknown function of S h/L d  which approaches unity for large values of 

S h/L d . In this paper, we take the values of   evaluated from the numerical simulations which are in 

the range 0.860.88, see Tab. 1. The development of a suitable relationship for S h( / )L d   will be 

considered in future. 

3.1.2. Tail of RTD 

In Taylor flow the tail of the RTD corresponds to the flow in the liquid film which is almost 

stagnant. The inset graphic in Fig. 3 shows the numerical and modeled RTD in a semi-logarithmic 

representation. This allows for an easy visual comparison of the slopes of both RTDs. The numerical 

RTD shows two different slopes, a steeper one for ref/ 5t t   and a flatter one for ref/ 5t t  . In 

contrast, the slope of the WGO model is constant and the tail of the RTD is not accurately represented 

by this model. In [38], the steeper RTD slope for ref/ 5t t   is better fitted by S UC /L J   than by 

S UC L/L U   because residence times ref/ 5t t   correspond mainly to fluid elements in the liquid 

slug, where the mean velocity is equal to J . However, the flatter slope for ref/ 5t t   is better 

approximated by S UC L/L U   than by S UC /L J  . This is because residence times ref/ 5t t   

correspond to fluid elements in the four corners of the channel. There, the mean liquid velocity is 

smaller than J  and may be approximated by the mean liquid velocity LU . However, as compared to 

the numerical RTD, the slope for S UC L/L U   is still slightly too steep for high residence times, see 

Fig. 8 a) in [38]. Hence, an even lower mean liquid velocity should be chosen for the film/corner flow to 

cause a flatter slope for high residence times. 
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One possibility to account for the different slopes of the RTD at small and large residence times is 

a three tank compartment model consisting of a PFR that is in series with two parallel CSTRs, see Fig. 

5. The RTD of this compartment model is characterized by a peak which is followed by the 

superposition of two exponential decays with different slopes. Here, we denote this model as peak-

decay-decay (PDD) model. In the PDD model one CSTR corresponds to the recirculating liquid slug 

region and the other one to the corner/film flow region. Since both CSTRs are in parallel, the resulting 

RTD is the sum of two exponentials. The slopes of both exponentials are determined by the mean 

residence times of the liquid slug S UC /L J   and the liquid film/corner flow F UC F/L U  , where FU  

denotes the mean velocity in the liquid film/corner flow. The RTD of the PDD model is 

D

UC D D
D

S S F F

0 for  

( ) 1
exp exp for  

t

E t t t
t





  


   




     
      

  

 (6) 

Here, 0 1   is a weighting factor for the relative importance of the liquid slug and liquid film region. 

The mean residence time of the PDD model is 
PDD

UC D S F(1 )        ; the variance is 

 
2

2 PDD 2 2

UC S F S F( ) 2 2(1 ) (1 )            , which is finite. For 1   the PDD model reduces to 

the PD model. At this stage, the PDD model involves two unknowns that must be modeled properly, 

namely   and FU . 

 

(Approximate location for Fig. 5) 

 

A relation for FU  can be obtained from a liquid mass balance in a frame of reference moving with 

the bubble. We consider a control volume that consists of an axial portion of the channel where one 

end is in the liquid slug and the other end is in the bubble region. Then a balance of the liquid inflow 

and outflow flow rates yields 

 B F B B( )( )J U A U U A A     (7) 



17 

In this equation, 
F ( )U y  and B ( )A y  represent the mean axial liquid velocity and bubble cross-sectional 

area, respectively, at an arbitrary position y  which denotes the control volume outlet. For the cases 

considered in this paper the bubble is always axi-symmetric. Thus it is 
2

B B( ) / 4A y d , where B ( )d y  

denotes the local cross-sectional bubble diameter. For a square channel it is 
2

hA d  and we obtain 

from Eq. (7) the result 

 

1
2

B
F B B

h

( )
( ) 1

4

d y
U y U U J

d




  
      
   

 (8) 

The value of FU  in this relation is very sensitive to Bd . As pointed out in [53], FU  can be negative so 

that in regions where Bd  is close to its maximum the net flow in the liquid film and gas bubble may be 

counter-current. The PDD model is, however, only reasonable for F 0   and thus requires F 0U  .We 

therefore define B B,maxd d  with 0 1  . The bubble diameter B,maxd  depends on the capillary 

number and can be determined from appropriate correlations, see e.g. [7]. Here, we take the values 

from Tab. 1. The value of   is debatable; as FU  should be representative for the entire liquid film,   

should probably not be 1 but slightly smaller to ensure F 0U  . To investigate the effect of  , we 

consider here two different values, namely 1 and 0.97. In Tab. 2 we list the values of FU  that are 

obtained from Eq. (8) for the different cases and both values of  . 

We now determine a suitable model for the weighting factor   and consider two possible choices. 

In the first one, we compute   from relation 

L,S L L,F

Q

L,S L,F L

Q Q Q

Q Q Q



 


 (9) 

By Eq. (7) it is  L,F F B B BQ U A A JA U A     so that we obtain with L LQ J A  from Eq. (9) the result 

B B GL B B B B
Q

L L L

( ) U A J AJ A JA U A U A

J A J A J A
 

   
    

 
 (10) 

Then, the mean residence time of the PDD model is 

PDD cs UC UCB B B B
UC

L ch L ch F

1
C L LU A U A

J A J J A U
  



      
           

      
 (11) 

In general 
PDD

UC  will differ from the hydrodynamic residence time which is 
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UC UC
h

L L L

AL LV

Q AJ J
     (12) 

In Tab. 2 we list the values of Q  for both values of  . Also given are values for the relative deviation 

of the mean residence time from the hydrodynamic one. For 1   the relative error is typically about 

4 - 9%, whereas it is about 1 - 7% for 0.97  . For both values of  , the relative error is larger for 

the downward flow case C than for the cases with upward flow. While a relative error of the mean 

residence time below 7% may be acceptable for some cases, we nevertheless disregard this 

approach. Instead we determine   from the demand that the mean residence time of the PDD model 

PDD

UC  is equal to h  which yields 

D F h
h

F S

  


 

 



 (13) 

The comparison of the values of h  and Q  for the three cases shows that the differences are rather 

small, see Tab. 2. 

 

(Approximate location for Tab. 2) 

 

In Fig. 6 we compare the PD and PDD model with the numerically evaluated RTD curves for the 

three cases. The shaded area represents the numerical RTD curve (with the values of classt  as given 

in Tab. 1) while the lines represent the PD model and the PDD model for the two different values of 

 . The main graphs (with linear axes) show that the peaks of the models are clearly lower than the 

peak of the numerical RTD for case B and C. However, as noted before the peak height of the 

numerical RTD is very sensitive to the value of classt . For all three cases, the curves of the PDD 

model intersect those of the PD model and exhibit a flatter slope at high residence times. This can be 

seen more clearly in the inset graphics with semi-logarithmic representation of the data. Fig. 6 shows 

that the slope of the PDD model changes at ref/ 5t t  . For larger residence times the slope becomes 

less steep. In the PDD model, the slope of the RTD at large values of t  depends on the value of  . 

For case A and C the value 1   gives better results, while for case B 0.97   is more appropriate. 
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Overall, the PDD model with the delay time computed by Eq. (5), FU  by Eq. (8) (with B B,maxd d  and 

0.97 1  ) and h  by Eq. (13) is a reasonably good fit to the numerical RTD curve, both at small 

and large residence times, and both, for co-current upward and downward Taylor flow. 

 

(Approximate location for Fig. 6) 

 

3.2. Modeling the diffusion-free RTD for multiple unit cells 

Since Taylor flow consists of a sequence of a large number of unit cells, the single unit cell RTD 

model alone is at first of limited practical value. The overall goal is, therefore, to develop a model for 

the RTD of Taylor flow consisting of n  unit cells in series. In this section we investigate if the diffusion-

free RTD UC ( )nE t  for n  identical Taylor flow unit cells can be accurately determined from the single 

unit cell RTD UC ( )E t  by a convolution procedure. 

3.2.1. Convolution procedure 

The RTD has the property to transfer any reactor input signal in ( )C t  into a unique output signal 

out ( )C t . Mathematically, this transfer is described by the convolution integral 

out in in

0

( ) ( ) ( )

t

C t C t t E t dt C E       (14) 

If the input signal has the properties of an RTD, then this also holds for the output signal [39]. For a 

Taylor flow consisting of n  identical unit cells we assume that the input signal for the first unit cell is an 

ideal Dirac delta pulse. In this case the output signal of the first unit cell is equal to UC ( )E t . This RTD 

is the input signal for the second unit cell, whose output signal is then given by the convolution 

UC UCE E . The RTD UC ( )nE t  of unit cell 1n   is then given by the convolution integral 

UC ( 1)UC UC ( 1)UC UC

0

( ) ( ) ( ) ( ) ( )d

t

n n nE t E t E t E t t E t t 
       (15) 
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Therefore, one can compute the RTD for a series of n  unit cells from the RTD of a single unit cell by 

successive evaluation of 1n  convolutions integrals. 

3.2.2. PD model and PDD model for multiple unit cells 

In this section we present results of the convolution integrals for the PD model and the PDD 

model and refer to [50] for mathematical details. We emphasize, that the present convolution 

procedure is performed in the fixed frame of reference, and thus is different from approaches in 

literature, where the convolution is based on the unit cell RTD in a frame of reference moving with the 

liquid slug and where, therefore, a transformation is required to obtain the RTD in the fixed frame of 

reference [26]. 

For the PD model, the convolution integral for n  identical unit cells in series can be evaluated by 

Laplace transformation which yields 

D

PD 1
UC D D

D

S S

0 for  

( ) ( )
exp for  

( 1)

n
n

n

t n

E t t n t n
t n

n



 


 






   
      

 (16) 

The mean residence time is UC S D UC( )n n n      . For D 0   we have UC S   and Eq. (16) 

becomes equivalent to the RTD of a cascade of n  identical CSTRs in series. For the PDD model we 

cannot present the RTD for arbitrary values of n  in a closed form. The result for 2n   is 
PDD

2UC ( ) 0E t   

for D2t   and  

2 2

PDD D D
2UC D

S S F F

D D

S F S F

2 21
( ) ( 2 ) exp exp

2 22 (1 )
exp exp

t t
E t t

t t

  


   

  

   

         
            
        

     
       

    

 (17) 

for D2t  . The mean residence time is 
PDD PDD

2UC UC2  . The RTD 
PDD

3UC ( )E t  for three unit cells can be 

found in [50] and is not repeated here due to its complexity. For 1   and any value of n , the RTD of 

the PDD model becomes equal to that of the PD model in Eq. (16). 
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In Fig. 7 we compare the RTD from the convolution procedure (both for the PD and PDD model) 

for case A and B for two and three unit cells with the respective numerical RTD curves. It is evident 

that the peak value of the model RTD is always lower than the numerical one. While the difference is 

rather small for case B (cf. Fig. 7 b and d) it is significant for case A (cf. Fig. 7 a and c). Fig. 7 also 

shows that for the PDD model the peak value of the RTD is very sensitive to the value of  . In the 

PDD model this peak value is always smaller than in the PD model; therefore both curves intersect at 

a certain residence time. As compared to the PD model, the PDD model predicts lower RTD values at 

small time and higher values at large time. Due to this behavior the PDD model provides a much 

better fit to the long tails of the numerical RTD both for two and three unit cells. The inset graphics in 

Fig. 7 show, that at high values of t  the slope of the numerical RTD is well approximated by the PDD 

model with a value of 1   for case A, and 0.97   for case B.  

We now discuss the residence time where the peak value occurs. From a comparison with the 

single unit cell RTDs, which are displayed in Fig. 6 a) and b), it is evident that for the convolution-

based RTD the location of the peak is shifted towards residence times that are larger than the 

respective delay time. Interestingly, in the numerical RTD this shift of the maximum toward residence 

times larger than D  occurs only for case A (cf. Fig. 7 a and c) but not for case B (cf. Fig. 7 b and d). 

In comparison to the numerical RTD curves, the location of the RTD maximum obtained by the 

convolutions of the PD and PDD models is shifted to still larger times. It is expected that this 

discrepancy even increases for larger numbers of unit cells in series. Thus, estimating the RTD of a 

channel with n  unit cells by convolution of the single unit cell RTD is obviously not appropriate. 

 

(Approximate location for Fig. 7) 

 

Nauman [54] notes that a key assumption in calculating the RTD of flow networks by convolution 

procedures is that the subsystems are independent so that the time spent in one ‘vessel’ has no 

influence on the time spent in another vessel. He also remarks, that laminar flow systems routinely 
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violate this assumption. In Taylor flow a so-called dividing streamline exists for 
fd

B L,maxU U , which 

partitions the liquid in a region with recirculation flow (in the slug and channel center) from one with 

bypass flow (close to the channel walls) [41]. In this flow pattern, there is no convective transport 

between the recirculation and the bypass region and mass transfer across the dividing streamline is 

only by diffusion. The inset in Fig. 2 displays the velocity field and streamlines in a frame of reference 

moving with the bubble for case C and illustrates the separation of the liquid in regions with bypass 

and recirculating flow, respectively. 

In our method, virtual particles are released in the entire liquid volume of the unit cell. This means 

that some particles are released in the liquid slug and other ones in the film/bypass flow region. In Fig. 

8 we display the trajectories of selected particles for case C. The instant in time is chosen so that the 

middle of the liquid slug is located at the top of the computational domain. For this instant in time 

particles are released at various positions within this top plane (the respective positions are given in 

the figure caption). In Fig. 8 a) the particle trajectories are displayed for cross 2N   (i.e. two unit cells). 

The color code at any position along the trajectory indicates the residence time since the particle has 

been released. As expected, the residence time is largest in the channel corners and close to the 

channel walls (yielding the tails in the RTD), whereas the residence time of particles released in the 

channel center is much shorter (and gives rise for the RTD peaks at low values of t  in Fig. 3 and Fig. 

6). From Fig. 8 a) it is evident that trajectories in the film/bypass region are rather straight and the 

respective fluid particles move only short distances in lateral direction. However, the trajectories show 

periodic kinks which are presumably linked with the passing of the bubbles. The trajectories of those 

particles that are released in the recirculation region (i.e. inside the diving streamline) do not show 

such kinks but undergo a significant lateral motion. This can be better seen in Fig. 8 b), where the 

trajectories of six particles released at different positions along the channel diagonal are displayed for 

cross 5N   (i.e. five unit cells). It is obvious that the axial movement of the particle is associated with a 

periodic lateral movement toward the channel centerline and away from it. This is a result of the 

recirculation pattern within the liquid slug (cf. the inset in Fig. 2). Fig. 8 clearly shows that particles 

released in either the film/bypass region or the recirculation region always stay within this region and 
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do not cross the dividing streamline. In the absence of diffusion, particles cannot go from the slug to 

the film region and vice versa. This behavior is thus well reproduced by our method. Thus, particles 

that are initially in the liquid slug remain there, and are still in the liquid slug when their residence time 

is recorded, after they traveled an axial distance corresponding to the length of one or multiple unit 

cells. Therefore, a particle that is released in the recirculation (bypass) region will be in the 

recirculation (bypass) region in any unit cell. As a consequence, in the absence of diffusion 

neighboring Taylor flow unit cells are not independent in the sense of [54], which makes a convolution 

procedure inappropriate for these conditions. 

We finally note that the sizes of the regions with recirculation and bypass flow is variable and 

depends on the ratio B /U J  [55] which itself is a function of the capillary number [41]. Therefore, in 

future RTD models for multiple unit cells should be developed which account for the independence of 

the recirculation and bypass region of the liquid phase in Taylor flow in the absence of diffusion and 

the variable sizes of both regions. 

 

(Approximate location for Fig. 8) 

 

4. Conclusions 

In this paper, results from detailed numerical simulations of Taylor flow in a square vertical mini-

channel are used to develop an improved analytical model for the liquid phase residence time 

distribution of a diffusion-free tracer in a Taylor flow unit cell in a fixed frame of reference. The unit cell 

RTD is represented by a compartment model which consists of a plug flow reactor that is in series with 

two parallel continuous-stirred-tank reactors. The model for the delay time of the RTD (which 

corresponds to the residence time of the PFR) takes into account whether the velocity in the liquid 

slug is fully developed (as it is the case in sufficiently long slugs) or not. The two CSTRs represent the 

recirculating liquid slug and liquid film region, respectively. Both have a different mean residence time 
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which results in different slopes of the RTD at small and large residence times. It is shown that the 

new model accurately represents the numerical unit cell RTD for quite different flow conditions. 

In practice, not the RTD of the unit cell but that of a Taylor flow consisting of a finite number of unit 

cells is of interest. In this paper an attempt is made to determine the diffusion-free RTD for two and 

three unit cells in series from the unit cell RTD by a convolution procedure. The comparison of the 

convolution based RTD for two and three unit cells with the numerical RTD shows that the agreement 

is not satisfactory as the time where the RTD has its maximum is significantly overestimated. Thus, 

the convolution procedure fails to predict the RTD of multiple unit cells from that of the single unit cell. 

This failure is attributed to the separation of the liquid slug in a recirculation and a bypass region by 

the dividing streamline and the independence of both regions in the absence of diffusion. We conclude 

that in future RTD models for multiple unit cells should be developed which are based on clear 

hydrodynamic mechanisms of Taylor flow and explicitly account for this independence. In particular, 

the model should – in addition to the capillary number dependence of liquid film thickness that is 

already included in some models – take into account the variable sizes of the recirculation and bypass 

flow regions as well as the transition to complete bypass flow, which occurs at large capillary numbers. 

Such a model could then be extended to account for tracer diffusion through the diving streamline and 

for non-perfect Taylor flow, where the length of the individual Taylor bubbles and liquid slugs is not 

uniform. While experimental data for the unit cell RTD in Taylor flow are not available in literature, 

there exist data for single channels that could then be used for model validation. 
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Figure captions 
 

Fig. 1: Sketch of differential RTD curve for a compartment model consisting of a PFR and CSTR in 

series (PD model). 

Fig. 2: Illustration of the influence of tclass on the numerical RTD curve for case C. The inset shows 

the computed bubble shape and velocity field in the vertical mid plane in a frame of reference moving 

with the bubble (left half: streamlines, right half: velocity vectors). 

Fig. 3: Comparison of numerical unit cell RTD with the WGO model for case C. The dashed vertical 

line indicates the bubble break-through time. 

Fig. 4: Wall-normal profiles of magnitude of axial velocity in a horizontal cross-section through the 

middle of the liquid slug for case A, B, and C. For each case the velocity profile is normalized by the 

respective bubble velocity. The horizontal lines denote the normalized maximum velocity of a fully 

developed Poiseuille profile for each case. 

Fig. 5: Sketch of differential RTD curve for a compartment model consisting of a PFR that is in series 

with two parallel CSTRs (PDD model). 

Fig. 6: Comparison of numerical unit cell RTD for cases A (a), B (b), and C (c) with the PD model and 

the PDD model for  = 1 and  = 0.97. 

Fig. 7: Comparison of numerical RTD curves for case A (a, c) and B (b, d) with the PD model and the 

PDD model for two (a, b) and three (c, d) unit cells in series. 

Fig. 8: Visualization of particle trajectories in fixed frame of reference for case C. The bubble shape 

corresponds to an instant in time when the middle of the liquid slug it located at the top of the 

computational domain. Trajectories of particles released at selected positions within this plane are 

shown; the respective cell indices (i,k) are (4,4), (8,8), (12,12), (16,16), (20,20), (24,24), (4,24), (8,24), 

(12,24), (16, 24), (4,14), (8,16), (12,18), (16,20), (20,22). a) Trajectories of the entire particle set are 

displayed for 2crossN  . Each trajectory is colored by the dimensionless residence required to reach 

this position. b) Only the trajectories of particles released in the channel diagonal are shown for 

5crossN  . The color has no specific meaning but serves to distinguish the different trajectories. 
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Fig. 1: Sketch of differential RTD curve for a compartment model consisting of a PFR and 

CSTR in series (PD model). 
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Fig. 2: Illustration of the influence of tclass on the numerical RTD curve for case C. The inset shows 

the computed bubble shape and velocity field in the vertical mid plane in a frame of reference 

moving with the bubble (left half: streamlines, right half: velocity vectors). 

 

 



31 

 

 

Fig. 3: Comparison of numerical unit cell RTD with the WGO model for case C. The dashed 

vertical line indicates the bubble break-through time. 
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Fig. 4: Wall-normal profiles of magnitude of axial velocity in a horizontal cross-section 

through the middle of the liquid slug for case A, B, and C. For each case the velocity profile 

is normalized by the respective bubble velocity. The horizontal lines denote the normalized 

maximum velocity of a fully developed Poiseuille profile for each case. 
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Fig. 5: Sketch of differential RTD curve for a compartment model consisting of a PFR that is 

in series with two parallel CSTRs (PDD model). 
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Fig. 6: Comparison of numerical unit cell RTD for cases A (a), B (b), and C (c) with the PD 

model and the PDD model for  = 1 and  = 0.97. 
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Fig. 7: Comparison of numerical RTD curves for case A (a, c) and B (b, d) with the PD model 

and the PDD model for two (a, b) and three (c, d) unit cells in series. 
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a) 

            

b) 

         

Fig. 8: Visualization of particle trajectories in fixed frame of reference for case C. The bubble 

shape corresponds to an instant in time when the middle of the liquid slug it located at the 

top of the computational domain. Trajectories of particles released at selected positions 

within this plane are shown; the respective cell indices (i,k) are (4,4), (8,8), (12,12), (16,16), 

(20,20), (24,24), (4,24), (8,24), (12,24), (16, 24), (4,14), (8,16), (12,18), (16,20), (20,22). a) 

Trajectories of the entire particle set are displayed for 2crossN  . Each trajectory is colored 

by the dimensionless residence required to reach this position. b) Only the trajectories of 

particles released in the channel diagonal are shown for 5crossN  . The color has no specific 

meaning but serves to distinguish the different trajectories. 
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Table captions 

Tab. 1: Hydrodynamic parameters of the numerical simulations of Taylor flow. 

Tab. 2: Parameter values of the PDD model for the different cases. 



38 

Tables 

Tab. 1: Hydrodynamic parameters of the numerical simulations of Taylor flow. 

Case A B C 

Flow direction Upward Upward Downward 

UC h
/L d  1 1.5 1.75 

B ref
/U U  3.66 3.86 3.25 

L ref
/U U  1.20 1.37 1.53 

ref
/J U  2.02 2.19 2.09 

B,max h
/d d  0.809 0.849 0.891 

S h
/L d  0.064 0.292 0.480 

h ref
/ t  1.245 1.635 1.708 

refB / t  0.273 0.389 0.539 

refS / t  0.497 0.684 0.836 

L,max ref
/U U  3.66 4.02 3.89 

fd

L,max L,max
/U U   0.867 0.876 0.879 

refD / t  0.273 0.373 0.450 

BRe  3.86 4.06 3.42 

Ca  0.21 0.22 0.19 

class ref
Δ /t t  0.133 0.186 0.225 
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Tab. 2: Parameter values of the PDD model for the different cases. 

 1        0.97       

Case 

ref

FU

U
 

ref

F

t


 

Q  
Q

UC h

h


 




 h  

 

ref

FU

U
 

ref

F

t


 

Q  
Q

UC h

h


 




 h  

A 0.274 3.65 0.834 3.8% 0.849  0.473 2.12 0.696 1.4% 0.706 

B 0.019 78.0 0.991 7.7% 0.993  0.294 5.10 0.850 5.2% 0.869 

C 0.193 9.07 0.929 9.4% 0.949  0.465 3.76 0.812 7.4% 0.855 

 


