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ABSTRACT: Implicit solvent models are one of the standard tools in 
computational biophysics. While Poisson−Boltzmann methods offer highly 
accurate results within this framework, generalized Born models have been 
used due to their higher computational efficiency in many (bio)molecular 
simulations, where computational power is a limiting factor. In recent years, 
there have been remarkable advances to reduce some deficiencies in the 
generalized Born models. On the other hand, these advances come at an 
increased computational cost that contrasts the reasons for choosing 
generalized Born models over Poisson−Boltzmann methods. To address this
performance issue, we present a new algorithm for Born radii computation, one performance critical part in the evaluation of
generalized Born models, which is based on a Barnes−Hut tree code scheme. We show that an implementation of this algorithm
provides accurate Born radii and polar solvation free energies in comparison to Poisson−Boltzmann computations, while
delivering up to an order of magnitude better performance over existing, similarly accurate methods. The C++ implementation of
this algorithm will be available at http://www.int.kit.edu/nanosim/.

■ INTRODUCTION

While solvation effects play a central role in many
biomolecular1 and chemical2 processes, the details of the
solvent behavior itself are typically of minor interest compared
to the effect of the solvent on the solute.3 Even though an
explicit solvent representation offers a very accurate description
of the system, it is often impractical to use such a
representation in computer simulations due to the computa
tional cost that is associated with the high number of degrees of
freedom in such a system.4 Implicit solvent models integrate
out the solvent degrees of freedom, resulting in a potential of
mean force that describes the effect of the solvent on the
solute.3 Over the years, many different models have been
developed,5−8 which vary widely in the approaches and
methods employed, the resulting accuracy, and the targeted
applications.
In molecular biophysics, models based on the Poisson−

Boltzmann (PB) theory9−12 are an established standard tool
with many applications.9,13−22 Due to the considerable cost of
solving the PB equation numerically and the size of biologically
interesting systems, one may also resort to a large number of
computationally less expensive approximations based on the
generalized Born (GB) model,9,23−34 which have become
common in applications like dynamics studies of proteins35,36

and nucleic acids,37,38 protein−protein docking,39 or small
peptide folding simulations40 among many others.
Evaluation of the polar part of the solvation free energy in

the GB model requires computation of so called atomic Born
radii, which describe the amount of polarization that is induced
by the partial charge of an atom in the dielectric environment.

Using the Coulomb field approximation, Born radii Ri may be
computed by solving the following integral
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where the integration region is the volume outside the molecule
occupied by water and ri⃗ is the position of the atom in question.
Given these Born radii, the polar part of the solvation free
energy can then be computed using Still’s formula32
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where α = 331.84 kcal/mol is a constant, εp and εw are the
dielectric constants of the protein and water, respectively, q
denotes the partial charge of an atom, and rij is the distance
between two atoms. While implementation of eq 2 is
straightforward and can be combined with evaluation of the
Coulomb interaction, computing the integral in eq 1 is more
challenging due to the complex integration region that is
defined by the molecular conformation and the chosen surface
definition.
Since PB calculations with the solvent excluded surface

(SES) definition41−43 yield good results in comparison to
hybrid44 or explicit45 solvent simulations, efforts were made to
incorporate the effects of the more complex SES by using



modifications to the Born radii typically computed from the
simpler van der Waals surface46 or adding volume corrections
to the integral of the van der Waals surface to account for small
water filled cavities.47,48 Other methods use atom centered
functions to define the surface and apply a numerical volume
integration scheme.49−51 Models where the integration is
carried out directly over the surface itself instead of the volume
have also been proposed.29,34,52

Another focus of improvements has been the integral
expression by which the Born radii are computed. Higher
order corrections to eq 1 have been proposed50,53 to
compensate shortcomings of the Coulomb field approximation,
on which the integral is based. Using Kirkwood’s54 work,
Grycuk55 also derived a new integral expression
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which was shown to yield accurate Born radii if the same
surface as in PB calculations is used.56

While the progress in accuracy has been remarkable so far,
the corrections and additional contributions lead to an
increased computational cost. Therefore, simulations with
models like GBMV2,49 which is considered one of the most
accurate in comparison to PB calculations with the SES,57 are
about 12 times more expensive than other GB models.58 Since
the GB term dominates the cost of biomolecular simulations
using an implicit solvent representation, it is important to
develop a method that combines computation of very accurate
Born radii with a numerically highly efficient implementation.
However this challenge has not yet been overcome.59

To address this issue we present a new method for Born radii
computation called PowerBorn along with an implementation
focusing on performance as well as accuracy. Our approach
aims primarily at applications like large scale simulations of
biomolecular systems using Monte Carlo methods, which are
also suitable to study protein folding or large scale conforma
tional changes in biomolecules60 but may be extended to other
applications as well. On the basis of a Barnes−Hut tree code
scheme,61 we developed a novel approach to perform the
numerical integration of the integral expression for Born radii
and demonstrate the accuracy of our method by comparing it
to results from PB computations. The performance of our
implementation is assessed by speedup measurements with two
other state of the art methods used for Born radii computation.
We first begin by describing our algorithm, regarding

especially the construction of the octree representing the
molecule and its surrounding water, and the determination of
the approximate SES. After explaining details of the integration
scheme, the extensions needed to also implement gradients for
molecular dynamics simulation are outlined. Finally, the
accuracy and performance of our implementation are assessed
and discussed.

■ METHODS
To compute the Born radii, we will rely on Grycuk’s integral in
eq 3, but in contrast to most other volume integration methods,
we will perform the integration over the water region and not
convert the integral to that over the molecular region. Since
most proteins form globular shapes, the integration region is
typically far away from the atoms, except for those at the
surface, thus making it easier to apply approximations to the
rapidly decreasing integrand.

To take advantage of this, our algorithm will be split into two
steps. The first step consists of constructing an octree
representation of the water region around the molecules’
surface inside a bounding box. The second step performs the
integration by a walk through the octree similar to the Barnes−
Hut tree scheme,61 adding the contribution of a cell to the
integral whenever a given accuracy criterion is met. For buried
atoms, the walk will end rather high up in the octree, thus
providing fast integration, while for atoms at the surface, the
walk will go deeper into the octree to reach the needed
accuracy. Finally, the region outside the bounding box is
integrated via analytical formulas.
We note that both steps are independent from each other

and only the octree construction depends on the surface of the
molecule, making it easy to implement various surface
definitions into this framework. In the next sections, the octree
construction and integration will be explained in more detail.

Octree Construction and Molecular Surface Approx-
imation. An octree is a tree structure used to subdivide a
region of three dimensional space and store data related to
these subregions. The nodes of this tree structure are
represented by cubic cells, where the bounding box of our
problem will be referred to as the root cell. We will characterize
these cells by their center rc⃗ and their edge length sc. Each tree
node may have eight branches, hence the name octree, which
are the eight equal sized cubic cells that take up the same
volume and will be referred to as the children of that cell. For
each cell, we will store the volume outside the molecules’
surface, e.g., the volume V occupied by water in that cell, and
the corresponding centroid c ⃗ of that volume, which will be used
later to solve the integrals for the Born radii.
For this work, we have chosen to implement the SES

definition for the reasons given in the Introduction. We
approximate it by sampling a finite number of points on the
solvent accessible surface (SAS)62 and place water spheres with
the size of the probe radius pw on these points. The points are
sampled so that the nearest neighbor distance d fulfills the
following criterion:

<d wpw (4)

where w is an input parameter determining the amount of
sampling points and therefore the accuracy of the approx
imation to the SES. Everything inside the SAS and outside
these water spheres will then be considered enclosed by our
SES approximation.
Recently, a method for computing the SAS area and volume

based on a power diagram representation of the conformation
was published, yielding accurate and fast results.63 Because
these terms are typically used to model nonpolar solvation
effects, we will also use the precomputed power diagram to
enhance speed and accuracy of our Born radii method. From
the power diagram, we derive which atoms are completely
covered by others, thus removing the need to create and check
sampling points for these atoms. We also use the so called
surface vertices of the power diagram, points at which three
spheres of the SAS intersect, as sampling points. Since these are
typically located in crevices at the SAS, they cover a lot of
volume enclosed by the SAS, which would otherwise falsely be
considered to belong to the molecule, leading to an
overestimation of Born radii.
The octree construction starts with finding a bounding box of

the molecule, so that the edge size of the smallest cell in the
octree will equal the resolution specified by the user in the



program input. Starting with the bounding box, we determine
for each cell the atoms overlapping with it. If no water spheres
overlap with a cell, that cell is considered completely inside or
outside the molecule, depending on whether any spheres of
which the SAS consist reach into that cell, and therefore the
construction of the present branch of the octree is completed. If
only water spheres reach into the cell, or it is completely buried
within one single water sphere, the cell is considered
completely outside the molecule. If none of the former
conditions are met, eight child cells are constructed, and the
procedure is recursively repeated for those until a decision is
made, or the smallest cell size is reached. For this finest level of
resolution, a cell is considered completely inside the molecule,
if its center is inside the SAS and not inside any water sphere;
otherwise it is considered completely outside the molecule.
After the octree construction is completed, we discard all

children of a cell, if all of them are either inside or outside our
surface. The resulting octree representing the solute volume is
visualized in Figure 1, together with the SES and the water
spheres for the SH3 domain of Escherichia coli64 (PDB code:
1SHG). In the last step, each octree cell is recursively assigned
the volume V in the cell being outside the molecule and the
corresponding centroid c ⃗ of that volume
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Octree Integration. For each atom, a top down walk
through the octree is performed. In analogy to Barnes and
Hut,61 a cell’s contribution to a Born radius of an atom at
position ri⃗ will be added to the integral if the centroid c ⃗ and size
sc of that cell meet the following criterion
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where the integration factor f is an input parameter determining
the speed and accuracy of the integration. If the criterion holds,
the contribution ΔI to the integral in eq 3 is computed by the
zeroth order Taylor expansion of the integrand using the
volume V of water in the cell from eq 5

Δ =
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In case the criterion is not met, the algorithm recursively
proceeds to all children having volume outside the molecule
until the criterion is met, or the cell has no further children. In
the latter case, a numerical plain grid integration is performed
over that cell instead of using eq 7.

The integration over the region outside the bounding box is
done by converting the volume integral via Gauss’ law to
integrals over the faces of the bounding box
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These integrals can be solved analytically, e.g., for the top
square of a cube with its center at rc⃗ , edge length sc , normal
vector pointing in the negative z direction since we want to
integrate over the region outside the cube, and an atom at ri⃗
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where we have inserted the upper and lower integration
boundaries
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The solution using the primitive function F is given by
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As expected, the primitive function is symmetric in y and z,
which can be exploited to optimize performance when
computing such a complex formula. The expression for the
integral of the whole cube is given in the Supporting
Information. Applying eq 3 to the computed integrals then
yields the Born radii.

Extensions for Gradients. As described earlier, our
implementation is aimed for simulations using Monte Carlo

Figure 1. Solvent excluded surface (SES) of PDB 1SHG64 (left), water spheres used by PowerBorn to approximate the SES (center), and a slice of
the octree representing the solute volume (right).



methods, for which gradients are not required. Because of the
great popularity of molecular dynamics in molecular biophysics,
we will describe here the parts necessary to implement
gradients to our octree based algorithm.
As with any other grid based method in molecular

mechanics, one needs to take special care of discontinuities
and discretization errors, but also model and simulation
parameters, to achieve stable trajectories.65 Consequently, one
should choose a different surface definition in order to avoid
problems arising from discontinuous changes in the SES over
time,28 e.g., when cavities are temporarily formed. Also, the
decision if a smallest octree cell is inside or outside, which for
our algorithm is discontinuous, should be replaced, so that the
fraction of the volume covered by water and the corresponding
centroid change smoothly as a function of the position of the
cell in relation to the molecular surface. How exactly this
smooth criterion looks depends on the choice of the smooth
surface. As stated in the original paper by Barnes and Hut,61

their force error, and accordingly the error of the Born radii and
gradients in this work, will depend on the input parameters
such as the octree resolution and the integration factor of eq 6,
which therefore should be carefully chosen to limit the
numerical force errors as one deems necessary.
To compute forces from eq 2, the derivative of the Born

radius of an atom i with respect to the coordinates of some
atom j are needed. Using algebraic manipulations, one finds
that the derivatives of the integral for the Born radii in respect
to the coordinates of a given atom are required. Approximating
the integral in eq 3 to a finite sum over the octree cells passing
the accuracy criterion, and applying the derivative, we end up
with
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In addition to the volume in a cell covered by water and the
corresponding centroid, one also needs to compute their
gradients with respect to the coordinates of the atoms in the

molecule. The details of this rely heavily on the chosen surface
definition; however for a cell that has no children, these
gradients are only nonvanishing if the cell is near the surface of
the molecule and the respective atoms are in close proximity to
that cell. The gradients of the volume and centroid also need to
be computed for the parent cells. According to eq 5, the volume
gradient for the parent cell is simply given by the sum of the
children volume gradients, while the expression for the centroid
is more complex. This could be avoided by just using the center
of a cell, which does not depend on the position of the atoms,
instead of the centroid, so that only the volume gradients are
needed. However, this simplified algorithm may require a finer
octree resolution and a higher integration factor to limit
discretization errors, therefore degrading performance of the
algorithm.

■ RESULTS AND DISCUSSION

Comparison to Poisson−Boltzmann Results. To test
the accuracy of our algorithm, we have employed two
parameter sets. The first set corresponds to a more accurate
version (further referred to as ACC), with the smallest octree
cell having an edge length of 0.25 Å, the same as the grid size in
the reference PB calculations, and an integration factor of f =
10.0. This should demonstrate the accuracy limit of the GB
model. The resolution of the octree necessary to reach good
agreement with PB results will also depend on the details of the
surface, e.g., the chosen set of atomic radii, where smaller radii
require a better octree resolution. For details on the radii set
used in this work, please refer to the Appendix. The second set
is intended for applications with an octree resolution of 0.4 Å
on the lowest level and an integration factor of f = 8.0 (further
referred to as FAST).
To assess the accuracy of our suggested algorithm, we first

compare the Born radii computed with the PB solver APBS66

to our PowerBorn radii. Since computing Born radii from PB
results requires two accurate solutions of the PB equation for
each Born radius, one for the vacuum state and one for the
solvated state, this test is computationally intensive. Therefore,
we have restricted ourselves to performing this analysis only for
three structures, for which we have arbitrarily chosen the SH3
domain of Escherichia coli64 (PDB code: 1SHG), an engineered
cellulose binding domain of cellobiohydrolase I from Tricho
derma reesei67 (PDB code: 1AZ6), and ubiquitin68 (PDB code:

Figure 2. Comparison of Born radii from APBS66 reference calculations to PowerBorn radii for the two input parameter sets ACC and FAST for
PDBs 1SHG64 (A), 1AZ667 (B), and 1UBQ68 (C). Pearson correlation coefficients and least squares fits are also shown in the plots.



1UBQ). Figure 2 shows the scatter plots for the computed
Born radii from APBS and our PowerBorn algorithm.
We observe a very good correlation between the two data

sets with Pearson correlation coefficients of at least 0.9981 for
ACC and 0.9978 for FAST. We note that for these structures,
the FAST version is marginally less accurate than ACC, except
for PDB 1UBQ, where FAST has a slightly higher correlation
coefficient than ACC, proving that the parameters chosen for
FAST still yield accurate Born radii when compared to PB
computations.
Contrary to the very good results for the correlation

coefficients, the linear fits show a systematic overestimation
of our PowerBorn radii that is proportional to the size of the
Born radius. We have investigated this discrepancy closer and
find the cause for this behavior in eq 7, which systematically
underestimates the integral of a completely water filled cube
when compared to the analytic solution using eqs 8−13. This is
also true for partly water filled cubes, but with a smaller
systematic deviation. This issue can be alleviated by using a
modified version of eq 7
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where α and β are fit parameters and sc is the edge length of the
cube. However, at this stage, the formula offers no clear
advantage, since it only changes the linear fit but does not
improve the correlation significantly to justify the additional
computational cost (data not shown).
For 1UBQ, there are also a few outliers in the comparison of

APBS and PowerBorn radii, where PowerBorn seems to
underestimate the Born radius. The three atoms with the
largest deviation from the linear regression given in Figure 2C
are the HB3 atom of residue arginine 42, HG12 of valine 5, and
the O atom of valine 70. For the first and third case, we find
that both atoms are close to a spot where the PowerBorn
surface differs from the APBS surface, with the former being
much closer to the two atoms (see Supporting Information for
a visualization of the surface). This tighter surface is the reason
for the smaller Born radii in these two cases. In the second case
the surface deviation is smaller, but the atom is located near a
deep invagination, which is the only dominant source of
solvation for this otherwise buried atom (again see Supporting
Information for a visualization). Therefore, the Born radius of
that atom is very sensitive to even small changes in the surface
of that invagination. We also note that in contrast to the results
of Mongan et al.56 we do not observe this invagination to cause
an overestimation of the Born radius because of the different
surfaces of the GB and PB methods used in this work.

Since Born radii are only an intermediate step to compute
accurate polar solvation free energies via eq 2, we have also
investigated other fit methods than those shown in Figure 2 to
improve accuracy of the computed energies instead of the Born
radii. Due to the inverse Born radii being proportional to the
self polarization free energy
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which are the self energy terms of eq 2, our fit will have the
following form

̃ = +
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where the parameters a and b will be optimized to minimize the
relative root mean square error of the polar solvation free
energies for the protein structures in the training set compared
to APBS reference computations. For the training and test sets,
we have chosen those published by Feig et al.,69 which consist
of 22 and 611 protein structures, respectively. Using Python
scipy’s Powell minimization algorithm, we find the values
shown in Table 1 for the two parameters.

Before we have a closer look at the test set, we examine the
effects of this fit to the Born radii of PDB 1SHG a little bit
closer. Figure 3 shows the corresponding Born radii from
Figure 2 as well as their inverse and the computed self
polarization energies after applying the linear fit in eq 17.
Interestingly, the fit weakens the correlation between APBS and
our Born radii, because the nonvanishing parameter b causes
the PowerBorn radii to saturate as a function of b−1. We suspect
that the fit to the polar solvation free energies leads to this
behavior to cancel a shortcoming of eq 2 which may induce a
systematical error for large Born radii. The deviation is also
apparent for the inverse Born radii, where small values are
always larger than those computed with APBS. In contrast, this
behavior is not as visible in the self polarization energy plot,
where the partial charges cause the systematic overestimation of
small inverse Born radii to be scattered over a large range of
self polarization energies, thus effectively hiding the systematic
error. We note that with a Pearson correlation coefficient of
0.9994, our FAST method is still as accurate as GBMV2, for
which a similar high correlation coefficient was reported for a
test set of small protein structures.49

We have next computed polar solvation free energies for all
structures in the test set using APBS and PowerBorn radii
together with eq 2. A histogram of the relative errors is shown
in Figure 4, and an analysis is given in Table 2. The relative
average unsigned error is 0.66% and 0.68% for ACC and FAST,
respectively, again demonstrating that FAST yields nearly as
good results as ACC. Although the relative root mean square
errors are still small with about 1%, they are nearly half again as
large as the average unsigned errors, because they are more
sensitive to few large outliers. The largest of these outliers for
both parameter sets is concanavilin A70 (PDB code: 1NLS),
with relative errors of 8.18% and 8.16% for ACC and FAST
respectively.
We have examined this structure closer and find that, with

the given solvent probe radius and atomic radii to define the
SES, this structure possesses several cavities and a tunnel, as
shown in Figure 5. Mongan et al. showed that for these cases
the integral expression used to determine the Born radii does
suffer from systematic errors;56 thus the large error in
comparison to the PB result is due to limitations of the
underlying GB model and not due to our algorithm. This is also
consistent with the fact that both input parameter sets show
this large error for the same structure, but do agree very well
with each other on the absolute polar solvation free energy of
this structure.

Table 1. Values Obtained from the Training Set for the Two
Fit Parameters in eq 17

parameter set a b

ACC 1.0667862 0.03516313
FAST 1.04697536 0.03994111



Another important aspect of this work is the power diagram
representation used to construct the molecular surface. To

estimate the accuracy impact of using the surface vertices
provided by the power diagram, we have not taken them into
account and instead increased the number of SAS sampling
points on which water spheres are placed to yield at least the
same number of water spheres as before. Recomputing the
inverse Born radii for the PDB 1SHG shows that the
correlation coefficient for the ACC method decreases from
0.9989 to 0.9964 as shown in Figure 6 and the standard
deviation increases from 0.012 to 0.019 Å−1.

Discretization Errors. As already noted when discussing
the extensions for gradients to our algorithm, the grid based
nature of our algorithm and the approximations made are likely
to introduce discretization errors to the Born radii and polar
solvation free energies, e.g., when comparing same conforma
tions of a molecule that differ only by rigid rotations. Therefore,
the computed polar solvation free energy may be split into an
average value plus a contribution due to these errors

Δ = Δ + ΔG G Gavg discretization (18)

This may be interpreted as our model having some additional
degrees of freedom, e.g., three in the case of differing energies
between rigidly rotated conformations, which have not yet been

Figure 3. Comparison of Born radii (A), inverse Born radii (B), and self polarization energies (C) for PDB 1SHG after applying the linear fit for the
Born radii from eq 17.

Figure 4. Histogram of relative errors between reference Poisson−
Boltzmann computations using APBS66 and generalized Born polar
solvation free energies using PowerBorn radii for the 611 structures in
the test set.

Table 2. Error Analysis for the Comparison of Polar
Solvation Free Energies Computed by APBS and PowerBorn
for the Considered Test Set of Protein Structures

parameter
set

average unsigned error
[%]

root-mean-square
error [%]

maximal error
[%]

ACC 0.66 0.94 8.18
FAST 0.68 0.96 8.16

Figure 5. Cartoon representation (red) of the structure with the
largest relative error in the test set (PDB 1NLS70) with cavities and
tunnels in the solvent excluded surface (blue).

Figure 6. Comparison of the accuracy of inverse PowerBorn radii
using ACC parameters to APBS66 reference computations, if the
solvent excluded surface is approximated with and without power
diagram surface vertices (SV) from ref 63. Dashed gray lines mark
perfect agreement.



integrated out. The sources of these discretization errors are the
finite number of water spheres used to construct the SES
approximation, the finite resolution of the octree, the decision
to consider octree cells at the lowest level either completely
inside or outside, but nothing in between, and the integration
via the approximation in eq 7 in combination with the
integration factor f from eq 6. To estimate the uncertainties that
arise due to these approximations, we have performed 1000
random rigid rotations for each protein structure in the test set
and calculated the standard deviation of the polar solvation free
energy.
Figure 7 shows the resulting standard deviations with respect

to the average computed value. We observe a correlation

between the size of the polar solvation free energy and the
magnitude of the standard deviation, the latter growing
approximately linear with the polar solvation free energy.
While the difference of ACC and FAST in comparison to PB
results was small, ACC features a much smaller discretization
error, with a relative standard deviation averaged over the
complete test set of 0.11% of the polar solvation free energies,
whereas this value increases to 0.15% for FAST.
To set these numbers in relation, we note that the expected

thermal fluctuation of the energy for a system with a
Hamiltonian H is related to the heat capacity at constant
pressure Cp of that system

71
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Using ubiquitin as an example, the standard deviation of the
polar solvation free energy for PDB 1UBQ is 2.25 kcal/mol for
FAST, whereas the expected thermal fluctuation of the
Hamiltonian using the heat capacity at constant pressure
from Wintrode et. al72 is on the order of 1490 kcal/mol at 298
K. Therefore, the discretization errors in the polar solvation free
energy are much smaller than the expected thermal fluctuations
of the system.
Nevertheless, the dependence of the fluctuations on the

absolute values of the polar solvation free energy might cause
changes in the free energy landscape. For example, the free
energy difference between extended unfolded states that are
highly solvated and have large negative polar solvation free
energies and more compact folded states with smaller negative
polar solvation free energies might be altered, due to the larger

fluctuations in the unfolded state. This may be compensated by
using a set of increased atomic radii. These will induce a larger
penalty on extended than compact states, since in the latter case
most atoms are deeply buried in the core anyway and therefore
not affected by the increased atomic radii. Thus, we believe that
the discretization errors do not pose a significant problem to
the application of this algorithm to molecular Monte Carlo
simulations and can be overcome with careful chosen force field
parameters.

Performance Measurements. Since our goal was not only
to provide yet another accurate method for computing Born
radii, but also a computationally very efficient one, we compare
the speed of our algorithm to two other state of the art
methods. The GBOBC method46 as implemented in
GROMACS73 using optimized kernels is one of the most
common and fastest methods available, but being based on the
Coulomb field approximation, it is not the most accurate. On
the other hand, we use the GBMV249 method as implemented
in CHARMM74 as a benchmark for a method with the same
level of accuracy as our algorithm. For this test, we have chosen
a smaller set of native PDB structures listed in the Supporting
Information. For further details on the timing and speedup
measurements, please refer to the Appendix.
The absolute time for one PowerBorn evaluation depending

on the protein structure size is illustrated in Figure 8. We find

that our method has a reasonably small overhead with
evaluation times ranging from 5.4 ms using FAST for the
smallest protein in the timing test set and reaching up to 0.11 s
using ACC for the largest protein. The speedup measurements
in Figure 9 show that the ACC version is at least 4.16 times
faster than GBMV2, while the FAST version yields a factor of
5.96 for very small molecules. The speedup increases up to
10.74 and 14.17 respectively for larger proteins, demonstrating
that our algorithm significantly outperforms GBMV2 while
delivering the same level of accuracy.
However, for small molecules the GBOBC method outper

forms our algorithm clearly, being up to a factor of 5.3 times
faster when compared to FAST. The performance of ACC
breaks even with that of GBOBC when a structure size of
approximately 2000 atoms is reached, while the break even
point for FAST is at roughly 1250 atoms. Increasing the
structure size, the advantage of our algorithm becomes more

Figure 7. Standard deviations of the computed polar solvation free
energies using PowerBorn radii after 1000 rigid rotations for each
native protein structure in the test set.

Figure 8. Computation time of one PowerBorn evaluation as a
function of the number of atoms in the protein.



obvious with speedups reaching 3.72 for ACC and 5.53 for
FAST.

■ CONCLUSION
We have presented our new PowerBorn algorithm to compute
Born radii for use in the generalized Born model, a common
ingredient in many implicit solvent models used in
biomolecular simulations, based on a Barnes−Hut tree code
scheme. To evaluate the integral expression for the Born radii,
we construct an octree representation of the molecule and its
surrounding water and perform top down tree walks in the
integration step to exploit the rapid decay of the integrand.
Comparing the accuracy in relation to Poisson−Boltzmann
results, we find very good agreement for computed Born radii
with correlation coefficients larger than 0.9978 and root mean
square errors for polar solvation free energies close to 1%. For
the largest disagreement found in the test set, closer
examination showed that this can be attributed to a known
deficiency of the GB model and not our implementation. The
investigation of the discretization errors implied by the grid
based nature of our algorithm and the used approximations
showed that these are much smaller than the expected thermal
fluctuations of the energy for a typical system and that their
influence on the free energy landscape is likely to be
compensated by careful chosen force field parameters. We
also demonstrated the superior numerical performance of our
new algorithm, reaching a speedup factor of up to 14.17 in
comparison to the equally accurate GBMV2 method in
CHARMM and 5.53 in comparison to the GBOBC method
in GROMACS for large protein structures, while for very small
peptides, the latter still outperforms our algorithm. Our C++
implementation of this algorithm will be available at http://
www.int.kit.edu/nanosim/ and is also part of the SIMONA
simulation package.60

■ APPENDIX

Program Input Preparation
All PQR molecule files used with PowerBorn or APBS were
prepared using the Ambertools tleap program75 employing
mBondi2 atomic radii.46 The probe radius for the solvent
excluded surface was 1.4 Å. Dielectric constants of protein and
water were 1.0 and 80.0, respectively. APBS computations were

done with a finest grid spacing of 0.25 Å, multiple Debye−
Hückel boundary conditions, and a molecular surface with no
smoothing. CHARMM74 input was generated using
CHARMM GUI.76 Input files for GROMACS73 were prepared
with pdb2gmx using the Amber99SB77 force field and
corresponding implicit solvent radii. All images of protein
structures were created with PyMOL.78

Timing Measurements
GBMV2 timings were performed using CHARMM (version
35b5) with the FAST method enabled. Input parameters were
changed to those given in ref 49, except the radial grid, which
had to be kept at the default values to avoid segmentation faults
when running CHARMM. Surface area computation was
disabled. For timing measurements, a 100 step energy
minimization was run for each structure, and the timings
were collected from the CHARMM internal timer “GB RA
DII.” We also investigated the code related to that timer and
found that it only measures the time for computing the Born
radii and not the gradients. However, it caches already
computed values and neighbor lists for later use in the force
computation. Thus, the timings should yield a reliable
comparison to our PowerBorn method, which does not
compute forces.
GBOBC timings were performed using GROMACS (version

4.5.1) with optimized kernels. The input structures were
minimized, and afterwards a 1000 step MD simulation was run
using infinite cutoffs during which the time of the Born radii
computation (C function calc gb rad) was measured using C’s
clock function. The GROMACS function does also compute
some components of the derivatives of the Born radii. Since the
employed analytic pairwise integration scheme (equations 13−
15 in ref 25) depends only on the distance between two atoms,
computation of the derivatives of the Born radii integral is
unlikely to add significant computational load, since most terms
that contribute to the derivative are also needed for the Born
radii. Furthermore, the computationally expensive logarithmic
term in eq 13 in ref 25 is not required for the computation of
the derivatives. Therefore, we believe that these timings are also
comparable to timings of our PowerBorn method.
PowerBorn timings were measured by recomputing all Born

radii 1000 times for the same native input structure. Time was
again measured with C’s clock function. All timing
computations are done on a single core of a 2.4 GHz Intel
Wolfdale CPU with 4 GB of RAM running OpenSuse 11.4. The
GCC compiler suite 4.5.1 was used.
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