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Abstract
We describe an atomic force microscope (AFM) for the characterization of self-sensing tunneling magnetoresistive (TMR)

cantilevers. Furthermore, we achieve a large scan-range with a nested scanner design of two independent piezo scanners: a small

high resolution scanner with a scan range of 5 × 5 × 5 μm3 is mounted on a large-area scanner with a scan range of

800 × 800 × 35 μm3. In order to characterize TMR sensors on AFM cantilevers as deflection sensors, the AFM is equipped with a

laser beam deflection setup to measure the deflection of the cantilevers independently. The instrument is based on a commercial

AFM controller and capable to perform large-area scanning directly without stitching of images. Images obtained on different

samples such as calibration standard, optical grating, EPROM chip, self-assembled monolayers and atomic step-edges of gold

demonstrate the high stability of the nested scanner design and the performance of self-sensing TMR cantilevers.
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Introduction
Since its invention in the 1980s [1] the atomic force micro-

scope (AFM) became a versatile tool frequently used in

nanoscale metrology, biosensing, maskless lithography and high

density data storage with nearly as many sensing techniques as

applications [2-5]. Current state of the art instruments use

micro-fabricated silicon and silicon-nitride cantilevers with an

optical read-out [6] and image with high resolution down to the

atomic scale. Furthermore, AFMs are often incorporated into

quality control systems for the fabrication of micro- and nano-

structures, especially for industrial applications. For these appli-

cations, not only a high resolution, but also a large scan range

(field of view) and a compact instrument design of the read-out

is desirable [7].

However, most AFMs feature only a limited scan range of typi-

cally tens of micrometers. Unfortunately, it is not possible to

expand the scan range by simply scaling the instrument dimen-

sions because of the limitations of piezo actuated scan stages

commonly used in AFMs. While piezo scanner stages have

huge advantages in terms of dynamic properties and smooth-

ness of motion in comparison with motorized stages, their

maximum extension remains limited to hundreds of microme-

ters by using mechanical levers for motion amplification. Addi-

tionally, a large scan range and a high lateral resolution are

contradictory. Because of these challenges, previous attempts to

realize a high resolution and a large field of view use multiple

scanning tips recording individual images and a stitching

thereof [8] or a combination of motorized large scan range

stages with a fast piezo to compensate for the poor dynamics of

such stages [9]. In this work, we applied a different approach

and nested a small high resolution scanner on a large piezo scan

stage enabling both, a large scan range of 800 × 800 × 35 μm3

and a high resolution capable of imaging subnanometer

features.

The instrument is equipped, like most state-of-the-art instru-

ments for ambient conditions, with an optical read-out of a

micro-fabricated cantilever [10,11]. However, the optical read-

out contains bulky mechanical parts to focus a laser on the

backside of the cantilever and to move the position sensitive

photodetector (PSD) or a mirror which puts severe limits on a

compact instrument design. Additionally, while adjusting the

laser and photodetector is straightforward under ambient condi-

tions under which all components are accessible, it is a chal-

lenge in environments such as vacuum or in fluids where the

laser light gets scattered and refracted by multiple interfaces

[12-15]. Furthermore, optical read-outs have to be readjusted

not only after every cantilever exchange but also after tempera-

ture drifts which can offset the focal position of the laser and

photo-detector due to thermal expansion. Additionally, the

optical read-out can influence the cantilevers deflection by

photothermal excitation [16] and interfere with the sample as it

can cause photobleaching of fluorescence samples [17]. For

specific applications and environments like vacuum, self-

sensing tuning forks with manually attached tips can greatly

simplify instrumentation but at the cost of reduced operation

modes [18-20]. Micro-machined cantilevers on the other hand

are more versatile and can be mass-produced [21]. Additionally,

cantilevers produced by silicon-based microfabrication methods

allow for the integration of multiple additional features such as

doping for better electrical conductance or the integration of

active sensing elements. Previous works incorporated piezo-

electric layers [22,23], piezo-resistive layers [24-29] into such

cantilevers or added a capacitive readout [30,31] to measure the

cantilevers deflection, however, they suffer from a reduced

sensitivity compared to the optical read-out. Magnetic sensors

[32-34], especially strain sensors based on tunneling magnetore-

sistive (TMR) junctions [35] had recently shown an enhanced

sensitivity compared to piezoresistive sensors [36-40] and are

promising candidates for strain sensors incorporated into AFM

cantilevers. The instrument presented here has been optimized

for the characterization of such self-sensing TMR cantilevers.

The microscope is fabricated entirely from non-magnetic ma-

terials in order to minimize the instruments influence on

magnetic fields which at present are needed to bias the TMR

sensors and set their sensitivity at maximum for imaging atomic

step edges.

Setup of a nonmagnetic large scan
range AFM
In order to characterize magnetoresistive strain sensors inte-

grated into AFM cantilevers, the deflection of the cantilever has

to be measured in parallel by independent means. Therefore,

our AFM is equipped with an optical beam deflection setup to

measure the deflection of the cantilever [10,11]. This setup also

allows for the use of conventional silicon and silicon nitrite

cantilevers using only the optical beam deflection setup for the

feedback. Additionally, the instrument is designed to apply an

external in-plane magnetic bias fields, as the strain sensitivity of

TMR sensors used in this work strongly depends on their

magnetic configuration. This constrained requires a setup in

which coils can be integrated for the application of a bias field.

The magnetic field has to be homogeneous and should not

interact with the materials used to build the instrument.

The optical beam deflection setup has been integrated into an

optical microscope that is used to focus the laser spot on the

cantilever. By using a long working distance objective, the

beam deflection setup is placed outside the coils for the external

magnetic bias field. The optical setup is shown in detail in
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Figure 1: Schematic and photo of the setup including the optical beam deflection and the nested scanner design. The long-working-distance objec-
tive of the reflected light microscope is used to focus the laser on the rear side of the cantilever while the reflected beam is focused and reflected on a
PSD with a tilting mirror for alignment. To realize both high lateral resolution and large-area scanning, a high resolution open loop scanner is nested
on a large-area scanner. For switching between both scanners, the large-area scanner can be held on any position by feeding a constant control
voltage to the closed loop controller while small-area scans are performed by the open loop scanner.

Figure 1. The use of an infinity-corrected microscope objective

and an ocular lens allows one to illuminate the sample and to

focus the laser beam on the cantilever with the same objective.

Using the microscope objective to focus the laser also simpli-

fies the adjustment of the laser beam deflection setup because

the complete optical microscope can be moved instead of

adjusting the laser. As a result, the focal spot of the laser is

fixed towards the field of view of the optical microscope and

the laser is aligned to the cantilever when the cantilever is at a

specific position in the optical image. To block scattered light

inside the optical path of the laser from the camera, a red mirror

is used to couple the laser beam into the objective. As the

mirror reflects only light with wavelengths longer than 600 nm,

all light from the laser is either reflected towards the objective

or the laser itself. The cantilever is tilted towards the optical

axis of the microscope and acts as a mirror for the laser beam.

As the cantilever gets deflected, the angle of the cantilever tilts

towards the incident laser beam and consequently the reflection

angle changes. As the reflected beam is divergent (due to the

focusing of the microscope objective), it is refocused by using a

lens and reflected to the position sensitive photo-detector by a

tilting mirror.

To illuminate the sample, a wavelength shorter than the reflec-

tion edge of the red mirror was chosen. To suppress stray light

within the optical path of the microscope, it is useful to use

polarizing optics. In contrast to the laser, the light from the illu-

mination source reaches the sample, is then reflected off the

sample, and the reflected light must pass through the complete

microscope to reach the camera. By using polarized light for

illumination, a polarizing beamsplitter can be used to reflect all

light from the light source of the illumination towards the

sample. By passing a λ/4 plate, the polarization direction gets

rotated by 45°. After being reflected on the sample, the light

passes the λ/4 plate again and the polarization is rotated again

by 45°. The polarization of the reflected light is now rotated by

90° towards the incident light from the light source. Therefore,

the beamsplitter is completely transparent for light reflected

from the sample, which can pass towards the camera.

The AFM is operated through a commercial AFM controller

(Asylum Research). The controller can directly drive open-loop

piezo scanners, because of its integrated high-voltage amplifier,

as well as closed-loop scanners with an attached high voltage

amplifier and closed-loop controller, as it is also equipped with
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a low-voltage piezo-drive output. To drive two scanners inde-

pendently, external control electronics are attached to the

controller, which allow for a switching between the high- and

low-voltage output. Additionally, this electronics allows one to

hold the low-voltage output at any level when switching from

the low-voltage output to the high-voltage output and vice

versa. As our AFM setup is equipped with two independent

scanners to combine both, a large field of view and a high

spatial resolution, these hold electronics allow to drive the

small-area scanner directly while holding the large-area scanner

at a fixed position. The high resolution open-loop scanner is

thereby mounted on a large-area scan stage. The high resolu-

tion scanner was realized by using a stack of shear actors for

x–y scanning and a stack piezo actor with a travel of 5 μm and a

resonance frequency of 50 kHz each. The large-area scanner on

the other hand is a combination of an x–y piezo large-travel

scan stage and a preloaded piezo stack actor for the z-axis. The

large travel is achieved by piezos with a comparable small

travel pushing a lever to enhance the stage travel, a principle

that is typically called lever motion amplifier. For a large-area

scanner, lever motion amplification is a suitable way to reach

large travels due to certain constraints, although a lever-motion-

amplified piezo stage commonly shows a higher noise level

than a directly driven stage. The elongation of a piezo is

approximately ΔL = ±E·d·L0, where E is the applied electric

field, d the piezoelectric coefficient of the material and L0 the

initial length of the piezo with typical values for piezo stack

actuators of U = ±220 V, d = 350 pm/V and a distance between

two electrodes of 1 mm. To achieve a travel of 800 μm by direct

drive, approximately 1 m of piezo ceramic per axis would be

required. Such large piezo stacks, however, are neither commer-

cially available nor mechanically stable enough for such a

large-area scan stage. However, this design has a reduced

mechanical stiffness and resonance frequency.

The reduced resonance frequency increases the response time of

the scanner to driving signals. Therefore, lever amplification

can only be used for the slow lateral scanning as the z-axis of

the scanner needs a high resonance frequency for a fast

response to driving signals. The large-area scanner has a

motion-amplified x–y piezo stage and a dedicated z-piezo for a

short response time. Additionally, the x–y stage must only

move in the x–y plane without any cross-talk to the z-axis. This

is reached by flexure joints. However, as the stiffness of a lever

amplified system is reduced quite significantly, the initial stiff-

ness of the flexure stage has to be quite high. A custom-built

scanning stage fulfilling those requirements was therefore

developed specifically for this application. Because of the stiff

flexure joints, each axis of the stage is equipped with two piezos

in parallel movement to increase their pushing force. The piezo

elongations and the stage position are each monitored with a

capacitive positioning sensor which allows for a linearization of

the stage movement by an additional stage controller. The

z-piezo of the large-area scanner is a piezo stack with a

maximum travel of 35μm and a resonance frequency of 14 kHz

while carrying the open-loop scanner. For closed-loop opera-

tion of the AFM, this piezo is equipped with a strain gauge

sensor which is read out by the AFM controller.

Results and Discussion
Characterization of the microscope
For successful switching from the large scanner to the nested

scanner, the stability of the large-area scanner has to be high.

The positioning accuracy can be tested during AFM scanning. If

scanned with the open-loop scanner, also the stability and drift

of the large-area scanner is of interest. In Figure 2a, a scan of

polymeric microlenses is shown when using the optical beam

deflection setup for the feedback. In parallel, the positioning

error (profile after removing the 1st order component) of the

fast scan axis was recorded and is shown in Figure 2c. By

comparing the measured stage position and the desired position

(given by the control signal), the positioning error was

extracted. The data shows no drift of the stage during the whole

experiment and only small fluctuations around the desired pos-

ition of ±10 nm, which is a low value for a scan stage that has a

maximum travel distance of 800 μm.

As the large-area scanner is mechanically stable, it can be used

to carry a second small-area scanner with a higher spatial reso-

lution and better dynamic properties. Using an AFM with

multiple scanners allows for both, a large field of view and a

high spatial resolution. By using the optical beam deflection

setup as well, the potential of such an instrument is demon-

strated in Figure 3. By scanning a calibration structure with

feature details spanning from hundreds of micrometers to less

then 200 nm and a feature height of 22 nm, the topography of

the sample can be investigated on all length scales. For a first

overview of the sample, the maximum scan size can be used

(Figure 3b). Afterwards, sequential zooms into the region of

interest are possible (Figure 3c–e). As the desired zoom level

results in a scan size below the maximum scan range of the high

resolution scanner, the scan position can be held with the large-

area scanner while the sample is scanned with the small-area

scanner enabling further zoom steps (Figure 3f). Thereby, the

instrument can span over three orders of magnitude in scan

range, which makes it a helpful tool for micro- and nanome-

chanical analysis.

One example of such an analysis is given in Figure 4a. For

quality control of fabrication steps in microstructure tech-

nology, AFMs are often used for spot checks of the fabricated

structures. However, as most AFMs are limited to a field of
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Figure 2: A crucial precondition for a nested high resolution scanner
design is the stability of the housing large-area scanner. The position
accuracy and positioning error can be tested by reading out the
sensing elements for the closed-loop system. a) While scanning the
topography of microlenses, b) the read-out of the closed loop sensor in
the fast scan direction is recorded. c) The read-out of the fast scan
axis is compared with the desired scan position and a positioning error
is extracted. The positioning error is below 10 nm for typical scan
frequencies. The sensor is read-out with a sampling rate of 1.5 kHz.

view of 100 × 100 μm2, they are only suitable for local imaging.

Often, features of structural details will just not fit into this field

of view. Optical phase gratings are an example for this type of

samples [41]. Imaging such structures with the large-area

scanner allows one to image multiple grating periods of

256 × 256 μm2 in a single AFM picture and to overlay them

with the optical microscope image obtained during scanning.

Such diffractive structures define the length of the optical path

of the light propagating through by their topography. At least

one grating period has to be imaged in order to characterize

such grating structures which requires a large scan range. An

other challenge are high steps in micro- and nanostructures.

However, in many cases, the simultaneous investigation of

small features such as transistors (on the nanometer or sub-

micrometer scale) and much larger features such as chip archi-

tectures (on the millimeter scale) have to be imaged. An

Figure 3: a) Optical microscopy image of a SiOx calibration grating
with various feature sizes. Demonstration of large-area AFM imaging
with switching to the small-area scanner for high resolution. b) First, an
800 × 800 μm2 overview image of the structure was taken. c) After-
wards, the scansize was reduced to 200 × 200 μm2. d) The scansize
was further reduced to 50 × 50 μm2 before switching to the high reso-
lution scanner. e) After switching, 5 × 5 μm2 and f) 500 × 500 nm2

images of the smallest feature sizes of the calibration grating were
taken. The nested scanner design which can span over three orders of
magnitude in scan range makes this instrument a versatile tool for
micro- and nanomechanical analysis.

example of such structures are microelectronic integrated

circuits. Imaging such structures with a special large-area scan-

ning AFM allows for inspection of a wide field of the chip

architecture within one scan. Figure 4b shows a portion of the

die surface of a UV-erasable CMOS EPROM memory chip

(Type 27C256). The image size is 500 × 500 μm2 imaged with

a resolution of 1024 × 1024 pixels. Imaging was done in the

intermittent contact mode of the AFM with a setpoint of 89% of

the free amplitude of the cantilever. Due to the large step

heights of up to 2 μm on the surface of the chip, and the corres-

ponding high demands on the z-feedback loop the scan speed

was set to 30 μm/s. The image shows the original raw data, ex-

hibiting no artefacts or defects and despite the relatively soft

tapping and large step heights, no loss of contact to the surface

occurred over the whole scan area. All elements on the chip are

clearly discernible. Due to the hardware-linearized scan and the

very low thermal drift of the setup, no further image processing

was necessary. The choice of color table allows for a clear



Beilstein J. Nanotechnol. 2015, 6, 451–461.

456

Figure 4: a) Overlay of the optical microscope image with the AFM
topography of an optical grating structure with a 256 × 256 μm2 grating
periodicity. b) Large-area AFM topography image of a part of a
UV-erasable CMOS EPROM memory chip with a scan size of
500 × 500 μm2. Despite the large step heights of 2 μm, there no arte-
facts are visible, no loss of contact happened and the features of the
chip architecture are clearly visible. The heights of the different layers
are constant over the whole scan area which allows for reliable
absolute topography measurements in combination with a fast
overview using the optical microscope.

distinction of the different layers of which the circuit is

comprised. This shows that also the height scale measured by

the AFM is constant over the whole large scan area, a key

requirement for reliable quantitative large scale AFM measure-

ments.

Magnetoresistive strain sensors
Driven by the increasing demand for magnetic hard disk drives

[42], magnetic tunneling junctions (MTJ) [43-50] are state-of-

the-art read-heads in magnetic hard drives. Additionally, they

can be adapted for high strain sensitivity [51] and offer remark-

able miniaturization opportunities [52]. In combination with

already implemented processes of mass production, they are a

promising alternative to piezoresistive and piezoelectric sensors

for self-sensing AFM cantilevers [23]. Therefore, we used such

magnetic tunneling junctions with magnetostrictive electrodes

deposited and patterned on Si substrates as strain sensor on

AFM cantilevers. The Si substrates were structured into AFM

cantilevers by means of microelectromechanical systems

(MEMS) technology [35]. The magnetic tunneling junction

consists of two ferromagnetic CoFeB-electrodes separated by a

thin dielectric MgO layer, which acts like a spin-valve. The

electrical conductance of the magnetic tunnel junction, there-

fore, strongly depends on the orientation of the magnetization of

the electrodes towards each other. When magnetostrictive ma-

terials are used in the electrodes [53], the magnetization of one

electrode can rotate if strained because of the inverse magne-

tostrictive effect [54]. To use this effect for strain sensing, only

the magnetization of one electrode must rotate when strain is

applied to the junction while the magnetization of the other

electrode should remain in its initial orientation. Therefore, the

MTJ has to be integrated into a TMR stack, which includes

contact electrodes and a pinning mechanism to fix the magneti-

zation of one reference electrode while the second sense elec-

trode is free to rotate. To fix the magnetization of the reference

layer, it is magnetically pinned by a 0.9 nm thick Ru layer to a

CoFe layer by an antiferromagnetic interlayer coupling. The

exchange bias between a natural antiferromagnet (IrMn) and the

CoFe then fixes the magnetization of the reference layer. Then,

the resistance of the tunneling junction varies by rotating the

magnetization of the free sensing layer. Using the inverse

magnetostrictive effect in the sensing layer makes the TMR

stack sensitive to applied strain.

We used a CoFeB (3 nm)/MgO (1.8 nm)/CoFeB (3 nm) TMR

junction with an MnIr (12 nm)/CoFe (3 nm) exchange bias

system that was annealed at about 360 °C for 1 h at a pressure

of 10−6 mbar under a magnetic field of 2 kOe for a crystalliza-

tion of the CoFeB electrodes and improvement of CoFeB/MgO

interfaces. It also aligns the easy axis of the sensing layer and

pins the reference layer due to the imposed magnetic exchange

bias [55]. The TMR stack is grown by sputtering techniques on

a 4'' Si(100) wafer substrate with 300 ± 2 μm thickness (Si-Mat

Silicon Materials, Germany) with thermally grown 2 μm-thick

and 100 nm-thick SiO2 layers on the rear and front side, res-

pectively. The TMR sensor AFM cantilevers are prepared by a

sequence of MEMS techniques including photolithography,

reactive ion etching (RIE), ion beam etching (IBE) and wet

etching. The cantilevers used in this study were 300 to 350 μm

long and 40 μm wide. To ease the fabrication process thick-

nesses ranging from 10 μm to 20 μm were chosen. The resulting

resonance frequencies of the cantilevers vary from 170 kHz to

270 kHz and their spring constants from 40 N/m to 440 N/m.

Measurements with TMR sensors
As shown in Figure 5 the detection principle of a magnetostric-

tive TMR sensor can be easily applied to measure the bending
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of an AFM cantilever. In particular, TMR sensors with a

CoFeB/MgO/CoFeB magnetic tunnel junction are well known

for their very high TMR values [56]. In addition, the use of a

Co40Fe40B20 sensing layer leads to high strain sensitivity [57].

Those measurements, however, are done with a 4-point bending

apparatus and a magnetic bias field of 60 Oe perpendicular to

the magnetization of the pinned reference layer and with tensile

stress applied to the junction. On the cantilever level, not only

tensile but also compressive stress occurs. The alignment of the

initial easy axis of the sensing layer is, therefore, set to 45°

against the applied stress. In this way the TMR sensor is sensi-

tive to both compressive and tensile stress what is required for

essentially all modes of AFM. Assuming single domain behav-

ior of the two ferromagnetic layers, the conductance of the

TMR junction is depending on the angle α between the magne-

tizations of the two electrodes [58].

To achieve a high resistance change of the TMR junction and a

high strain sensitivity, only the sensing layer must be rotated

with respect to the reference layer. This can be achieved with

the magnetic bias field. The field must be strong enough to

rotate the magnetization of the sensing layer but also weak

enough to enable strain-induced rotation. We investigated the

angular dependence for a magnetic bias field of 60 Oe. The

angle α is thereby defined as the angle between the easy axis

and the bias field and varies between 0 and 180°. The angle of

the bias field was varied in 5° steps while the TMR sensor was

saturated along the easy axis between each angle variation. As

the setup of our AFM allows for both the measurement of the

cantilever deflection by independent means and the response of

the TMR sensor as a function of the angle of the magnetic bias

field the field can be varied until the optimum is found. The

resistance of the 27 μm × 27 μm sized TMR sensor with a resis-

tance area product of 61 kΩ·μm2 increases and decreases under

the applied tensile and compressive stress, respectively, induced

by the oscillation of the cantilever at its resonance frequency

(see Figure 5b and Figure 5c). To measure the resistance of the

TMR sensor, it is integrated into a Wheatstone bridge configur-

ation with a 20 mV bias voltage. We maintained the voltage

drop on the TMR sensor in the unstrained configuration at

10 mV and kept the bridge balanced. The voltage between the

midpoints was amplified by 60 dB and low-pass filtered with a

cut-off frequency of 400 kHz. This readout was directly fed into

a 100 MHz analog–digital converter for recording and compari-

son with the optical beam deflection readout which is used to

measure the deflection of the cantilever. With the deflection, the

strain at the base of the cantilever can be approximated by using

Hooke’s law and the Young’s modulus of the cantilever beam.

In Figure 5c, the sensor response for four chosen field angles is

given. The strain sensitivity (slope of the sensor response)

varies quite significantly with the incident angle of the magnetic

Figure 5: Characterization of AFM cantilevers equipped with strain
sensitive TMR sensors. a) The cantilevers deflection can be measured
with the beam deflection setup while the strain sensitivity of the TMR
sensor can be tuned with a magnetic bias field. b) The oscillation of the
cantilever is measured by the beam deflection setup and the strain in
the cantilever by the TMR sensor. In this notation, tensile stress corre-
sponds to positive strain. The resistance change of the 27 μm × 27 μm
sized TMR sensor can be correlated to the applied strain. c) The resis-
tance change as a function of strain is exemplary plotted for four
different angles of the bias field towards the easy axis. The bias field
has a strong influence on the strain sensitivity of the TMR sensor.

field. The sensor also shows a higher sensitivity for tensile

strain (steeper slope for positive values of ε in Figure 5, which

can be used in pre-strained junctions or to distinguish between

compressive and tensile stress for spectroscopy applications.
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The TMR junction with a squared geometry used in this work

shows the highest strain sensitivity of 2 × 10−7 Å, at a bias field

angle α of 115° towards the magnetization of the reference

layer. For this measurement, we can extract a signal-to-noise

ratio of 900 at a bandwidth of 100 kHz which allows one to

measure the oscillation of the cantilever on its resonance. For

symmetry reasons, the behavior of the TMR sensor can be

assumed to have the same sensitivity for negative values of α,

however, the signal from the TMR sensor is inverted with

respect to the signal for positive values of α.

To investigate the strain sensitivity and the feedback mecha-

nism when using TMR sensors on AFM cantilevers, we fabri-

cated tipless cantilevers and obtained a suitable resolution on

gratings [35]. To increase the lateral resolution, however, sharp

tips have to be attached to our cantilevers with TMR sensors.

By using a combination of focused ion beam and electron beam

deposition, tips can be manually been grown on the apex of the

cantilever [59]. The use of such tips enables high lateral

resolution as tip radii as small as 30 nm can be achieved. The

advantage of this approach is that the tip is subsequently grown

and without altering the fabrication process of our TMR

cantilevers.

As AFM setups with beam deflection can routinely image

smallest features such as atomic step edges, the ability to reveal

such features is mandatory to be competitive. Figure 6 demon-

strates that atomic-scale resolution can be also obtained with a

TMR sensor. The image of atomic step edges on gold(111) was

obtained in the amplitude modulation mode in which the

cantilever oscillation was detected with the TMR sensor.

The applied bias field was chosen for maximum strain sensi-

tivity for the unstrained sensor at 60 Oe and α = 115°. With

those parameters, atomic step edges of 2.54 Å height are

resolved.

For dynamic-mode experiments, the phase-shift signal is of

high interest as it provides information about energy dissipa-

tion between tip and sample [60,61] and visualizes chemical

contrasts [62]. To demonstrate this kind of measurement also

with our TMR sensors, we applied polymer blend lithography to

pattern structured self-assembled monolayers (SAMs) on

hydrophilic SiOx [63]. In order to obtain a high chemical

contrast we used 1.3 nm high monolayers of FDTS

(1H,1H,2H,2H - perfluorodecyltrichlorosilane), which are well

known for their hydrophobicity [64]. If exposed to ambient

conditions with a relative humidity of around 40%, the topo-

graphic contrast on those two materials disappears in amplitude

modulation imaging. The height difference, however, can be

observed if the sample is scanned in a liquid [63]. Therefore, we

conclude that the vanishing topography contrast in ambient

Figure 6: a) To improve lateral resolution, tips with a tip radius of
30 nm were grown by a combination of focused ion beam and electron
beam deposition deposition. b) Atomic step-edges on gold(111)
terraces can be revealed by amplitude modulation imaging with the
feedback on the TMR sensor.

conditions is most likely caused by the thin water films present

on hydrophilic SiOx under ambient conditions [65]. This effect

obscures the height difference between the FDTS and SiOx.

However, as shown in Figure 7a, the difference of the energy

dissipation between the two materials is observable and the

holes in the FDTS-SAM are visible as bright spots in the phase

signal. As the phase contrast on this sample system is higher,

we altered the feedback and scanned the same sample in a

frequency modulation mode [66]. Thereby, the resonance

frequency of the cantilever was tracked with a phase-locked-

loop (PLL) while its frequency shift was used as a feedback for

the topography feedback loop [6]. As the frequency tracking

loop feeds back the cantilevers resonance frequency to the

driving signal at a 90°phase shift, the contrast in the phase

signal disappears as shown Figure 7b. The topography of the

sample, however, is revealed clearly (see Figure 7a).
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Figure 7: Dynamic mode imaging of FDTS-SAM samples using a TMR sensor with the feedback on amplitude and phase. a) Amplitude modulation
mode imaging of FDTS-SAM in SiOx with a TMR sensor. On this sample system, dissipative tip–sample forces are dominant. Therefore, a high
phase-signal contrast can be observed and reveals the different materials of the sample due to different energy dissipation between tip and sample
while the amplitude-signal feedback reveals no topographic features. b) On such samples, phase-locked frequency modulation AFM is advantageous
and can reveal the topography of the sample. As the cantilevers resonance frequency is fed back to the driving signal by an additional loop, the phase
contrast vanishes and is constant at 90°, while the topography with the holes in the SAM is revealed.

Conclusion
To conclude, we presented an atomic force microscope with a

nested scanner design of two independent piezo scanners for the

imaging of surfaces up to 800 × 800 μm2. The AFM is capable

of switching from the large-area scanner to the small high-reso-

lution scanner. This key feature of the nested scanner design

makes the instrument a versatile tool for the analysis of micro-

and nanostructures by sequential scanning with both scanners.

For the characterization of self-sensing AFM cantilevers based

on TMR sensors, the instrument is designed to be operated in

externally applied magnetic bias fields to optimize the sensi-

tivity of the TMR sensors. The performance of these sensors

has been shown to be sufficient for several operation modes and

is capable of imaging smallest feature sizes like atomic step

edges.
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