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The relevance of receptor conformational change during

ligand binding is well documented for many pharmaceutically

relevant receptors, but is still not fully accounted for in in

silico docking methods. While there has been significant

progress in treatment of receptor side chain flexibility

sampling of backbone flexibility remains challenging because

the conformational space expands dramatically and the

scoring function must balance protein–protein and protein–

ligand contributions. Here, we investigate an efficient

multistage backbone reconstruction algorithm for large loop

regions in the receptor and demonstrate that treatment of

backbone receptor flexibility significantly improves binding

mode prediction starting from apo structures and in cross

docking simulations. For three different kinase receptors in

which large flexible loops reconstruct upon ligand binding, we

demonstrate that treatment of backbone flexibility results in

accurate models of the complexes in simulations starting from

the apo structure. At the example of the DFG-motif in the p38

kinase, we also show how loop reconstruction can be used to

model allosteric binding. Our approach thus paves the way to

treat the complex process of receptor reconstruction upon

ligand binding in docking simulations and may help to design

new ligands with high specificity by exploitation of allosteric

mechanisms.

Introduction

Fueled by strong multidisciplinary efforts in the life sciences

the amount of available genetic and structural data related to

many biological processes and their regulation has tremen-

dously increased. This information is used in a variety of

approaches to understand the molecular mechanisms of dis-

eases and in the design of new drugs. It is therefore puzzling

that despite these efforts the number of newly approved

drugs stagnates.[1–3] The development of improved discovery

approaches and validation techniques for new-scaffold small-

molecule compounds may help improve this situation. In silico

virtual ligand screening has long been proposed to contribute

to the progress in the identification of new lead compounds,

because the ever-increasing computational power makes it

possible to screen increasingly large ligand databases. This

approach is potentially cost-effective, because it avoids

unnecessary synthesis and can exploit the large variety of

available structural information.[4] Despite some success sto-

ries, limitations in current in silico screening approaches never-

theless restrict their accuracy and general applicability.[5–9]

The success rate of structure-based docking methods

depends crucially on the accuracy of the structural model of

the complex. The role of the receptor flexibility upon ligand

binding has been well documented experimentally for several

therapeutically important receptors (see Refs. 10–12 and refer-

ences therein). In many cases the complexity of this problem

can be illustrated by simply comparing the ligand-free (apo)

and ligand-bound (holo) protein crystal structures. This com-

parison demonstrates the adaptation of ligand-specific confor-

mations of the receptor in the complex, and crossdocking

experiments into rigid crystal structures show that a specific

receptor conformation is often unable to accommodate (or

score with high affinity) ligands that correspond to another

structure.

Docking simulations, which do not consider any receptor

flexibility, in the following called ‘‘rigid’’ docking simulations,

restrict the conformational space which leads to errors in the

identification of the correct binding mode for ligands that

require receptor reconstructions. This results in underestima-

tion of the affinity for novel ligands. Screening applications

based on a single protein structure are biased toward com-

pounds of high molecular similarity and chemotype of the

cocrystallized ligand (in holo structures).[13] The influence of

the receptor flexibility in ligand binding differs among targets,

ranging from only small side chain movements to large recon-

struction of loop regions. The degree to which these confor-

mational changes can be modeled can significantly impact the

results of docking simulations.[14,15]

A large range of models and computational tools have been

developed to accommodate protein flexibility into docking-

methods: Many methods are able to treat protein side chains

flexibly,[16–18] but also a flexible treatment of protein backbone

regions upon docking simulations has been realized.[10,12,19]

Here, different approaches were developed: the sampling of

normal backbone modes,[20–23] the multiple receptor ensemble

docking,[24–32] a global energy optimization in internal coordi-

nates,[33,34] the explicit modeling of holo protein structures[35]

or a backbone conformation sampling via conformer libra-

ries.[34] Furthermore, backbone flexibility was applied to
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different therapeutically important targets.[36–38] For a recent

review see Refs. 39 and 40.

The conformational variability of the binding partners prior

to their association (conformational selection) and their confor-

mational adaptation upon binding (induced-fit) are thought to

be responsible for conformational changes of protein and

ligand in the binding process. Both mechanisms are closely

related and can be used as starting points for modeling the

variety of protein holo structures observed in experiments.

Correspondingly, there are two main groups of methods to

treat receptor flexibility: (1) methods, which use multiple re-

ceptor conformations, known from experiment or simulation,

to represent flexible regions of the receptor (ensemble-dock-

ing approach) and (2) methods, which sample the receptor

flexibility explicitly during the docking simulation (induced-fit

approach).

Recently, there has been experimental and theoretical evi-

dence on protein dynamics that induced-fit and conforma-

tional receptor selection are limiting cases of a wide spec-

trum of possible scenarios.[41] The data suggests that initial

binding is dominated by conformational selection and

further receptor conformational changes are based on opti-

mization of binding interactions. The two successive stages

of the binding process were observed by kinetic measure-

ments.[42–44]

The ensemble view explains receptor conformational

changes observed upon ligand binding with the intrinsic pro-

tein flexibility and the roughness in the energy landscape of

the native protein.[45–47] This view assumes that the native

state of a protein comprises a thermodynamically accessible

ensemble of multiple possible receptor conformations. It is

presumed that some of the low energy conformations (mean-

ing free-energy microstates) are isoenergetic, hence almost

equally populated. Ligand binding then redistributes the statis-

tical weight within the ensemble to the preferred ligand-

bound conformation resulting in selective binding to one spe-

cific receptor conformation. Experimental results[48] support

this view: observing fluctuations between open and closed

states in a adenylate kinase,[49] the free-energy landscape of

myoglobin and other heme proteins with photo dissociation

experiments,[50] and the detection of slow backbone

movement in the DFG-motif (Aspartic acid, Phenylalanine and

Glycine) region in the apo structure for p38 kinases.[51]

The in silico equivalent of the ensemble view increases the

conformational space by introducing additional receptor con-

formations into the docking protocol, but often without con-

sidering explicitly the receptor internal free energy. The confor-

mations used are usually deducted from experimentally known

holo structures or homology models, thus ‘knowledge-based,’’

which may lead to the inclusion of unphysical conformations

or to the missing of relevant conformations. Due to the

neglect of receptor reorganization free energy the contribution

of receptor reorganization to the affinity remains unclear. For

example, it has been shown that the reorganization energies

of the receptor in variable conformations can be in the same

order of magnitude as the differences in binding free

energy.[11]

The opposite end of the spectrum is represented by the

induced fit approach,[52] which explains the structural changes

in receptor conformation upon binding by the proteins

response to a perturbation caused by the ligand.[40] In compu-

tational models implementing this view, the receptor confor-

mation changes during the simulation, which requires a bal-

anced model for the receptor reorganization energy in the

scoring function and an extremely efficient sampling proce-

dure. Its principal advantages are that the relevant receptor

conformational space need not be known prior to the simula-

tion and that the total affinity and not just the ligand binding

free energy are approximated by the scoring function. In prin-

ciple, this approach has a higher accuracy than the ensemble

docking approach, but it has to struggle with a high number

of degrees of freedom in the system.

Backbone motion is presently rarely observed in the most

costly molecular simulations, thus most established docking

protocols model induced fit only at the side chain level.[16,53]

For some applications this limitation leads to acceptable per-

formance, because it was shown that in ligand binding for

many receptors only few side chains are moving.[54] In many

cases only three or even less side chains change their confor-

mation.[14] To reduce the computational demands the usage

of rotamer libraries has been realized.[55,56] Side chain selec-

tion proceeds via physics (hydrophobicity[54] or polarity[57])

criteria, chemical institution,[53] analysis of known binding

modes[58] or observed flexibility in experimental structures,[59]

sequence conservation[60] or analysis of the structural

features in the binding site.[61] However, it was shown that

the introduction of flexibility for residues with Lennard-Jones

clashes in rigid docking can improve the docking

performance.[16]

While side chain flexibility is today implemented in many

docking methods, flexibility for continuous backbone regions

remains very challenging[40] limiting the applicability of this

methodology for many important applications, e.g., in kinases

and the few GPCR receptors for which crystal structures are

available. In this investigation, we attempt to improve this sit-

uation by implementing a novel backbone reconstruction

algorithm that can modify the conformation of preselected

extended backbone regions with high efficiency during the

simulations. Using this approach we demonstrate for three im-

portant kinases that binding modes that cannot be found in

rigid backbone receptor simulations are indeed selected in

simulations using the backbone reconstruction protocol. We

also show that this approach permits modeling of allosteric

effects by sampling both the DFG-in and DFG-out motifs in an

application to p38a kinase, an important target for novel anti-

inflammatory therapies.[62]

Methods

Docking method

All docking simulations have been performed with the
all-atom receptor-ligand docking program FlexScreen,[53]

which employs the following biophysically motivated scoring
function:
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with di,j ¼ 1, for the pairwise interaction of two atoms, which

are allowed to change position during simulation and di,j ¼ 0

otherwise. Ui represents the electrostatic potential of the rigid

protein parts at the position of atom i. The scoring function

contains Lennard-Jones (first two terms), electrostatic Coulomb

(term three and four, e ¼ 4), and angular dependent hydrogen

bond (terms five and six) potentials. Protein and ligand atoms

(i,j) are treated on the same footing. The parameters used for

Lennard-Jones and the hydrogen bonding are the same as in

AutoDock.[63]

To speed up the docking simulations FlexScreen splits the
Coulomb and Lennard-Jones receptor energy contributions in
the scoring function into different contributions for rigid and
flexible parts of the system, respectively. The terms stemming
from the rigid parts are evaluated via an efficient grid-based
procedure. Grid files for the Lennard-Jones interactions (using
FlexScreen’s stand-alone program doGrid) and for the electro-
static interactions (using APBS[64]) are preprocessed. APBS pro-
vides a adaptive Poisson–Boltzmann equation solver, which
yields a high accuracy electrostatic model for regions with dif-
ferent dielectric constants. While APBS includes electrostatic
effects of the solvent on the ligand, differential ligand intramo-
lecular electrostatic interactions and interactions between flexi-
ble side chains and the ligand are treated with a fixed-epsilon
approximation (leading to a presently unavoidable imbalance
in the treatment of these contributions). For rigid receptor
models these contributions are obviously zero, respectively.
Furthermore, FlexScreen uses a ‘‘docking center’’, around which
the sampling is enhanced (biased moves), but this has no
effect on the scoring function.

Docking simulations should ideally compute the free energy
of binding, DG which comprises both enthalpic and entropic
contributions stemming from conformational changes of the
receptor and the ligand. Presently, methods for computation
of absolute binding free energies are still very costly,[65] while
methods computing relative binding free energies DG, rely on
perturbation of one ligand. Neither of these approaches are
presently useful to screen even medium sized libraries of struc-
turally unrelated compounds. For this reason we continue to
develop the docking methodology here, where ‘energy’’ refers
to the value of the scoring function, largely ignoring entropic
contributions to the binding process. Improving upon this
approximation, which presently all docking methods make, is
not subject of this investigation, which focuses on conquering
the sampling issues related to backbone flexibility.

The docking protocol uses a cascadic version of the stochas-
tic tunneling algorithm (STUN),[66,67] which samples ligand and
receptor degrees of freedom. The docking cascade consists of
three different stages, starting with many short simulations in
the first stage, from which the best nonoverlapping conforma-
tions are selected for further refinement in subsequent stages.
In each stage an adjustable number of steps are performed for
a population of ligand conformations. In this investigation, we
used 5000/30,000/75,000 steps per ligand conformation in the
first/second/third stage of the simulation. For rigid backbone

simulations, we simulate 200 different ligand conformations in
the first stage. The lowest four conformations with a distinct
value of the scoring function are forwarded to the second
stage. In the last stage, the best value of the scoring function
conformation from stage two is finally relaxed (in the following
referred to as a 200/4/1 sampling). The flexible backbone
docking simulations used a 20/20/1 sampling in the different
FlexScreen stages. To check for consistency all simulations are
run repeatedly. Further information on the docking method
and its applications of docking performance for several sys-
tems has been reported elsewhere.[53,66–68] For all parameters
not explicitly stated, default values were used.

In each step FlexScreen changes a single degree of freedom
for ligand and side chain and evaluates its influence on the
scoring function. The move is accepted using the Metropolis
criterion on the effective STUN energy. Ligand and side chain
moves comprise translations of the ligand center of mass, ran-
dom rotations of the ligand or intramolecular conformational
changes for the ligand and dihedral angle changes of flexible
side chains for the receptor. All of these relative moves are
drawn from a Gaussian distribution. In this investigation we
also use backbone reconstruction steps described below.

Treatment of backbone flexibility

In small-molecule docking backbone flexibility is, for the most
part, confined to limited regions of the backbone, comprising
of one or more sets of consecutive amino acids (loops).
Because of enthalpic reasons, secondary structure elements
are largely conserved between apo and holo structures, thus
most changes occur in unstructured regions in the vicinity of
the docking site. It is presently unrealistic to model protein
flexibility for the whole protein in docking simulations. Ideally,
the free energy changes of the protein have to be combined
with the free energy changes of the ligand, neither of which
are directly accessible in a docking simulation. To assess the
quality of a particular binding pose, an accurate or at least
compatible model free-energy of the free-energy microstate of
the protein energy is required. Given the present state of force
field accuracy (presently, all commonly used scoring functions
in docking simulations incorporate only single protein struc-
tures and use a model to obtain a free energy estimate), it is
necessary to confine protein conformational change to the
most relevant degrees of freedom of the protein.

In the following, we pursue an approach, where backbone
flexibility for predefined protein loop regions is sampled dur-
ing the simulation using the backbone dihedral angles as the
flexible degrees of freedom. In the following, we assume that
the relevant flexible sections of the backbone are known
before the simulation, either by comparison of crystal struc-
tures or by computational methods.[16]

Moves comprising single torsions of backbone dihedrals are
not effective because the entire rest of the chain is moved
that results in large scale conformational changes (and often
clashing conformations). We have therefore implemented a
loop reconstruction algorithm, where all dihedral angles in
one of the predefined segments of the backbone are changed
at once. The protein conformation outside the selected chain
remains unchanged and the integrity of the backbone (angles,
distances) is maintained. Such loop moves have been widely
discussed previously and intensely studied: The first mathe-
matical models of ring closure, when bond length and bond



distances are maintained fixed, were developed by Go and
Scheraga[69] and applied to loops containing up to five resi-
dues.[70] More recently, different approaches for loop recon-
struction have been developed, including the hierarchical loop
prediction, in which the loops with the best scoring function
generated from one stage are passed to the next where more
focused (constrained) sampling is performed[71] or the
robotics-inspired conformational sampling (kinematic clo-
sure).[72] In docking simulations, loop modeling was realized
using a low-resolution protein representation to sample loop
regions followed by a repacking of the protein side chains.[73]

Loop prediction methods using the analytical generalized born
plus nonpolar scoring function with torsion angle sampling
have shown good accuracy in comparison with selected crystal
structures.[74] Despite some progress most approaches still
vary strongly in accuracy.[75,76]

We have implemented a scheme where backbone moves
are attempted with an adjustable frequency during the simula-
tions. Construction of a backbone move in this scheme con-
sists of two steps after the backbone dihedral angles are
randomized. First, using a global loop closure search the loop
is closed (see section Docking Method). Second, the resulting
conformation is minimized using a modified steepest descent
algorithm (local optimization, section Treatment of Backbone
Flexibility). If the loop closing routine was successful (gap is
less than 0.001 nm), the new backbone conformation will con-
served in the acceptance criterion of the Monte-Carlo search
of the docking simulation. In the work reported here, the
probabilities for a backbone reconstruction move are chosen
to sample 1–2 new backbone conformations in average for
one subset of the simulation (sample) in the first two stages.
In the last stage, we modify the backbone conformation
more often, but with smaller step size to achieve a good
relaxation. Specifically, the probabilities were set to 25/10,000,
25/100,000, and 1/1000 in stages 1, 2
and 3, respectively. The backbone
closure step is discussed in detail in
the Supporting Information.

Receptor and ligand preparation

All receptor files were obtained from
the RCSB Protein Data Bank in the
PDB file format. As our software
FlexScreen requires MOL2 data files
as an input, we converted the
receptor files with the software
pdb2pqr[77] and Open Babel[78] into
the MOL2 format. The software
pdb2pqr provides the protonation
state and the partial charges for the
receptor file using the AMBER99[79]

parameters. All water molecules,
cofactors or ions present in the PDB
files were removed. The ligand files
were converted from the PDB file
format into the MOL2 file format
with MOE, using am1bcc[80] to deter-
mine protonation state and partial
charges. Both the receptor structure
and the ligand are relaxed prior to
the simulation to define a reference
for the energy.

Results

In the following, we present simulations for three different ki-

nases, one of the most important families of drug targets, to

demonstrate the functionality of our novel backbone algorithm.

Kinases constitute about 30% of the targets in drug discovery

projects today, making it the second most exploited protein

family after G-protein-coupled receptors.[81] Drug development

for kinases presents an enormous challenge, because the ATP

binding site is highly conserved. Targeting this binding site

tends to lead to unspecific binding, resulting in undesired side

effects. In order to develop compounds that are active in only

a single kinase or only a subfamily of kinases, specific features

of that kinase/subfamily must be targeted.

Many kinases feature a flexible loop in the vicinity of the

active site (Fig. 1) that partially encloses the ligand in the holo

structure. This loop is either difficult to resolve in apo-confor-

mation or may be present in a very different conformation.

When a fixed apo structure is used for screening novel high af-

finity ligands may be blocked from docking into the fixed con-

formation by the loop. Although kinases are probably the pro-

tein family for which most crystal structures are available, the

availability of an apo conformation is much more likely than a

suitable holo conformation for some particular ligand. In high

throughput applications with many different ligands it is very

difficult to select an unbiased target structure. Docking into a

rigid backbone conformation of a single crystal structures will

exclude some ligands, which cannot be accommodated by the

structure. Inspection of the large degree of backbone confor-

mational change, in particular for the structures 2OJJ and

2OGJ (PDB-ID), suggests that it is a very difficult to generate

Figure 1. (A) Apo receptor (red) and holo ligand and receptor structures (yellow), (B) Native holo ligand

and receptor structure, (C) Simulated ligand (green) without receptor backbone flexibility. (D) Simulated

ligand and receptor (green) conformation with receptor backbone flexibility. Receptor simulation starting

point was apo (red) structure. PDB IDs holo/apo structures: 2OJJ/2GPH.



the correct backbone conformation in the absence of the

ligands, required for an ensemble docking approach. In Figure

1A, we show overlays of ERK2 receptor structures in apo and

holo conformation. The latter is shown in Figure 1B with

ligand ((S)-N-(1-(3-chloro-4-fluorophenyl)-2-hydroxyethyl)-4-(4-

(3-chlorophenyl)-1H-pyrazol-3-yl)-1H-pyrrole-2-carboxamide)

which illustrates this point.

In the current study, we docked different ligands into their

corresponding apo receptor structures with and without our

model for backbone flexibility and compared the results to the

experimentally known holo structures. We will refer to these

simulations as ‘‘apo-docking.’ To assess the performance of our

backbone reconstruction algorithm we always run our simula-

tions twice (‘‘rigid backbone docking simulation’’ and ‘‘flexible

backbone docking simulation’’). Rigid backbone docking simu-

lations are performed with only side chain receptor flexibil-

ity,[16] the latter with full backbone flexibility in a selected pro-

tein region. In all of the following examples, we demonstrate

that receptor backbone flexibility is required to predict the

correct ligand or receptor position and binding scoring

function.

The first and second examples focus on pyrazolylpyrrole

analogs[82] (see Fig. 2 for an overview of all ligands) as inhibi-

tors for ERK–kinases. ERK kinase is a widely expressed intracel-

lular signaling molecule and is part of the Ras/Raf/MEK/ERK

signal transduction pathway, which is responsible for many

fundamental cellular processes, such

as cell survival, proliferation, motility,

and differentiation.[83–87] In many

different cancer forms, i.e., lung, co-

lon, pancreas, kidney, and ovary can-

cers the ERK pathway is disrupted,

which leads to an enhancement of

the deregulated molecular lesions in

cancer. In the pathway ERK is a cen-

tral point downstream of Ras, Raf

and MEK, where multiple signaling

pathways merge for transcription.

There are two types of ERK kinases,

which show a sequence identity of

88%, but for both the ATP binding

pocket site is conserved to an even

higher degree. Due to their crucial

functions ERK kinases are intensely

studied as a drug target and Aronov

et al.[82] discovered new ERK inhibitors

based on a structure-guided optimiza-

tion of the pyrazolylpyrrol molecule.

Holo crystal structures of the newly

found inhibitors were deposited in the

PDB database under accession num-

bers 2OJJ and 2OJG, which we used

for our docking studies.

In the third example, we investi-

gated binding of a balanol analogue

ligand into a cyclic adenosine mono-

phosphate-dependent protein kinase

(PKA).[88] The Serine–Tyrosine kinase PKA was one of the first

characterized protein kinases and is also one of the simplest and

biochemically best understood.[89] Until the triggering through

cyclic AMP, a messenger for hormone signaling, PKA is main-

tained in an inactive state. In the absence of cAMP, the enzyme

complex contains two regulatory (R) and two catalytic (C) subu-

nits. The activating signal (binding of cAMP to the R subunit)

leads to dissociation of the complex into an R and two C subu-

nits. This C subunit contains the same conserved catalytic core

found in all protein kinases and is therefore often used as a

model system for protein kinases. PKA has a functional role in

the regulation of glycogen, sugar, and lipid metabolism.

Receptor plasticity in the ERK2 kinase

For the ERK kinases, we use the apo structure of an ERK2 ki-

nase (PDB-ID: 2GPH), which has a resolution of 1.9 Å,[90] as the

receptor starting point of our simulation. Figure 1A shows the

differences between the apo (red) and the holo (yellow) struc-

ture after an alignment (structural superposition) indicating a

significant flexibility in the glycine rich loop (Residue ILE29-

VAL37), which severely constrains the ATP binding pocket. This

receptor is a good example where comparison between apo

and holo structures demonstrates a significant plasticity in the

loop region. Obviously, the correct binding position will only

be accessible with a flexible treatment of this loop region.

Figure 2. The four different ligands used in the docking simulation study: (A) (S) N (1 (3 chloro 4 fluoro

phenyl) 2 hydroxyethyl) 4 (4 (3 chlorophenyl) 1H pyrazol 3 yl) 1H pyrrole 2 carboxamide, (B) N,N dimethyl 4

(4 phenyl 1H pyrazol 3 yl) 1H pyrrole 2 carboxamide, (C) 3 [(4 ydroxybenzoyl)amino]azepan 4 yl 4 (2 hydroxy

benzoyl)benzoate, (D) N [1 (2 (4 pyridyl)ethyl) 6 indolyl] 3 fluoro 5 (4 morpholino)benzamide. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com].



In preparing the docking simulations, we noted four addi-

tional side chains, which have a different conformation in the

apo and holo structure, respectively. These residues (Residue

LYS52, TYR62, ARG65, and GLN103) may also play an important

role in the binding process of the ligand, because their side

chains have either polar or charged side chains, meaning they

are able to form hydrogen bonds with the ligand. In all simula-

tions reported, these side chains were treated flexible. Ligand

1 (Fig. 2), (S)-N-(1-(3-chloro-4-fluorophenyl)-2-hydroxyethyl)-4-

(4-(3-chlorophenyl)-1H-pyrazol-3-yl)-1H-pyrrole-2-carboxamide,

was extracted from the holo crystal structure (PDB-ID: 2OJJ)

and structurally randomized.

We then ran 200 independent simulations with a rigid back-

bone. The ligand conformation with the best score is shown in

Figure 1C (green ligand), demonstrating that the ligand will

bind in a position very far from the native pose (RMSD (root

mean square deviation) >5 Å). Indeed, none of the 200 simula-

tions managed to generate a final pose (independent of the

value of the scoring function) with a significantly better RMSD.

In the second set of simulations, we enabled backbone flexi-

bility for the nine consecutive amino acids, starting with the

residue ILE29. Considering the rotational, spatial and internal

flexibility of the ligand, and the receptor side chains, we have

a system with a total of 61 degrees of freedom to minimize

with respect to the scoring function for receptor and ligand.

We performed 2000 independent simulations with the flexi-

ble backbone protocol using the apo structure as the receptor

starting point. Of the five ligand structures with the lowest val-

ues of the scoring function we obtained four conformations

representing the same cluster of conformations, (RMSD varia-

tions under 0.1 Å). Because the scoring function of these con-

formations varies more than in the rigid docking simulations

(Fig. 3), presumably because of the larger number of degrees

of freedom, we performed two additional relaxation simula-

tions starting with the conformation of the top scoring clus-

ters. We used an iterative procedure to converge the scoring

function: We reseeded the simulation with the previously

obtained conformation and ran 200 independent simulations

until the final scoring function of the simulation converged in

comparison with the previous cycle. After three cycles both

conformations had converged in scoring function. The best

scoring structure is shown in Figure 1D (green ligand and re-

ceptor) and agrees well (after alignment of the receptor) with

the native holo structure (final RMSD 2.32 Å). In comparison

with the apo-structure, we found that the binding of the

ligand forces the receptor to adopt a more open conforma-

tion, resulting in a significant movement of the glycine rich

loop.

In the next example, we investigated a different ligand,

ligand 2 (Fig. 2): N,N-dimethyl-4-(4-phenyl-1H-pyrazol-3-yl)-1H-

pyrrole-2-carboxamide, lacking the second benzene ring, into

the same apo receptor as used in example 1. The correspond-

ing holo crystal structure has the PDB-ID 2OGJ (Fig. 4A). In

comparison with the previous example, we find that the

resulting loop movement upon ligand binding is larger for the

ligand 1, which may be caused by the additional second ben-

zene ring.

The rigid backbone simulation runs consisted of 200 runs

with a stage composition of 200/4/1. The resulting RMSD value

here was 2.44 Å, so the resulted ligand is not as away from

the native position as in the previous example. For the flexible

backbone simulation runs, we used the same receptor flexibil-

ity explained in example 1. The simulations consisted of 2000

independent runs using a 20/20/1 sampling scheme. The

resulting ligand structure is shown in Figure 4B. In these simu-

lations, the RMSD was reduced significantly to 1.74 Å. In com-

parison to the previous example there were also no compet-

ing structures with scoring function, so further refinement was

not needed. It is interesting to analyze the difference between

the two holo structures. Figure 4C illustrates the differences

between the two holo structures of the two ligands for com-

parison. The glycine rich loop is more open for ligand 1 (blue

structure), than for ligand 2 (yellow structure). To test the

induced-fit theory, a docking simulation with ligand 2 into the

best scoring receptor structure of the docking simulation from

ligand 1 was performed with rigid backbone, but flexible side

chain docking. The result is shown in Figure 4D, with an result-

ing RMSD of 2.80 Å, thus very similar to the rigid backbone

docking simulation, which started from the apo structure,

demonstrating that also crossdocking can only be accom-

plished with consideration of backbone flexibility.

Receptor plasticity in the PKA kinase

As the third example, we investigated the binding of 3-[(4-

hydroxybenzoyl)amino]azepan-4-yl 4-(2-hydroxybenzoyl)ben-

zoate (ligand 3, Fig. 2C), a fungal metabolite, into a cyclic

adenosine monophosphate-dependent protein kinase (PKA).

For the receptor, we used the available PKA apo structures

resolved in 1992 to a resolution of 2.5Å (PDB-ID 2CPK[89]). The

ligand was later modified to yield potent inhibitors with suffi-

cient selectivity as is desirable for pharmaceutical use. Ligand

modifications cause plasticity of the glycine rich loop (Residue

LEU49-VAL57) in the ATP binding pocket of the PKA kinase.[88]

This loop stabilizes the binding position of the ligands, but is

also very flexible. At first sight it appears that holo and apo

structures differ only very little. The differences between the

Figure 3. Scoring function vs. RMSD plot for rigid backbone docking simu

lations (red) and flexible backbone docking simulations without further

relaxation (blue) of ligand 1.



apo receptor and the holo receptor with ligand are shown in

Figure 5A. Further, we noted several side chains LYS72, LYS78,

LEU82, GLU91, MET120, GLU127, LYS168, ASN171, THR183, and

ASP184 in the two structures which may play a role in the

binding process and were therefore made flexible in the dock-

ing simulations.

To compare the performance of our new backbone algo-

rithm in the docking simulations we made two sets of simula-

tions: In the rigid backbone simulations we considered 21 flex-

ible side chains but without backbone flexibility. We used the

same protocols in both simulations, i.e., 2000 parallel runs for

the flexible backbone simulations. The result of the rigid back-

bone simulations is shown in

Figure 5A. Without the flexibil-

ity of the glycine rich loop it is

not possible to reproduce the

correct position of the ligand.

The RMSD value is very large

(>9Å) and the overall orienta-

tion of the ligand is inverted

along the vertical plane per-

pendicular to the figure. The

ligand assumes a compact con-

figuration (native: extended),

resulting in a lack of contacts

between the ligand with the

hinge region (Residue GLU121-

VAL123) of the binding pocket.

Next, we performed flexible

backbone simulations with the

very same side chain flexibility,

but including the backbone

flexibility. In total, we found

four different clusters of ligand

conformation (Fig. 6). The clus-

ter with the best scoring func-

tion corresponds to the native

pose of the ligand in the holo

crystal structure and includes

the conformation with the

best scoring function. The improvement under the considera-

tion of the flexibility of the glycine rich loop is shown in Figure

5B. The RMSD value of the docked pose is very small (0.6Å),

meaning the native configuration was reproduced very accu-

rately. The cluster with the highest RMSD (>9Å) has a lower

scoring function, but corresponds to the apo form of the gly-

cine rich loop and is also the result of the rigid docking.

Because the scoring function of this conformation is only 18.8

kJ/mol lower than the top scoring state (in the uncalibrated

scale of the scoring function this reflects a small difference

among populations), this conformation may be an intermedi-

ate state in the binding process. We also performed an

additional 7000 independent

flexible backbone simulations

to check for convergence but

found no notable difference in

the results.

Allosteric binding in the MAP

kinase p38a

One very challenging approach

to develop drugs specific for

one kinase or a subfamily of

kinases is to exploit allosteric

binding effects, where the

ligands does not bind in the

active site, but a different loca-

tion. Binding to the allosteric

Figure 4. Apo receptor (red) and holo ligand and receptor structures (yellow) as compared to simulated ligand

and receptor conformations (green). Receptor simulation starting point was apo (red) structure. (A) Simulated

ligand (green) without receptor backbone flexibility. (B) Simulated ligand and receptor (green) conformation with

receptor backbone flexibility. PDB IDs holo/apo structures: 2OGJ/2GPH (C) Holo structures of ligand 1 (blue) and

ligand 2 (yellow), (D) Simulated ligand 2 (green) docked into best scoring receptor structure of ligand 1. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com].

Figure 5. Apo receptor (red) and holo ligand and receptor structures (yellow) as compared to simulated ligand

and receptor conformations (green). Receptor simulation starting point was apo (red) structure. Left, simulated

ligand (green) without receptor backbone flexibility. Right, simulated ligand and receptor (green) conformation

with receptor backbone flexibility. PDB IDs holo/apo structures: 1RE8/2CPK. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com].



site, for example illustrated in Figure 7 induces a conformational

change that affects the active site. As allosteric mechanisms of-

ten involve backbone conformational changes, treatment of pro-

tein conformational flexibility is important to model allosteric

binding.

One interesting examples is the mitogen-activated protein

kinase (MAP) p38a kinase is an intracellular serine/threonine

kinase and can be activated by many environmental stimuli

such as TNF-a, IL-1b or stress caused by osmotic shock or

UV light.[91] The activation of p38a is caused by phosphoryl-

ation on the Thr180-Gly181-Tyr182 activation loop.[92] In its

active state p38a phosphorylates many intracellular protein

substrates which regulate the biosynthesis of TNF-a and IL-

1b. Furthermore, the MAP kinase plays an important role in

the regulation of the COX-2 gene expression.[93] It is under-

stood that the excessive production of TNF-a and IL-1b may

lead to many inflammatory diseases such as rheumatoid ar-

thritis, Crohn’s disease, inflammatory bowel disease and

psoriasis.[94]

It has been shown that inhibition of p38a using SB203580

significantly reduces TNF-a and IL-1b production, which makes

p38a a very promising target for novel anti-inflammatory ther-

apy.[62] Until now, there are two anti-inflammatory agents on

the market, which specifically inhibit the TNF-a production:

Enbrel[95] (a TNF-a receptor) and Remicade[96] (a human TNF

monoclonal antibody). The development of orally bioavailable

small molecule inhibitors promises new ways in therapies.

Indeed a number of promising p38a small molecule inhibitors

have entered already human clinical trials over the last

years.[96]

In the following, we discuss one specific allosteric binding

mechanism for p38a kinases, which is directly connected to

the DFG-motif[97] (see Fig. 7). The DFG-motif, named after the

one-letter code of the constituent amino acids, is part of the

activation loop, where a large conformational change of the

ASP-PHE-GLY residues leads to the formation of a largely lipo-

philic pocket, into which an inhibitor may insert. Different con-

formations for this loop have been found in experiments,

which are classified into two categories, the ‘‘DFG-In’’ or ‘‘DFG-

Out’’ mode, respectively. This categorization refers to the posi-

tion of the ASP residue in the motif: In a ‘‘DFG-In’ conforma-

tion the ASP residue points into the ATP binding pocket,

where it coordinates the magnesium ion, necessary for the de-

phosphorylation of ATP to ADP.[98] In the ‘‘DFG-Out’’ conforma-

tion the ASP residue points away from the ATP binding site,

which leads to an inactive conformation of the kinase, because

the residues in the active site are not oriented to allow the

catalyzation of the phosphotransfer. The conformation of the

activation loop also blocks the ATP binding in the binding

pocket.[99] This is easily seen in the volume representation of

ATP in both conformations, which leads to significant clashes

for the DFG-out conformation (Figs. 7C and 7D). The DFG-out

conformations have been observed crystallographically for Abl,

p38a, b-Raf, EGFR, Kdr, c-Kit, and Aurora A kinase and it still

remains unclear, why not all kinases can adopt a DFG-out

flip.[99]

For our study, we used the crystal structure with PDB-ID

1R3C as the apo p38a kinase receptor reference structure with

a ‘‘DFG-In’’ and the structure with accession number 1WBT[94]

as a reference DFG-out structure. The ligand in this structure is

Figure 6. The lowest scoring function conformation with simulated receptor and ligand conformation corresponding to the experimental holo structure

(A), an intermediate state (D) with simulated receptor conformation corresponding to experimental apo structure and two local minima conformations

(B),(C) drawn from 14280 independent docking simulations, starting from apo structure (red). For comparison the crystal holo structure is colored yellow

and simulated ligand and receptor conformation are colored in green (PDB IDs of holo/apo structure: 1RE8/2CPK). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com].



a modified benzamide molecule, which was found in a high

throughput X-ray crystallographic screening. We ran 2000 inde-

pendent simulations with backbone sampling using a 20/20/1

sampling scheme. The backbone and side chains in the region

ILE166-ASP176 were treated flexibly. In addition, side chains

which may influence the ligand binding process (TYR35,

ARG67, GLU71, LEU74, LEU75, MET78, ILE84, THR106, ILE141,

GLU178) were treated flexible, leaning to a total of 21 flexible

side chains.

Starting from a DFG-in conformation both modes of the

DFG-motif were extensively sampled, but the lowest scoring

function was found for conformations with the DFG-in confor-

mation, which corresponds to the correct apo conformation

of the complex. Here, the ligand has a high RMSD with

10.8Å (Fig. 8B). One conformation with a very low RMSD value

(Fig. 8A) did also occur in the simulation run. The ligand RMSD

here is 1.9Å, but the total binding

scoring function was more than

51.30 kJ/mol lower than the scoring

function in the conformation with

the highest scoring function. Inter-

estingly, we found in low ligand

RMSD value conformations stronger

direct interactions between ligand

and receptor than in high RMSD

conformations (difference of 34.09

kJ/mol). The main differences in scor-

ing function are caused by the inter-

nal receptor contribution to the scor-

ing function. In conformations close

to the apo structure the internal re-

ceptor scoring function is 84.79 kJ/

mol higher than in conformations

similar to the holo structure, which

can be traced to changes in the elec-

trostatic interaction of side chains

that are not resolved in the crystal

structure and hence difficult to ana-

lyze. Nevertheless, our simulation

protocol was able to reproduce,

without prior knowledge of the apo conformation, the com-

plex conformational changes associated with the reorientation

of the DFG-motif that is responsible for the allosteric control

of the p38a kinase.

Discussion

Backbone receptor flexibility is known to have a significant

impact on the ability to correctly describe and rank the bind-

ing poses of different ligands in many pharmaceutically rele-

vant receptors. In this study, we have succeeded to implement

an efficient backbone reconstruction algorithm that permits to

sample backbone reconstruction events in the framework of

receptor-ligand docking simulations. By this increases the nu-

merical effort, as discussed below, but we could also demon-

strate that state-of-the-art computational hardware permits

Figure 7. DFG residues in (A) ‘‘In’ and (B) ‘Out’ conformation (yellow). Surface representation of aligned

ATP in the receptor binding pocket in a (C) ‘‘DFG In’ and (D) ‘‘DFG Out’ conformation. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com].

Figure 8. Apo receptor (red) and holo ligand and receptor structures (yellow) as compared to simulated ligand and receptor conformations (green). Low

RMSD simulated ligand with a holo like conformation (Left). Best scoring simulation result with a apo like receptor conformation and a high RMSD ligand

(Right). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com].



thousands of such calculations in a reasonable timeframe. In

the following, we discuss a few specific points that are rele-

vant when considering backbone-flexibility:

Balancing backbone-backbone and backbone-ligand

energies

Balancing backbone-backbone and backbone-ligand energies

emerges as an obvious novel challenge in flexible-backbone

simulations and scoring functions must be adapted, possibly

by learning from molecular-dynamics force field simulations, to

better address these contributions. In our simulations, we of-

ten found large energetic differences for relatively small back-

bone movements, which may be caused by an overestimation

of the internal receptor contribution in the scoring function.

This issue was most pertinent at the p38a kinase, where the

receptor internal scoring function for receptor conformations

similar to the apo conformation was much better than for re-

ceptor conformations similar to the holo structure. However,

for this particular case the change in the receptor scoring

function could be traced to the conformation of a side chain

(ARG173) that is not resolved in the apo crystal structure. An

interaction of this highly charged group with the solvent,

which are not accounted for in the scoring function, may par-

tially compensate this effect. A more accurate solvent treat-

ment, for example using the Generalized Born model,[100] may

help ameliorate this problem. In our simulations, we always

generate a reference conformation for receptor and ligand

apart from each other. This avoids problems with high-ener-

gies when starting simulations with a specific experimental

structure and is always required in cases where the experimen-

tal structure is not fully resolved (missing loops/residues). This

also permits comparison between binding energies of a single

ligand to different kinases in principle, although given the re-

solution of presently available scoring functions, such compari-

sons are meaningful only for closely related receptors. It is

possible to postprocess the results to get more accurate abso-

lute values of binding energy with other methods. Common

methods for this are the linear interaction energy method[101]

or the Molecular Mechanics/Poisson-Boltzmann Surface Area

(MM-PBSA) and the Molecular Mechanics/Generalized Born Sur-

face Area (MM/GBSA).[102,103]

Selection of the receptor flexibility

Even using our efficient sampling technique, only a fraction of

the protein side chain and backbone can be treated flexibly.

Automatization of flexible side chain selection has been real-

ized by using Lennard-Jones clashes in the scoring function of

rigid docking as well as other methods.[16,40] This approach

showed reasonable results in balancing docking performance

and computational time. The increase of the computational

cost by making certain backbone regions flexible is much

steeper than for enhanced side chain sampling. We therefore

presently advocate manual selection of flexible backbone

regions by comparison of apo and holo structures or by the

identification of unstructured regions of the receptor in the vi-

cinity of the binding pocket. Some receptor classes, such as ki-

nases, show a very high similarity in the catalytic region[104]

and the detail models for the selection of flexible backbone

regions are available. Recent studies[51,98] have shown that the

DFG-motif in all p38 and also in ABL kinases is very flexible

and this flexibility therefore should be included in docking

simulations, if ligand exploration in the lipophilic pocket due

to DFG-motif movement, is desired.

Computational costs

In the current study, the required computational time depended

strongly on the total number of degrees of freedom. Docking a

single ligand with only receptor side chain flexibility required

from 3–5 min in a single simulation run, while a single simula-

tion including receptor backbone flexibility for 8–11 residues

required 6–8 h of computational time (IntelPC-86-64, 1.8 GHz

processor). As a larger degree of backbone flexibility leads to a

larger conformational space, more sampling is necessary to find

local minima in the scoring function. One important advantage

is enhancement of reliability by running multiple of simulations

parallel. For some receptors up to 12,000 independent parallel

simulations were performed (Fig. 6) to sample accurately the

conformational space. This investigation demonstrates that an

increasing number of simulations has little influence on the

selected conformations of both backbone and ligand (compared

to only 2000 independent parallel runs), but a much strong

influence on the final scoring function.

Interaction analysis

It is known that all of presently available scoring functions cor-

relate only weakly with the measured affinities.[7,105] Many

enthalpic contributions to receptor ligand interactions are

extremely short range, e.g., hydrogen bonding and pi-pi stack-

ing interactions have a steep distance and angle dependency.

In our simulations, we observed that for several cases the

additional interaction points, such as hydrogen bonds, were

found after backbone relaxation. In particular, for incomplete

crystal structures consideration of backbone flexibility may

thus be important to fully resolve all interactions between re-

ceptor and ligand and to rank the ligands in a database

correctly.

Conclusions

It is well-known that the receptor flexibility plays an important

role in ligand recognition by pharmaceutically relevant protein

receptors. While there has been significant progress in sam-

pling side chain degrees of freedom during receptor-ligand

docking simulations, there has been little progress in treat-

ment of the backbone receptor flexibility due to the large

associated computational costs and difficulties to balance inter

molecular and intra molecular contributions to the scoring

function. Ensemble docking methods have been proposed to

ameliorate this problem, but these methods have a difficulty

to account for the contribution of receptor-reorganization

energy to the affinity and in the selection of adequate target

structures, when only apo structures with unstructured or

structurally unresolved loops are available.



Here, we pioneered an approach that permits sampling of 
large preselected loop regions in the receptor during the 
docking simulation with an adequate accounting of receptor 
reorganization energy in the scoring function. We demonstrate 
in docking simulations starting from the apo structure for 
three different kinase examples good agreement between the 
observed binding poses and interactions in comparison with 
experimentally known holo structures. Generally, we find the 
calculated scoring function in the relaxed backbone conforma-

tion to be significantly better than in the control simulations 
with rigid backbone. Using the flip of the DFG-motif of p38a 
kinase as an example, we also demonstrate that this approach 
can be used to model allosteric binding effects that can be 
exploited to increase ligand specificity in families of proteins 
with structurally conserved binding pockets, such as kinases. 
This approach increases the computational cost by approxi-

mate an order of magnitude in comparison to rigid-backbone 
simulations, but still remains feasible using of-the-shelf hard-

ware for many interesting applications.

In our view, the most significant remaining challenge is the 
improvement of scoring functions, particularly with respect to 
the balance of intermolecular and intramolecular interactions, 
which remains a sore point for almost all in silico screening 
approaches. However, we have found improvement from an 
unexpected source by reevaluating the interactions in relaxed 
holo structures and found that the scoring functions detect 
short-range interactions in the relaxed receptor conformations 
that are not detected in the experimental holo structures. This 
obviously does not mean that these interactions are not pres-

ent in the experimental structures, but simply reflects the fact 
that presently available scoring functions are not able to 
adequately account for these interactions using just the exper-

imental backbone conformation. As a result some of the defi-

ciencies in affinity prediction may be reduced by using back-

bone reconstruction in scoring the final poses.

Our results suggest that performance of docking simulations 
can be significantly improved by including receptor flexibility 
in continuous backbone parts into the docking simulations. A 
main advance of this new flexible receptor docking approach 
is its capability to use apo structures as input for the docking 
simulations. With these demonstrated applications we have 
shown that docking simulations incorporating backbone flexi-

bility can improve the results of in silico screens and may help 
to discover new-scaffold ligands that remain presently unde-

tected in rigid-backbone screening protocols.

Keywords:  in silico screening � induced  fit  � receptor  
flexibility � allosteric effect � kinase inhibitor
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