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Abstract 

In this paper, we utilize a recently proposed analytical/semi-analytical method to study the effect of 

the cross-sectional shape on the diffusion-free residence time distribution (RTD) in fully developed 

laminar flow of a Newtonian fluid. The diffusion-free RTD is obtained for elliptical channels of arbitrary 

aspect ratio, for a family of moon-shaped channels, and for an equilateral triangular channel. The non-

dimensional RTDs for these channel cross-sections are compared and the influence of the channel 

shape is found to be rather small. The RTDs can well be approximated by a simple convection model 

which involves the non-dimensional first appearance time, which represents the ratio between the 

mean and maximum velocity of the laminar flow, as only parameter. A comparison with recently 

published results for rectangular channels of arbitrary aspect ratio shows that the one-parameter 

convection model is unsuited for rectangular channels and a second parameter is required. A first 

attempt toward the development of such a two-parameter convection model is undertaken, which 

would then allow predicting the diffusion-free RTD of fully developed laminar flow in straight channels 

of arbitrary cross-sectional shape. 

 

 

Keywords: Residence time distribution; Laminar flow; Newtonian flow; Micro-channel; Channel 

shape 



3 

Nomenclature 

a  major semi-axis of elliptical channel (m) 

 arc radius of moon-shaped channel (m) 

A  channel cross-sectional area (m2) 

b  minor semi-axis of elliptical channel (m) 

 arc radius of moon-shaped channel (m) 

B  parameter of moon-shaped channel, / (2 )B b a  

C  compactness of channel, 
2 /C P A  

hd  hydraulic diameter (m) 

D  molecular diffusion coefficient (m2/s) 

E  differential residence time distribution (1/s) 

E  dimensionless differential residence time distribution 

F  cumulative residence time distribution 

h  height of equilateral triangular channel (m) 

K  term defined by Eq. (25) 

L  length of channel section (m) 

p  parameter in theoretical RTD model 

P  channel perimeter (m) 

Pe  Peclet number 

Q  volumetric flow rate (m3/s) 

r  radius in polar coordinate system (m) 

R  dimensionless radius in polar coordinate system 

Re  Reynolds number 

Sc  Schmidt number 

t  time (s) 

u  cross-sectional profile of axial velocity (m/s) 

maxU  maximum velocity (m/s) 

meanU  mean velocity (m/s) 

x  Cartesian co-ordinate, axial (m) 

y  Cartesian co-ordinate, cross-sectional (m) 

Y  dimensionless Cartesian co-ordinate 

z  Cartesian co-ordinate, cross-sectional (m) 

Z  dimensionless Cartesian co-ordinate 
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Greek symbols 

  term defined by Eq. (33) 

  gamma function 

  dimensionless residence time 

F  dimensionless first appearance time 

  dimensionless parameter, max F/ /u U     

  dynamic viscosity (Pa s) 

  kinematic viscosity (m2/s) 

  pressure (Pa) 

  mean residence time (s) 

  angle in polar coordinate system 

  aspect ratio 

 

Subscripts 

c critical value 

F first appearance 

max maximum value 

mean mean value 

 

Abbreviations 

RTD residence time distribution 
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1. Introduction 

Technical applications with fluid flow through circular channels are ubiquitous in the macro-scale, 

but are rather exceptional in the micro-scale. For manufacturing reasons, microchannels are often not 

circular but rectangular, trapezoidal, triangular, elliptical or of irregular type. Owing to the small 

dimensions, the flow in microchannels and microreactors is predominantly laminar. In general, the 

axial velocity gradually changes from zero at the boundaries to a maximum value in the channel 

center. Associated with this velocity variation in the direction transverse to the mean flow is a 

spreading of dissolved matter along the flow direction. This phenomenon, which was first studied by 

Taylor [1] and Aris [2], is commonly denoted as dispersion and often quantified in terms of the 

residence time distribution (RTD) [3, 4]. When the time scale of tracer diffusion is large as compared 

to the convective time scale (i.e. the Peclet number is low), the spreading of the sample is effectively 

diffusive (Taylor-Aris dispersion). The effects of cross-sectional shape and aspect ratio of shallow 

microchannels on Taylor dispersion was investigated in several papers [5-9]. Theoretical studies 

showed that dispersion is in most cases controlled by the width of the cross-section rather than by the 

much thinner height [5, 6], in agreement with experiments [7]. Simple formulas permit a quantitative 

evaluation of dispersion for most shallow cross-sectional shapes in the diffusive Taylor regime [6]. 

In liquids, diffusion coefficients are rather small and the Schmidt number /Sc D  is typically of 

order 1000. Thus, even small values of the Reynolds number h mean /Re d U   may be associated with 

high Peclet numbers Pe Sc Re   so that convection dominates over diffusion and the RTD is affected 

by the non-uniform velocity distribution of the laminar flow (at least in channels that are not 

exceptionally long). Under these conditions, accurate measurement of the RTD in microchannels is 

very difficult because the tracer injection and detection must be flux-weighted (i.e. be proportional to 

the local fluid velocity within the channel cross-section). Many published experimental results in 

laminar flow deal with concentration responses that are not RTDs in a strict sense because they are 

not weighted by the local fluid velocity. In the limit of negligible diffusion, the RTD is fully determined 

by the non-uniform velocity profile alone and analytical studies can provide some insight. Explicit 
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analytical forms of the diffusion-free RTD in laminar flows are, however, known only for very few 

channel shapes, where the velocity profile depends on one co-ordinate only, namely circular pipe flow 

[3, 10], Poiseuille and Couette flow between two parallel plates, and falling film flow [11]. In contrast to 

Taylor-Aris dispersion, a systematic study on the effect of the cross-sectional shape on the diffusion-

free RTD in laminar flows is missing. Recently, an analytical method was proposed by one of the 

authors which allows (under certain conditions) determining the diffusion-free RTD of fully developed 

laminar flow in straight channels where the velocity profile depends on two co-ordinates [12]. The 

method was used to determine approximate RTDs for rectangular channels of arbitrary aspect ratio. In 

the present paper, we utilize this technique for determining the diffusion-free RTD of laminar 

Newtonian flow in elliptical channels of arbitrary aspect ratio, in an equilateral triangular channel, and 

in a family of moon-shaped channels. While moon-shaped channels may not be manufactured in 

practice, they are attractive in the present context since they allow a significant variation of the 

channel shape by changing a single geometric parameter. To the best of our knowledge, the diffusion-

free RTDs for all these channels have not been determined so far. 

For laminar flows, the diffusion-free RTD is rather wide with long tails and the simple dispersed 

plug flow model originating from Taylor-Aris theory is not adaptable for small Reynolds number [13]. 

For reaction engineering, a narrow RTD and plug flow behavior are beneficial and the wide RTD of 

laminar flow is a certain drawback. Highly welcome for engineering practice would be a model which 

allows estimating the microreactor RTD under very small or negligible diffusion from the laminar flow 

RTD in a straight microchannel. For this purpose, the diffusion-free RTDs for various channel cross-

sections obtained in this paper are compared and a first attempt is made to develop a general RTD 

model for laminar flow in channels of arbitrary shape. 

In the sequel, we give in Section 2 some basic definitions and describe the general procedure for 

computing the RTD from the laminar velocity profile. In Section 3, we present the results for the 

different channel types and provide a detailed discussion. In Section 4 we present the conclusions. 
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2. Theory 

In this section we introduce some basic definitions, explain the method for evaluating the diffusion-

free RTD from the laminar velocity profile and give an analytical model for the RTD of laminar flows 

that will be used for fitting purposes. 

2.1. Basic definitions 

The differential RTD, ( )E t , of a chemical reactor is a distribution function that describes the 

amount of time that fluid elements spend inside the reactor [4, 14]. For comparing different reactors 

the non-dimensional RTD curve 

( ) ( )E E t     (1) 

is useful, which is a function of a dimensionless time /t  . Here, 
0

( )dtE t t


   denotes the mean 

residence time. Equation (2) relates the non-dimensional differential RTD ( )E   with the cumulative 

RTD ( )F   

d ( )
( )

d

F
E





  (2) 

2.2. Procedure for evaluation of the diffusion-free RTD in laminar flow 

In the absence of diffusion, the cumulative RTD due to pure convective transport is given by [15] 

total

( )
( )

Q
F

Q


   (3) 

Here, ( )Q   is the volumetric flow rate associated with a residence time   or lower, and totalQ  is the 

total volumetric flow rate. The non-dimensional residence time of the fastest fluid elements is 

commonly denoted as first-appearance or break-through time F . For fully developed laminar flow in a 

straight channel it is given by 

mean
F

max

U

U
   (4) 
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where meanU  and maxU  denote the mean and maximum axial velocity, respectively. For our analysis 

we assume that the profile of the axial velocity is monotonic and increases from zero at the walls (no-

slip condition) to a maximum maxU  located at a unique position within the channel cross-section. 

For an axial channel section of length L  the non-dimensional residence time of fluid elements 

moving with velocity maxu U   is 

max mean F

mean max

/ 1

/

L U Ut

L U U

 


  
     (5) 

where 0 1  . The volumetric flow rate associated with a certain value of   is  

d
A

Q u A


   (6) 

where A  denotes the area within the channel cross-section where max/u U  . With 

total mean F maxQ AU A U   we obtain from Eqs. (3) and (6) the result 

F max

1
( ) d

A

u
F A

A U




   (7) 

In Section 3 we will utilize Eq. (7) to evaluate the RTD for laminar flow in channels of various shapes. 

We remark that in the absence of diffusion and turbulence, the RTD is not a probabilistic but a fully 

deterministic quantity. 

2.3. Generalized convection model 

Some of the RTDs in Section 3 will be obtained in discrete form. For practical purposes it is useful 

to approximate the discrete RTD by a continuous function. In this paper we will employ the model 

 
   

1
F

F

1 ( 2)( 1) 11
F F F

F1

F

0 for

1 ( 2)( )
1 for

1 ( 2)( 1)

pp

p

pE

p p





 

  
 

 

   






     
  

      

 (8) 

which was recently proposed for fitting of laminar RTD curves [12]. Here,   denotes the gamma 

function. The respective cumulative RTD involves the Gauss hypergeometric function and can be 

found in [12]. Since F  is assumed to be known from the ratio of mean to maximum velocity, only p  
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remains as free parameter. In Section 3 we will determine p  by minimizing the difference between a 

given set of discrete RTD values and model (8) by least square fitting and denote this value by 2L
p . 

An important feature of the RTD in Eq. (8) is that for 
1 1

crit F2 ( 1)p p        the value F( )E    

is infinite whereas it is finite for critp p . For critp p  the RTD in Eq. (8) simplifies to the form 

F

F

1

1
F

F

F

0 for

1 1
for

1

E 

 


 

  






   
  

  

θ  (9) 

which was first proposed by Levenspiel [16] and is here denoted as generalized one-parameter 

convection model. In the sequel we will for simplicity only give RTD formulas for the branch F   

while it is understood that 0E F    for F0    . 

3. Diffusion-free RTD for different channel cross-sections 

3.1. Elliptical channel 

We consider an elliptical channel with major and minor semi-axes a  and b  as shown in Fig. 1 a). 

We denote the aspect ratio by /b a   and define /Y y b  and /Z z a . Then, for a Newtonian 

fluid the fully developed laminar velocity profile can be written as [17, 18] 

2 2

max( , ) (1 )u Y Z U Y Z    (10) 

The mean value of this velocity profile is mean max / 2U U . Thus, by Eq. (4) the non-dimensional first-

appearance time is F 0.5  , independent from  . 

The position of isolines where the velocity has a constant value maxu U  is given by 

21Z Z Y         (11) 

For 0Z   we obtain max, min, 1Y Y      . Taking into account the symmetry of the problem, we 

obtain from Eq. (7) with A ab  and F 0.5   the result 
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 
max, max,

min,

2 2 2 2

0

1

2 2

0

2 8 1
( ) 1 d d 1 d

3

8 2 2
1 d

3 3

Y YZ

Y Z

F Y Z Z Y Z Y Z Y

Y Y Y

 

 

 




 










 



 
      

 

 
    

 

  



 (12) 

Integration yields 

1

2 2 2 1

2

0

2

2

2
( ) 1 (5 2 ) 3( 1) tan

3 1

1
1 1

4

Y

Y

Y
F Y Y Y

Y



   
 




 





  
        

    

   

 (13) 

so that we finally obtain for the differential RTD the result 

3

1
( )

2
E 


  (14) 

Thus, regardless of  , the RTD of any elliptical channel is identical with the RTD of a circular 

channel. We remark that for F 0.5   and 3p   Eqs. (8), (9) and (14) are all identical. 

3.2. Equilateral triangular channel 

We consider an equilateral triangular channel with side length a  and height 3 / 2h a  as 

displayed in Fig. 1 b). We define /Y y h  and /Z z h . Then, the fully developed laminar velocity 

profile is given by [17, 19] 

  2 2

max

27
( , ) 1 3

4
u Y Z U Y Y Z    (15) 

The mean value of this velocity profile is mean max(9 / 20)U U  so that F 0.45  . The location of velocity 

isolines with value maxu U  is defined by 

21 4

27 13
Z Z Y

Y
 


    


 (16) 

The determination of min,Y   and max,Y   leads to a cubic equation. The two roots of interest here are 

1

min,

1 2 4 1
cos cos (1 2 )

3 3 3 3
Y 


 

    
 

 (17) 
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1

max,

1 2 1
cos cos (1 2 )

3 3 3
Y   

   
 

 (18) 

From Eq. (7) we obtain with 
2 3A h /  the result 

     

 

max, max,

min, min,

max,

min,

2 2 2 2

2 2

( ) 15 3 1 3 d d 30 3 1 d

2 4 4
30 1 d

3 811 27 1

Y YZ

Y Z Y

Y

Y

F Y Y Z Z Y Z Y Y Z Y

Y Y Y Y
Y Y

 

  





 

 





      

 
    

  

  



 (19) 

Since this integration cannot be performed analytically, we evaluated it numerically with Mathematica 

for a set of discrete values F /i i i      . Here, and in the sequel, we used 0.01   and 

1,...,100i  . From the discrete cumulative RTD the discrete differential RTD is computed as 

1
1/2

1

( ) i i
i

i i

F F
E 

 










 (20) 

where 1/2 1( ) / 2i i i     .The respective differential RTD of the equilateral triangular channel is 

displayed in Fig. 2. Fitting of this discrete semi-analytical RTD curve by the generalized model of Eq. 

(8) yields 2 2.831
L

p  . As shown in Fig. 2, the agreement between the semi-analytical and the fitted 

RTD is very good. 

3.3. Moon-shaped channel 

3.3.1. Geometric parameters 

Shah and London [18] introduced a moon-shaped channel formed by two circular arcs with 

radiuses a  and b  as displayed in Fig. 1 c). We define / (2 )R r a , / (2 )B b a  where 0 1B  . 

Depending on the parameter B  quite different channel cross-sections can be obtained. The cross-

sectional shape is circular for 0B  , moon-like for 0B   and becomes slit-like in the limit 1B , see 

Fig. 1 d). The area and perimeter of the moon-shaped channel are given by 

2 2 1 22 (1 2 )cos 1A a B B B B    
 

 (21) 

14 (1 )cosP a B B   (22) 
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3.3.2. Velocity profile 

The laminar Poiseuille velocity profile of the moon-shaped channel is [18] 

2 21 2 cos
( , ) ( ) 1

4

c a
u r r b

r




 
   

 
 (23) 

where 
1

1 ( / )c x     with   denoting the pressure. Here, we rewrite this profile in the form 

1 2 2 1

max( , ) ( )(1 cos )u R U K R B R      (24) 

where 

2 2 1

,max ,max( )(1 )U UK R B R    (25) 

The variable 
,maxUR  denotes the radius where the velocity has its maximum value so that 

,max max( ,0)Uu R U . This position is a function of B  and is given by 

2 2
3 3

,max

1 1 1
1 1 54 1 54

6 27 27
UR B B B B B B

    
                    

 (26) 

By evaluating the mean value of velocity profile (24) we obtain for the non-dimensional first-

appearance time of the moon-shaped channel the result 

 

2 2 2 2 1

F
2 2 1 2 2 1

,max ,max

(1 14 ) 1 8 (1 ) 1 cos1

8 ( )( 1) 1 1 2 cosU U

B B B B B B

R B R B B B B




 

      
     
 

 (27) 

In Fig. 3 we show ,maxUR  and F  as function of B . We see that the value of F  is not very sensitive 

with respect to B  and is within the range F0.45 0.5  . Thus, the significant change of the channel 

shape that is associated with the variation of B  in the range 0 1B   results only in a rather small 

variation of the first appearance time. 

3.3.3. Velocity isolines 

By introducing maxu U  into Eq. (24) we obtain as condition for the velocity isolines the relation 

1 2 2 cos
( ) 1K R B

R


   
   

 
 (28) 
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so that 

1

2 2
( , ) cos 1

K
R R

R B



     

     
 (29) 

Determining the minimum and maximum value of R  for the velocity isolines requires solution of the 

cubic equation 

3 2 2 2cos ( ) cos 0R R B K R B        (30) 

which follows from Eq. (28). The two roots of Eq. (30) which are of interest here are 

2 2

max,

1 2
cos 3 3 cos cos

3 3 3
R B K


  

 
     

 
 (31) 

2 2

min,

1 2 4
cos 3 3 cos cos

3 3 3 3
R B K

 
  

 
     

 
 (32) 

where 

2 2

2 2 3/2

1 18 2cos 9
arccos cos

2 (3 cos 3 )

B K

B K

 
 

 

  
  

  
 (33) 

In Fig. 4 a) we plot the velocity isolines for 0.5B   and four different values of  . The left branch 

of each isoline results from min,R   and the right one from max,R  . In Fig. 4 b) we display the axial 

velocity as height function above the y z  plane in the area enclosed by the isolines for 0.3B   and 

0.5  . In this 3D representation, the enclosed volume corresponds to the volumetric flow rate ( )Q   

which must be determined in order to compute the cumulative RTD according to Eq. (7) for the 

specific value F F/ 2     . 

For the cumulative RTD of the moon-shaped channel we obtain the relation 

max,

min,

max,

min,

1 2 2 1 2

F 0

2
1 2 2

F

2
( ) ( )(1 cos )4 d d

8
( )( sin )d

R

R

R

R

F K R B R a R R
A

a
K R B R R

A

 









 

  


 


 



  

  

 



 (34) 

Introducing Eq. (29) in Eq. (34) and recognizing the relation 
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2

1

2 2 2 2
sin sin cos 1

R K R K
R R

R B R B


 
     

             
 (35) 

yields 

max,

min,

22 2 2
1

2 2 2 2

F

8
( ) cos 1 d
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R

a R B R K R K
F R R R R

A K R B R B





 





     
        

     
 

  (36) 

where A  and F  are given by Eq. (21) and Eq. (27), respectively. Again, an analytical integration is 

not possible. Therefore, we evaluated for a given value of B  integral (36) numerically with 

Mathematica for a discrete set of values i i   . Subsequently, the differential RTD was computed 

by means of Eq. (20). 

In Fig. 5 we show the discrete differential RTD for five different values of B , namely 0, 0.25, 0.5, 

0.75, and 0.99. Though the channel shapes are quite different, the difference of the RTDs is rather 

small. This result is consistent with the rather low variation of F  noted previously, cf. Fig. 2. To obtain 

a continuous approximation, we again fitted for all cases with 0B   the discrete RTD by the 

generalized RTD of Eq. (8). The respective values of 2L
p  are listed in Tab. 1 together with those for 

critp . A comparison shows that both values are almost identical. This also holds for the equilateral 

triangular channel. We also compared for 0.5B   the semi-analytical RTD with Eq. (8) for 

2 2.896
L

p p   and crit 2.893p p   and found that the curves are almost indistinguishable. 

3.4. Effect of cross-sectional shape 

To investigate the effect of the cross-sectional shape on the diffusion-free RTD, we display in Fig. 

6 the values of p  as function of F  for various channel types. Shown are the present results for 

elliptical channels, the equilateral triangular channel, and four different moon-shaped channels (with 

different values of B ). Also shown are results from [12] for rectangular channels with different aspect 

ratio  . The first appearance time of the rectangular channels was computed from Eq. (37) 

 
1

2 3 4 52
1 0.546688 1.552013 4.059427 3.214927 0.857313

3
F     



       (37) 
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This correlation was proposed by Spiga and Morini [20] who determined exact values of max mean/U U  

for ten distinct aspect ratios in the range 0 1   and fitted these data by Eq. (37) with an accuracy 

of 0.06%. For the parameter p  in Eq. (8) the relation 

2( ) 3 0.4 0.2p       (38) 

was proposed in [12]. For a planar channel it is 0  ; then, the latter two correlations yield F 2 / 3   

and 3p   so that the exact RTD is recovered from Eq. (8). For all other aspect ratios, the RTD curve 

resulting from Eqs. (8), (37) and (38) must be considered as approximate. 

From Fig. 6 we can observe that the data for the spherical, elliptical, moon-shaped and equilateral 

triangular channels all collapse to a single curve which is rather well represented by the generalized 

one-parameter convection model given by Eq. (9). In this model, the RTD is a unique function of the 

first appearance time F . Fig. 6 also shows that for rectangular channels a completely different curve 

is obtained and the generalized one-parameter convection model is not appropriate. It is evident that 

moon-shaped and rectangular channels may have the same value of F mean max/U U   while the value 

of p  is different. In rectangular channels, the value of p  is always notably smaller than critp . As a 

consequence the last exponent in Eq. (8) is never zero as it is the case with the generalized one-

parameter convection model in Eq. (9).  

Since the data for the various channel shapes in Fig. 6 do not collapse to a single curve, and 

because for the same value of F  the value of p  may differ, we conclude that F  alone is not 

sufficient to determine the RTD for channels of arbitrary shape. Therefore, for the purpose of 

generalization, a relation is required which connects p  in Eq. (8) not only to F  but to a further 

dimensionless parameter which accounts in some way for the channel shape. A suitable parameter 

could be the compactness 
2 /C P A  which is used in [21] to account for the shape dependence of 

the hydraulic resistance in microchannels. The value of C  is 4 12.57   for a circular channel, 16 for 

a square channel and 12 3 20.78  for a equilateral triangular channel. For rectangular and elliptical 

channels, the value of C  depends on the aspect ratio and tends to infinity in the limit 0  . We 

displayed the values of p  for various channel cross-sections and aspect ratios as function of F  and 
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C  and found that with increase of C  the value of p  decreases for moon-shaped channels but 

increases for rectangular channels. This indicates that the compactness is not useful in the present 

context. Instead, a model for predicting the diffusion-free RTD in laminar flow from the channel shape 

must be based on another appropriate but yet unknown dimensionless parameter. The determination 

of such a parameter will be a future task for us. 

3.5. Range of validity and applicability of diffusion-free RTD model 

The results obtained in this paper for the diffusion-free RTD may find practical application, 

provided the assumptions of fully developed laminar flow and negligible influence of molecular 

diffusion are fulfilled. A detailed assessment of these terms for rectangular channels was performed in 

[12] where mathematical criteria for the following conditions were derived: i) laminar flow, ii) fully 

developed flow and negligible entrance effects, iii) negligible transversal diffusion, and iv) negligible 

longitudinal diffusion. In a diagram where the ratio of channel length to channel diameter is plotted 

over the Reynolds number, these four conditions define a finite region where the theory is valid. The 

size of this region depends on the Schmidt number. In practice, the diffusion-free RTD theory is never 

valid for gas flows where the Schmidt number is of order unity. It can, however, be a reasonable 

approximation for liquid flows where the Schmidt number is typically of order 1000. For the impact of 

the entrance region on the RTD in laminar flow through tubes and ducts the interested reader is 

referred to a recent investigation by Ham et al. [22]. Another limitation of the present model is its 

restriction to straight channels. Many long microchannels or microreactors are made of meandering or 

zig-zag channels and the Dean vortices at the bends may have a notable effect on the RTD. 

4. Conclusions 

In this paper we computed the diffusion-free RTD in fully developed laminar Newtonian flow 

through straight channels of various cross-sectional shapes from the known velocity profiles. In 

elliptical channels, the diffusion-free RTD is identical to that in a circular channel, regardless of the 

aspect ratio. For the family of moon-shaped channels, the RTD slightly broadens as the shape 
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changes from circular to slit-like. Overall, the influence of the cross-sectional shape on the diffusion-

free RTD in straight channels is surprisingly small. 

The non-dimensional diffusion-free RTDs of channels with less than four corners 

(spherical/elliptical, moon-shaped, equilateral triangular) is reasonably well described by the 

generalized convection model of Eq. (9) which involves the non-dimensional first appearance time F  

as only parameter. Thus, for channels whose shape is similar to the shape of any channel from the 

family of moon-shaped channels, the one-parameter convection model of Eq. (9) provides a 

reasonable good estimation for the diffusion-free RTD. The respective non-dimensional first 

appearance time F , which is given by the ratio between mean and maximum velocity, can easily be 

determined numerically. 

A comparison with recent results for rectangular channels of arbitrary aspect ratio shows that the 

one-parameter convection model is unsuited for rectangular channels. The diffusion-free RTD of 

rectangular channels is instead well described by the generalized two-parameter convection model of 

Eq. (8) which includes the one-parameter convection model as special case. Correlating the second 

parameter p  of this model with an appropriate parameter that accounts for the channels cross-

sectional shape remains an open task; the channel compactness appeared unsuited in this context. 

Identifying an appropriate non-dimensional shape-characterizing parameter, with which p  could be 

successfully correlated, would yield a closed model that would allow estimating the diffusion-free RTD 

of fully developed laminar flow in straight channels of arbitrary cross-sectional shape. 

In practice, the generalized one- and two-parameter convection models may be used to estimate 

the RTD of liquid flows with high Schmidt number provided the length-to-diameter ratio of the channel 

is, for a given Reynolds number, on one-hand side sufficiently large so that the flow is fully developed 

and entrance effects are small, and at the same time not too large so that transversal diffusion is still 

negligible. 
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Figure captions 

Fig. 1: Sketch of channel shapes considered in this paper: a) elliptical channel, b) equilateral triangular 

channel, c) general moon-shaped channel, d) moon-shaped channel for different values of B . 

Fig. 2: Differential RTD of equilateral triangular channel. Comparison of discrete semi-analytical RTD 

with generalized two-parameter convection model. 

Fig. 3: Position of velocity maximum ,maxUR  and first appearance time F  of moon-shaped channel as 

function of B . 

Fig. 4: a) Channel shape (thick solid lines) and position of velocity isolines (thin solid and dashed 

lines) for 0.5B  . The values of the isolines correspond to max/ 0.25, 0.5, 0.75, 0.9u U    

(from outermost to innermost). The solid part of each isoline corresponds to max,R   and the 

dashed part to min,R   as given by Eq. (31) and Eq. (32), respectively. b) Height function 

representation of the axial velocity u  over the y z  plane for a moon-shaped channel with 

0.3B   within area A  for 0.5  . The volume below the surface corresponds to the 

volumetric flow rate ( )Q   for the specific residence time F F/ 2     . 

Fig. 5: Differential RTD of moon-shaped channels for 0, 0.25, 0.5, 0.75, 0.99B   in linear and double-

log representation. The corresponding channel shapes are shown in Fig. 1 d). 

Fig. 6: Parameter p  of the generalized two-parameter convection model from Eq. (8) as function of 

the first appearance time F  for different channel shapes (data for rectangular channels are 

from [12]). The dashed line corresponds to 
1 1

crit F2 ( 1)p p        where the two-parameter 

convection model reduces to the one-parameter convection model of Eq. (9). 
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Fig. 1: Sketch of channel shapes considered in this paper: a) elliptical channel, b) equilateral 

triangular channel, c) general moon-shaped channel, d) moon-shaped channel for different 

values of B  
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Fig. 2: Differential RTD of equilateral triangular channel. Comparison of discrete semi-

analytical RTD with generalized two-parameter convection model. 
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Fig. 3: Position of velocity maximum ,maxUR  and first appearance time F  of moon-shaped 

channel as function of B . 
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Fig. 4: a) Channel shape (thick solid lines) and position of velocity isolines (thin solid and 

dashed lines) for 0.5B  . The values of the isolines correspond to 

max/ 0.25, 0.5, 0.75, 0.9u U    (from outermost to innermost). The solid part of each 

isoline corresponds to max,R   and the dashed part to min,R   as given by Eq. (31) and Eq. 

(32), respectively. b) Height function representation of the axial velocity u  over the y z  

plane for a moon-shaped channel with 0.3B   within area A  for 0.5  . The volume 

below the surface corresponds to the volumetric flow rate ( )Q   for the specific residence 

time F F/ 2     . 
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Fig. 5: Differential RTD of moon-shaped channels for 0, 0.25, 0.5, 0.75, 0.99B   in linear 

and double-log representation. The corresponding channel shapes are shown in Fig. 1 d). 
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Fig. 6: Parameter p  of the generalized two-parameter convection model from Eq. (8) as 

function of the first appearance time F  for different channel shapes (data for rectangular 

channels are from [12]). The dashed line corresponds to 
1 1

crit F2 ( 1)p p        where the 

two-parameter convection model reduces to the one-parameter convection model of Eq. (9). 
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Tables 

 

Tab. 1: Values of F  and p  in the generalized two-parameter convection model for 

moon-shape channels and equilateral triangular channel. 

 

Channel cross-section F  2L
p  

1 1

crit F2 ( 1)p       

Moon-shaped with 0.0B   (circular) 0.5000 n.a. 3.000 

Moon-shaped with 0.25B   0.4837 2.936 2.937 

Moon-shaped with 0.5B   0.4717 2.896 2.893 

Moon-shaped with 0.75B   0.4635 2.870 2.864 

Moon-shaped with 0.99B   0.4574 2.852 2.843 

Equilateral triangular 0.4500 2.831 2.818 

 


