KIT | KIT-Bibliothek | Impressum | Datenschutz

Light–matter interaction in a microcavity-controlled graphene transistor

Engel, M. 1; Steiner, M.; Lombardo, A.; Ferrari, A. C.; Löhneysen, H. von 2,3; Avouris, P.; Krupke, R. 1
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Physikalisches Institut (PHI), Karlsruher Institut für Technologie (KIT)
3 Institut für Festkörperphysik (IFP), Karlsruher Institut für Technologie (KIT)


Graphene has extraordinary electronic and optical properties and holds great promise for applications in photonics and optoelectronics. Demonstrations including high-speed photodetectors, optical modulators, plasmonic devices, and ultrafast lasers have now been reported. More advanced device concepts would involve photonic elements such as cavities to control light–matter interaction in graphene. Here we report the first monolithic integration of a graphene transistor and a planar, optical microcavity. We find that the microcavity-induced optical confinement controls the efficiency and spectral selection of photocurrent generation in the integrated graphene device. A twenty-fold enhancement of photocurrent is demonstrated. The optical cavity also determines the spectral properties of the electrically excited thermal radiation of graphene. Most interestingly, we find that the cavity confinement modifies the electrical transport characteristics of the integrated graphene transistor. Our experimental approach opens up a route towards cavity-quantum electrodynamics on the nanometre scale with graphene as a current-carrying intra-cavity medium of atomic thickness.

Verlagsausgabe §
DOI: 10.5445/IR/110087623
Veröffentlicht am 07.05.2018
DOI: 10.1038/ncomms1911
Zitationen: 358
Web of Science
Zitationen: 343
Zitationen: 364
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Festkörperphysik (IFP)
Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2012
Sprache Englisch
Identifikator ISSN: 2041-1723
KITopen-ID: 110087623
HGF-Programm 43.11.02 (POF II, LK 01) Electronic transport in nanostructures
Erschienen in Nature Communications
Verlag Nature Research
Band 3
Heft 3
Seiten Art. Nr.: 906
Nachgewiesen in Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page