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Abstract: A UV-induced 1,3-dipolar nucleophilic addition of 

tetrazoles to thiols is described. Under UV irradiation the 

reaction proceeds rapidly at room temperature, with high yields, 

without a catalyst, and in both polar protic and aprotic solvents, 

including water. This UV-induced tetrazole-thiol reaction was 

successfully applied for synthesis of small molecules, protein 

modification, and rapid and facile polymer-polymer conjugation. 

The reaction has been also demonstrated for the formation of 

micropatterns by site-selective surface functionalization. 

Superhydrophobic-hydrophilic micropatterns were successfully 

created by sequential modifications of a tetrazole-modified 

porous polymer surface with hydrophobic and hydrophilic thiols. 

A biotin functionalized surface could be fabricated in aqueous 

solutions under long-wavelength UV irradiation. 

 

Ever since the first reported photoreaction of an organic 

compound, santonin, in 1834 by Trommsdorf,[1] the spatially and 

temporally controllable photochemistry has found diverse and 

widespread applications,[2] including surface functionalization to 

create patterned or gradient immobilization of various 

substrates.[3] Photo-induced click reactions have been actively 

investigated during the last decade in attempts to combine the 

benefits of click reactions with the excellent spatial and temporal 

controllability of photochemical processes.[4] UV-induced thiol-

ene and thiol-yne reactions are the most known radical photo-

click reactions.[5] Non-radical photoreactions have also attracted 

a lot of attention in recent years.[6] For instance, Lin et al,[7] 

introduced a photo-click 1,3-dipolar tetrazole-ene reaction based 

on Huisgen’s studies.[8] The tetrazole-ene reaction presents 

several advantages: simplicity of implementation, fast reaction 

kinetics, high yields, it is catalyst free, yields inoffensive by-

products (N2) and, therefore, bio-compatible. This and other 

photo reactions have been implemented in many different 

applications such as dendrimers synthesis,[9] bioconjugation,[6b, 

6d, 6e, 10] in situ bio-labeling,[6c, 11] hydrogels formation,[12] surface 

functionalization[13] etc. Nevertheless, the implementation of 

photo reactions in bio-applications is still limited, partly because 

unnatural functional groups have to be first introduced to a 

biomolecule. In addition, only a few photo  reactions could be 

applied for polymer-polymer coupling and site-selective 

conjugation of biomolecules on surfaces.[13b, 14] Thus, despite a 

progress in the field of photo-induced reactions, there is a clear 

need for novel efficient photo reactions that are selective to 

different types of functionalities, compatible with polymer-

polymer conjugation and bioapplications.  

  

Figure 1. Schematic representation of (A) UV-induced formation of the 

nitrilimine intermediate from tetrazole 1 and subsequent nucleophilic thiol 

addition; (B) the UV-induced tetrazole-thiol reaction between tetrazole 1 and 

thiol 2. (C) UV−Vis absorbance of the tetrazole-thiol reaction mixture as a 

function of UV irradiation time. The evolution of the absorbance peaks at 278 

nm (■) as well as the 369 nm (●) with irradiation time (inset). The control 

experiments (369 nm peak is shown as ♦) were taken under the same 

conditions but without 2. 

50 years ago Huisgen et al. reported that thiophenol could be 

added to the intermediate nitrilimine generated from 

decomposition of 2,5-diphenyltetrazole in boiling thiophenol.[8a, 8b] 

Photolytic decomposition of tetrazoles with release of nitrogen 

and nitrilimines was also described.[8c] In this work, we report a 

UV-induced tetrazole-thiol reaction (Figure 1A) that allows for 

rapid catalyst-free polymer-polymer conjugation, efficient surface 

functionalization and patterning as well as opens the way to 

direct functionalization of biomolecules bearing periphery thiol 

groups. 
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In order to initially examine the kinetics of the UV-induced 

tetrazole-thiol reaction, a solution of methyl 4-(2-phenyl-2H-

tetrazol-5-yl)benzoate 1 in ethyl acetate and 5 eq. of 2-

mercaptoethanol 2 were subjected to irradiation at 260 nm UV 

light (Figure 1B). The results showed the UV-triggered rupture of 

the tetrazole ring evidenced by the gradual decrease in the 

tetrazole absorption at 278 nm. At the same time a new 

absorption band around 369 nm was observed only in the 

presence of a thiol, confirming the formation of a tetrazole-thiol 

adduct (Figure 1C-D and S1). Both steps were rapid, achieving 

complete conversion within 10 s based on UV-Vis spectroscopy. 

The resulting tetrazole-thiol adduct, meanwhile, showed a strong 

fluorescent emission band at 480 nm (Figure S1). The 

thiohydrazonate structure of the product 3 was confirmed by 

ESI-MS and NMR (Figure S2-S4). The kinetics of the UV-

induced reaction was also investigated by 1H NMR as shown in 

Figure S5. 

Table S1 shows isolated reaction yields after UV irradiation of 

tetrazole 1 in the presence of thiol 2 in both polar protic (ethanol) 

and aprotic (ethyl acetate) solvents under 260, 312 and 365 nm 

UV light. Since the photoactivity of diaryltetrazoles depends on 

their UV absorption properties[15] and 1 absorbs strongly at 

shorter wavelength region (λmax = 278 nm), 260 nm and 312 nm 

irradiation afforded highest isolated yields in the range of 75%-

95%. The reaction between 1 and equimolar amount of 2 in 

ethanol leads to 87% of the isolated product. The thiols could be 

used in this reaction even in the presence of amine[16], another 

nucleophile, in polar protic solvents. The tetrazole-thiol adduct 3 

was isolated with the yield of 70% from a mixture of 1 with 2 (2.5 

eq.) and ethanolamine (2.5 eq.) after UV irradiation (Figure S6). 

Most of surface immobilization or chemical modification of 

biomolecules require aqueous condition to avoid possible 

protein denaturation and loss of activity. To demonstrate that 

UV-induced tetrazole-thiol reaction can proceed in water, a 

tetrazole-bearing poly(ethylene glycol)methyl ether (MW 5000 

g/mol) (PEG-tetrazole 4, Figure S7) was used to react with 2 (5 

eq.) in water under 312 nm UV light for 3 h. The conversion of 4 

into the corresponding thiohydrazonate was as high as 95% 

based on NMR (Figure S8). In addition, bovine serum albumin 

(BSA), a protein containing one free peripheral thiol cysteine 

groups[17], was reacted with 4 in aqueous PBS buffer under 312 

nm UV light. The presence of a fluorescent higher molecular 

weight band in the gel electrophoresis of the product confirmed 

BSA-PEG conjugation in aqueous medium (Figure S9). 

    We further investigated the efficiency of the UV-induced 

tetrazole-thiol reaction for macromolecular conjugation. Figure 

2A shows a model polymer conjugation experiment that was 

conducted. O-(2-mercaptoethyl)-O’-methylpolyethylene glycol 5 

(MW 5000 g/mol) was utilized as the thiol-terminated polymer. 

Equimolar amounts of 4 and 5 were dissolved in THF (3 mg/mL) 

and subsequently irradiated with UVλ=260 nm light. The reaction 

mixture was analyzed by GPC at different irradiation times 

(Figure 2B). A distinct shift of the GPC traces to lower elution 

volumes indicates successful formation of a polymer-polymer 

conjugate 6 already after 7 min of UV irradiation. The remaining 

small GPC peak corresponding to the starting material could be 

 

Figure 2. (A) UV-induced conjugation of two polymers using the tetrazole-thiol 

reaction to form PEG-block-PEG copolymer 6. (B) GPC monitoring of the 

block-copolymer formation. Evolution of the intensity of elution volumes at 23.8 

mL (♦, gray) and 22.6 mL (●, pink) with irradiation time (inset). 

 

due to the incomplete tetrazole functionalization of the 4 as well 

as the non-equimolar ratio of reactant. 

    Next, the performance of the UV-induced tetrazole-thiol 

reaction for surface functionalization was also examined. A 

porous polymer layer functionalized with tetrazole (tetrazole 

surface, Figure S10) was applied as the substrate. With the aid 

of a photomask, the surface was site-selective modified by 

1H,1H,2H,2H-perfluorodecanethiol 7 under UVλ=260nm irradiation 

(Figure 3A). The successful immobilization and patterning of 

thiol was confirmed by time-of-flight secondary ion mass 

spectrometry (ToF-SIMS) (Figure 3B and S11). X-ray 

photoelectron spectroscopy revealed the presence of F1s, F 

KLL as well as S 2p peaks after thiol modification. Integration of 

N1s and S2p peak areas revealed the evolution of conversion 

with UV irradiation time reaching 88% after 20 min of UV 

irradiation (Figure S12). After tetrazole-thiol reaction, the 

appearance of fluorescence provides a visualization method to 

assess the success of surface modification (Figure 3C). 

Tetrazole surface modification with a thiol-containing fluorophore, 

Rhodamine-SH, was also shown in Figure 3D. The produced 

pattern shows a perfect superimposition of both red and green 

fluorescence. Surface micropatterns with feature sizes down to 

10 µm could be obtained using an appropriate photomask 

(Figure S13).  
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Figure 3. (A) Schematic showing surface micropatterning via the UV-induced 

tetrazole-thiol reaction. (B) ToF-SIMS (negative polarity) spectra of the 

tetrazole surface before (blue line) and after (dark line) functionalization with 

thiol 7. Isotopic peaks are marked with asterisks. The ToF-SIMS images 

(fragments 479.03 u and 716.98 u, corresponding to the thiol 7 ion and the 

conjugation product 8, respectively) of the polymer layer are inserted. Scale 

bars: 1 mm.  (C) Photograph of a thiol 7 patterned tetrazole surface under 365 

nm UV light. Scale bar: 3 mm. (D) Red (left), green (middle) and red/green 

overlay (right) fluorescence microscope images of the tetrazole surface 

patterned by Rhodamine-SH showing both red and green fluorescence. Scale 

bar: 300 µm.  

 

    The surface modification could be performed using different 

thiols in various common solvents (Figure S14). Moreover, when 

a fluorinated thiol 7 was employed, the hydrophobic tetrazole 

surface was transformed into a superhydrophobic surface 

exhibiting water contact angle θst, θadv and θrec as high as 167°, 

170° and 161°, respectively. The SEM analysis in Figure 4A did 

not reveal any changes of the surface morphology after the thiol 

modification. Hence, the UV-induced tetrazole-thiol reaction 

could be used to create well-defined superhydrophobic-

hydrophilic micropatterns of different geometries after sequential 

modifications (Figure 4B and S15). The produced  

superhydrophobic barriers show good cell repellent  properties 

and mCherry cells only adhered well to the hydrophilic areas 

(Figure 4C), which is important for a variety of different 

biotechnological applications ranging from sensors to cell 

screening microarrays.[18]  

    To demonstrate that the tetrazole-thiol reaction could be used 

for the in-situ immobilization of biomolecules in aqueous 

solutions under long-wavelength UV irradiation, we patterned 

biotin-PEG–thiol onto the tetrazole surface in water under 365 

nm UV light (Figure 4D). The surface was then incubated with 

Alexa Fluor 594 labeled-streptavidin solution. Fluorescence 

microscopy revealed a two-color green-red fluorescent pattern 

(Figure 4D), where green fluorescence originated from the 

thiohydrazonate product of the tetrazole-thiol reaction, while red 

fluorescence originated from the Alexa Fluor 594 labeled-

streptavidin bound to the biotinylated pattern. 

 

Figure 4. (A) SEM images of the tetrazole surface before (left) and after (right) 

modification with thiol 7. The images of a water droplet on the corresponding 

surfaces are inserted. (B) Optical images of superhydrophobic-hydrophilic 

micropatterns. (C) Red (top) and red/green overlay (bottom) fluorescence 

microscope images of the mCherry-expressing rat mammary carcinoma cells 

after growing for 30 h on a thiol 7 patterned tetrazole surface. The 7 modified 

areas emit green fluorescence and show cell repellent properties.  (D) 

Fluorescence microscopy image showing the immobilization of biotin-PEG-

thiol in water under 365 nm UV light and Alexa Fluor 594 labeled-streptavidin 

binding. Scale bars: 500 nm (A) and 1 mm (B-D). 

 

   In conclusion, we have presented a new versatile UV-induced 

tetrazole-thiol reaction for conjugation of polymers as well as 

surface functionalization. The reaction performs very rapidly at 

ambient temperature with high efficiency and absence of any 

catalyst. Furthermore, this photo-based approach can be 

performed in aqueous conditions, making it a promising tool for 

diverse biological and biotechnological applications, such as 

protein modification and surface biofunctionalization. The 

formation of a fluorescent product omits the necessity of using 

fluorescent labels and can be convenient for tracking the 

reaction or for multi-color labeling. Because of the above 

mentioned advantages of this method, we believe that the UV-

induced tetrazole-thiol reaction will become a valuable tool for 

different applications. 
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Table 1. Isolated yield of the UV-induced 1,3-dipolar nucleophilic addition between 1 and 2 under different 

conditions. 

 

 

Table S1 shows isolated reaction yields after UV irradiation of tetrazole 1 in the presence of thiol 2 in both polar 

protic (ethanol) and aprotic (ethyl acetate) solvents under 260, 312 and 365 nm UV light. Since the photoactivity 

of diaryltetrazoles depends on their UV absorption properties
[1]

 and 1 absorbs strongly at shorter wavelength 

region (λmax = 278 nm), 260 nm and 312 nm irradiation afforded highest isolated yields in the range of 75%-95%. 

The reaction between 1 and equimolar amount of 2 in ethanol leads to 87% of the isolated product. It is also 

noteworthy that the thiohydrazonate product could be observed (28% isolated yield) after irradiation at 365 nm 

UV light. In contrast, 365 nm photoirradiation of 1 and methyl methacrylate did not yield any observable 

pyrazoline cycloadduct by using tetrazole-ene click reaction
 [1]

. 

 

  

UV260 nm UV312nm UV365 nm

molar ratio 

betwen 1 and 2
1:1 1:5 1:1 1:5 1:5

ethanol 87% 92 % 87% 95% 12%

ethyl acetate 76% 88% 79% 94% 28%
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Figure S1. (A) Schematic representation of the UV-induced tetrazole-thiol reaction between methyl 4-(2-phenyl-

2H-tetrazol-5-yl)benzoate 1 and 2-mercaptoethanol 2. (B) UV−Vis monitoring of the UV-induced docomposition 

of 20 μM 1 in ethyl acetate under 260 nm UV irradiation. (C) The fluorescence spectra of the mixture of 20 μM 1 

and 100 μM 2 in ethyl acetate before (black line) and after (red line) UV irradiation for 10 s. The photoirradiation 

wavelength was set at 260 nm and the excitation wavelength was set at 385 nm. The nucleophilic addition product 

shows an emission band at 480 nm. (D) Photograph of the thiohydrazonate product (3 mg/mL in ethyl acetate) 

under 365-nm UV light. 

 

 

 

 

 

Figure S2. ESI-MS spectrum (negative mode) of the thiohydrazonate product 3, methyl (Z)-4-(((2-

hydroxyethyl)thio)(2-phenylhydrazono)methyl)benzoate. The nucleophilic tetrazole-thiol addition product, 

calculated for C17H18N2O3S  330.10. [M-H]
-
, was found 329.08.   
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Figure S3. 
1
H NMR spectra of the reactants (A) methyl 4-(2-phenyl-2H-tetrazol-5-yl)benzoate 1 and (B)  2-

mercaptoethanol 2, as well as the nucleophilic addition product 3 (C) formed after UV irradiation. NMR spectra 

of the product of UV-induced tetrazole-thiol reaction clearly demonstrate the formation of the expected product. 

First, by comparing the 
1
H NMR spectrum of 4-(2-phenyl-2H-tetrazol-5-yl)benzoate 1 with the 1,3-dipolar 

nucleophilic addition product 3, there is a clear change in the signals between δ=6.5 and 8.5 ppm that are 

associated with the aromatic protons. The integration value for the signals arising from the aromatic protons is in 

perfect agreement with the number of aromatic protons expected for the product, indicating the UV-triggered 

rupture of the tetrazole. Moreover, the NMR signals associated with the 2-mercaptoethanol’s protons shifted to 

lower field (from δ=2.68 to δ=2.86 ppm). In addition, the sextet corresponding to the HS-CH2- protons changes to 

a triplet of –S-CH2-, indicating that the 2-mercaptoethanol 2 is linked now to the hydrazone. Finally, the presence 

of a new resonance signal at δ=9.24 ppm further suggests that the thiol group reacted with the nitrilimine.
[2]

 (D)
 

13
C NMR spectrum of the thiohydrazonate product 3.  
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Figure S4. 
1
H NMR spectra of the thiohydrazonate product 3 formed after UV irradiation in ethyl acetate (A) and 

ethanol (B), respectively.  
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Figure S5. (A) 
1
H NMR spectra monitoring of reaction progress between methyl 4-(2-phenyl-2H-tetrazol-5-

yl)benzoate 1 (0.75 mg/mL) and 2-mercaptoethanol 2 (5 eq.) in ethyl acetate under 260 nm UV light (intensity 5 

mW/cm
2
) at intervals of 0, 2, 5, 10, 15 min. (B) Evolution of the peak intensity of three major species during the 

UV irradiation. The NMR spectra clearly demonstrated fast decomposition of reactant 1 and formation of 
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expected product 3. This result is in agreement with the UV-Vis spectra shown in Figure 1. Relative intensity of 

each species was obtained from the integration of signals a, b and c associated with 1, 3 and a byproduct, 

respectively. The reactant 1 decomposed completely after 5 min irradiation and the yield of thiohydrazonate 

product 3 reached 91%. 

 

 

 

 

 

Figure S6. ESI-MS spectra of the nucleophilic addition product between tetrazole 1 and ethanolamine, methyl 

(Z)-4-(N-(2-hydroxyethyl)-N'-phenylcarbamohydrazonoyl)benzoate. The nucleophilic tetrazole-amine addition 

product, calculated for C17H19N3O3  313.14. [M+H]
+
, was found 314.14. 

 

In order to test whether UV-induced tetrazole-thiol reaction can be performed in the presence of other 

nucleophiles, such as amines, a mixture of 1 with 2 (2.5 eq.) and ethanolamine (2.5 eq.) in ethanol solution was 

irradiated with UVλ=312 nm for 2 h. Although the tetrazole-amine adduct was also detected by MS (Figure S5), the 

tetrazole-thiol adduct 3 was isolated with the yield of 70%, showing that thiols can be used in this reaction even in 

the presence of amines in polar protic solvents.   

280 290 300 310 320

314.14

m/z
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Figure S7. (A) Schematic representation of the formation of PEG-tetrazole 4 via esterification. (B) Overlay of 

GPC traces (THF) showing the formation of PEG-tetrazole 4 from PEG. The result shows that the PEG-tetrazole 

4 polymer peak shifted towards lower elution volumes after the modification indicating an increased molecular 

weight. (C) 
1
H NMR spectra of the PEG-tetrazole 4. The presence of the resonance at 4.49 ppm (f), attributed to 

the PEG-tetrazole methylene protons, confirms the formation of the product. The grafting of PEG with tetrazole is 

calculated to be about 95% by comparing the integrations of peaks from the methylene protons of PEG-tetrazole 4 

at 4.49 ppm (f) and the methyl protons of the PEG at 3.35 ppm (i). Here the n≈110. 
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Figure S8. (A) Schematic representation of the UV-induced tetrazole-thiol reaction between PEG-tetrazole 4 and 

2-mercaptoethanol 2 in water. (B) 
1
H NMR spectra of the nucleophilic addition product formed after UV 

irradiation and purification. The presence of the resonance at 2.84 ppm, attributed to the methylene protons from 

2-mercaptoethanol, confirms the formation of the nucleophilic addition product in water. The conversion is 

calculated to be about 95% by comparing the integrations of peaks from the methylene protons of nucleophilic 

addition product at 2.84 ppm and the aromatic protons. (C) 
13

C NMR spectra of the nucleophilic addition product 

formed after UV irradiation and purification. The presence of the resonances at 35.75 ppm and 60.73 ppm, 

attributed to the methylene protons from 2-mercaptoethanol, confirms the formation of the nucleophilic addition 

product in water. Here the n≈110. 
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Figure S9. (A) Schematic representation of the bovine serum albumin (BSA) modification by PEG-tetrazole 4 

using UV-induced tetrazole-thiol reaction in water. (B) Coomassie Blue staining (left) and in-gel fluorescence 

imaging (right, UVλex =365 nm) of various samples. Photoinduction was carried out for a duration of 5 min with UV 

irradiation at 312 nm and additional incubation for 2 h in PBS buffer. The experiment was repeated twice with 
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similar results. A higher-molecular-weight band was observed in the presence of PEG-tetrazole 4 and UV 

irradiation after Coomassie Blue staining, suggesting the successful modification of protein by PEG-tetrazole 4 

after UV irradiation in the aqueous medium. Meanwhile, the presence of fluorescence further corroborates the 

successful protein functionalization. Due to the excess PEG-tetrazole 4 being used and the existence of amine 

groups in BSA, part of the protein could be multi-modified by the PEG-tetrazole 4. 

 

 

Figure S10. Schematic description of the fabrication of the tetrazole-modified porous polymer surface (tetrazole 

surface). Firstly, a 12.5 µm thin, hydrophilic porous polymer film, poly(2-hydroxyethyl  methacrylate-co-ethylene 

dimethacrylate) (HEMA-EDMA), was prepared on a glass substrate using photo-initiated copolymerization of 2-

hydroxyethyl methacrylate and ethylene dimethacrylate in the presence of porogens according to the known 

procedure.
[3]

 The hydroxyl groups were then esterified using 4-(2-phenyl-2H-tetrazol-5-yl)benzoic acid by 

incubating the surface in a dichloromethane solution of 4-(2-phenyl-2H-tetrazol-5-yl)benzoic acid, coupling 

reagent N,N′-diisopropylcarbodiimide (DIC) and catalyst 4-(dimethylamino)pyridine (DMAP) under stirring at 

room temperature for 24 hours. The hydrophilic HEMA-EDMA surface (static water contact angle θst 5
o
) was 

transformed into a hydrophobic tetrazole surface with the θst of 115
o
.
[4]
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Figure S11. The ToF-SIMS images of the tetrazole surface after site-selective functionalization with 

1H,1H,2H,2H-perfluorodecanethiol 7. (A) fragments 19.00 m/z, corresponding to F
-
; (B) fragments 31.98 m/z, 

corresponding to S
-
; (C) fragments 210.08 m/z, corresponding to the C5H4F6S

-
, part of 1H,1H,2H,2H-

perfluorodecanethiol; and (D) fragments 265.01 u, corresponding to the 4-(2-phenyl-2H-tetrazol-5-yl)benzoic acid 

ion.  

 

The tetrazole surface was wetted with an ethyl acetate solution containing 20 vol% of 1H,1H,2H,2H-

perfluorodecanethiol 7 and irradiated with UVλ=260nm through a quartz photomask for 2 min (site-selective 
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modification, Figure 3A). The successful immobilization of thiol was confirmed by time-of-flight secondary ion 

mass spectrometry (ToF-SIMS) (Figure 3B and S10).  Both of the peaks corresponding to thiol ion 7 (m/z=479.03) 

as well as the corresponding conjugation product 8 at 716.98 were detected in the negative polarity mode (Figure 

3B). The lateral distributions of these two signals are shown in Figure 3B. Figure S10 also shows clear patterns 

with good contrast of the F
-
, S

-
 and C5H4F6S

-
 ions. The tetrazole ion only appeared on the non-irradiated areas, 

indicating the photolysis of tetrazole on the exposed area. 
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Figure S12. XPS survey spectra and curve-fitted high-resolution XPS C 1s spectra of the unmodified (A) and 

1H,1H,2H,2H-perfluorodecanethiol-modified (B) tetrazole surface. The new peak with binding energies at 292 eV 

in C1S spectra is the typical characteristics of -CF3 and -CF2 moieties. The main peak in the C1S spectrum at 

285.0 eV is assigned to saturated carbon atoms (C–C, C–H) and is employed as a reference to compare the 

evolution of the different species present on the surface.  (C) Curve-fitted high-resolution XPS N 1s and S 2p 

spectra of the thiol 7-modified tetrazole surface. (D) Integration of N1s and S2p peak areas after UV irradiations. 

(E) Conversions calculated from the integration of N1s and S2p peak areas. 

After 1H,1H,2H,2H-perfluorodecanethiol 7 modification, 

Irradiation time Area(N 1s) Area(S 2p)

2 min 52425 17260
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Where n is the number of moles, I is the peak area, and S is the surface sensitivity factor. Here, S(S 2p)=0.37 and 

S(N 1s)=0.33
[5]

. 

The kinetic equation could be established well by using a logistic model. 

                 
              

       
 

  

          

Where y is the conversion of the surface modification, and t is the UV irradiation time (min). 

 

 

 

 

 

 

 

 

Figure S13. Fluorescence microscope images of Rhodamine-SH pattern on the tetrazole surface with lines of 

different widths. 
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Figure S14. Static water contact angles (θst) of the tetrazole surfaces functionalized with 1-dodecanethiol 

dissolved in different solvents via the UV-induced tetrazole-thiol surface modification (cyan). The control 

experiments were taken under the same conditions without 1-dodecanethiol (violet). Photo modification was 

carried out for duration of 2 min with UV irradiation at 260 nm. The dashed pink line means the θst of the original 

tetrazole surface.  

 

To assess the performance of the UV-induced tetrazole-thiol reaction under different conditions, the 

tetrazole surface was functionalized by both hydrophobic and hydrophilic thiols dissolved in several 

broadly used solvents. The tetrazole surfaces (θst 115
o
 before modification) could be functionalized by 1-

dodecanethiol in ethanol (EtOH), ethyl acetate (EtOAc), acetone, dichloromethane (DCM), toluene and 

tetrahydrofuran (THF), which led to an increase of the θst up to ~143
o
 independently of the solvent used (Figure 

S13). The grafting of the surface with cysteamine hydrochloride in ethanol transformed the hydrophobic 

tetrazole surface into hydrophilic (θst=22
o
). 
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Figure S15. Optical images of superhydrophobic-hydrophilic micropatterns. The hydrophilic spots are filled with 

dye water solutions. Droplet microarray is formed by the method of discontinuous dewetting
[6]

. Scale bars: 1 mm.  
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Materials and Procedures 

2-Hydroxyethyl methacrylate (HEMA) and ethylene dimethacrylate (EDMA) were purchased from Sigma-

Aldrich (Germany) and purified using a short column filled with basic aluminum oxide to eliminate the inhibitors. 

Biotin-PEG-thiol was purchased from POLYPURE AS, Norway. Alexa Fluor 594 labeled streptavidin was 

purchased from Thermo Fisher Scientific Inc. All the other chemicals were purchased from Sigma-Aldrich 

(Germany) and used without further purification. The thiol-containing fluorophore (Rhodamine-SH) was kindly 

provided by Dr. Junsheng Li.
[7]

 Analytical thin layer chromatography (TLC) was performed on TLC aluminium 

oxide 60 F254 neutral (Merck) and column chromatography was performed with aluminum oxide neutral (HPLC 

Flash Grade, 32-63 micron APS Powder, Alfa). Nexterion Glass B UV transparent glass plates (Schott, Germany) 

were used as substrates for polymer layers. The polymerizations and UV-induced reactions were carried out on an 

OAI Model 30 deep-UV collimated light source (San Jose, CA) fitted with an USHIO 500 W Hg-xenon lamp 

(Japan).  

Characterization 

SEM images were obtained using the LEO 1530 Gemini scanning electron microscope (Zeiss, Germany) at the 

Institute of Nanotechnology (INT), KIT. Before SEM measurement, the samples were sputtered with a 30 nm 

gold layer using a Cressington 108 auto sputter coater (INT, KIT).  

Mass analysis was performed using an electrospray ionization mass spectrometry (ESI-MS) (Bruker ESI-TOF in 

INT, KIT).  

1
H spectra were recorded at room temperature using Bruker DRX-500 (500 MHz), and chemical shifts were 

reported in ppm using residual solvent peaks as internal standards (DMSO-d6, 2.50 and CDCl3, 7.24). 
13

C NMR 

spectra were recorded at 125 MHz and chemical shifts were reported in ppm.  

UV-Vis absorption spectra were recorded using 1-cm quartz cuvettes on a Varian Cary Eclipse spectrometer. 

Fluorescence spectra were recorded using 1-cm quartz cuvettes on a Varian Cary Eclipse fluorescence 

spectrophotometer at room temperature.  
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Molecular weight and polydispersity index values of the polymers were obtained by GPC using a Tosoh EcoSEC, 

TOSOH BIOSCIENCE GmbH (Germany) equipped with an auto sampler and Tosoh EcoSEC RI refractive index 

detector. THF was used as eluent (flow rate 1 mL/min) at 30 °C. All determinations were performed relative to 

linear polystyrene standards (Polymer Standard Service, MP 474− 2520000 Da). 

The tetrazole surfaces were analyzed with a Leybold-Heraeus MAX200 XPS system using a magnesium anode as 

the X-ray source. 

The distributions of perfluorinated fragments on the surface were confirmed by time of flight secondary ion mass 

spectrometry (ToF-SIMS) (ION TOF Inc., Münster, Germany), IFG, KIT. 

The fluorescence images of the polymer layer after Rhodamine-SH modification were captured using a Leica 

Confocal Microscope SP5.  

A UK 1115 digital camera from EHD imaging (Germany) was used to take images of the water droplet on the 

surface under ambient conditions. ImageJ software with a Dropsnake plugin was used to measure the water 

contact angle. 

 

Experimental & Supporting Data 

Preparation of 4-(2-phenyl-2H-tetrazol-5-yl)benzoic acid  

The synthesis was carried out following a literature procedure.
[8]

 
1
H NMR (500 

MHz, DMSO-d6) δ 13.25 (s, 1H), 8.29 (d, 2H), 8.16 (t, 4H), 7.70 (t, 2H), 7.63 (t, 

1H); 
13

C NMR (125 MHz, DMSO-d6) δ 166.68, 163.78, 136.11, 132.77, 130.38, 

130.27, 130.17, 126.76, 119.95; ESI-MS, calcd. for C14H9N4O2  266.08 [M-H]
-
, found 265.05. 
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Preparation of methyl 4-(2-phenyl-2H-tetrazol-5-yl)benzoate 1  

The synthesis was carried out by modifying 4-(2-phenyl-2H-tetrazol-5-

yl)benzoic acid 2 with methanol via a standard esterification procedure. 4-(2-

phenyl-2H-tetrazol-5-yl)benzoic acid (25 mg, 93 µmol) was dissolved into 10 

mL of dichloromethane solution containing methanol (30 mg, 932 µmol) and 

catalyst 4-(dimethylamino)pyridine (DMAP) (56 mg, 0.46 mmol). Then, the 

coupling reagent N,N’-diisopropylcarbodiimide (DIC) (216 μL, 1.38 mmol) was added to the solution at 0°C. 

After stirring the solution at RT for 48 h, the reaction mixture was washed with deionized water and the organic 

layer was collected. The solvent was removed under reduced pressure to give a crude product which was 

subsequently purified by Al2O3 column chromatography (CH2Cl2/hexane 6:4 v/v) to give the corresponding 

product. 
1
H NMR (500MHz, CDCl3) 8.33 (d, 2H), 8.19 (t, 4H), 7.58 (t, 2H), 7.51 (t, 1H), 3.95 (s, 3H); 

13
C NMR 

(125 MHz, CDCl3) δ 166.75, 164.59, 137.02, 132.07, 131.45, 130.45, 130.11, 129.97, 127.2, 120.14, 52.57; ESI-

MS, calcd. for C15H13N4O2 
 
280.10 [M+H]

+
, found 281.11. 

 

Kinetic study of UV-induced 1,3-dipolar nucleophilic addition with 1 and 2 

Methyl 4-(2-phenyl-2H-tetrazol-5-yl)benzoate 1  and 2-mercaptoethanol 2 were dissolved in ethyl acetate to 

obtain concentrations of 20 μM and 100 μM, respectively. Separate reactions were set up by adding 2.5 mL 

mixture in quartz test tubes. The mixtures were irradiated with a 260 nm UV lamp (intensity, 5 mW·cm
-
²) for 0.5, 

1, 2, 3, 4, 5, 6, 7, 8, 10 s, respectively. UV-Vis absorption spectra were recorded after irradiation. 
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Yield of UV-induced 1,3-dipolar nucleophilic addition with 1 and 2 under different conditions 

n(tetrazole):n(thiol)=1:1 

Methyl 4-(2-phenyl-2H-tetrazol-5-yl)benzoate 1  (16.5 mg, 59 µmol) and 2-mercaptoethanol 2 (4.2 µL, 59 µmol) 

were dissolved in 10 mL ethyl acetate or ethanol in a glass vial. Then the solution was bubbled by argon for 10 

min. Under stirring, the solution was irradiated with 260-nm, 312-nm UV lamp, respectively (Intensity, 2 

mW·cm
-
²) for 120 min. After evaporating the solvent under vacuum, the residue was purified by Al2O3 column 

chromatography (CH2Cl2/ethyl acetate 1:2 v/v) to give the pure product 3. The product 3 was subsequently 

weighted and analyzed by MS, 
1
H NMR and 

13
C NMR. 

n(tetrazole):n(thiol)=1:5 

Methyl 4-(2-phenyl-2H-tetrazol-5-yl)benzoate 1 (16.5 mg, 59 µmol) and 2-mercaptoethanol 2 (21 µL, 295 µmol) 

were dissolved in 10 mL ethyl acetate or ethanol in a glass vial. Then the solution was bubbled by argon for 10 

min. Under stirring, the solution was irradiated with 260-nm, 312-nm and 365-nm UV lamp, respectively 

(Intensity, 2 mW·cm
-
²) for 120 min. After evaporating the solvent under vacuum, the residue was purified by 

Al2O3 column chromatography (CH2Cl2/ethyl acetate 1:2 v/v) to give the pure product 3. The product 3 was 

subsequently weighted and analyzed by MS, 
1
H NMR and 

13
C NMR. 

The yields are shown in Table 1. 

 

 

To demonstrate that UV-induced tetrazole-thiol reaction can also proceed in water, a tetrazole moiety (4-(2-

phenyl-2H-tetrazol-5-yl)benzoic acid) was introduced to poly(ethylene glycol)methyl ether (MW=5000 g/mol) 

(PEG-tetrazole, 4) by esterification, which was confirmed by gel permeation chromatography (GPC) and 
1
H NMR 

(Figure S6). Then PEG-tetrazole was used to react with 2-mercaptoethanol (5 eq.) in water under 312 nm UV 

light for 3 h. Conversion was estimated based on NMR spectra (Figure S7) after removal of excess thiol. Instead 

of being quenched by H2O, the nitrilimine intermediate of PEG-tetrazole 4 reacted with 2-mercaptoethanol 2, 

giving rise to the thiohydrazonate product with 95% conversion. This result proves the practicability of the UV-

induced tetrazole-thiol reaction in aqueous solution. 
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Preparation of PEG-tetrazole 4 

The synthesis was carried out by modifying poly(ethylene glycol) methyl ether (MW=5000) with 4-(2-phenyl-2H-

tetrazol-5-yl)benzoic acid via a standard esterification procedure. Poly(ethylene glycol) methyl ether (309.3 mg) 

was dissolved into 15 mL of dichloromethane solution containing 4-(2-phenyl-2H-tetrazol-5-yl)benzoic acid (27.3 

mg, 0.103 mmol) and catalyst 4-(dimethylamino)pyridine (DMAP) (13 mg, 0.105 mmol). Then, the coupling 

reagent N,N’-diisopropylcarbodiimide (DIC) (23.2 μL, 0.15 mmol) was added to the solution at 0°C. After 

stirring the solution at RT for 48 h., 50 mL of cold diethyl ether was added and the precipitate formed was 

collected and dried under vacuum. The crude product was re-dissolved in dichloromethane and precipitated by 

adding cold diethyl ether, this procedure was repeated three times. The corresponding product was characterized 

by GPC (Figure S6). 

 

UV-induced 1,3-dipolar nucleophilic addition with PEG-tetrazole and 2-mercaptoethanol in water 

PEG-tetrazole 4 (71.6 mg) and 2-mercaptoethanol 2 (6.0 µL) were dissolved in 6 mL water in a glass vial. Then 

the solution was bubbled by argon for 10 min. Under stirring, the solution was irradiated with 312-nm UV lamp 

(Intensity, 2 mW·cm
-
²) for 180 min. After evaporating the solvent under vacuum, the residue was redissolved into 

2 mL THF. A fine precipitate was formed by adding 12 mL diethyl ether and isolated by centrifugation. Repeat 

the dissolution and precipitation twice. After drying under vacuum, the solid was analyzed by 
1
H NMR and 

13
C 

NMR to determine the conversion.  

 

Modification of bovine serum albumin (BSA) by PEG-tetrazole   

25 µL of PEG-tetrazole 4 (5 mg/mL in PBS buffer) or PEG (5 mg/mL in PBS buffer) or PBS buffer were added to 

25 µL solutions of BSA solution (3 mg/mL, PBS buffer) in a 96-well microtiter plate. After irradiating with a 

312-nm UV lamp for 5 min, the solutions were incubated for 2 h at 37 
o
C. The mixtures were boiled at 95°C for 5 

min after being added 10 µL 5×SDS sample buffer. The samples were then loaded onto a 8% polyacrylamide gel 
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and subjected to protein electrophoresis at 130 V for 2 h. The fluorescent bands in the gel were visualized by 

illuminating the gel under 365-nm UV light. Afterwards, the same gel was stained with Coomassie blue.   

 

Polymer-polymer coupling  

PEG-tetrazole 4 (38 mg) and O-(2-mercaptoethyl)-O’-methylpolyethylene glycol 5 (MW=5000) (36.5 mg) were 

dissolved in THF (25 mL). Separate reactions were set up by adding 2.5 mL mixture in glass vials. The mixtures 

were irradiated with a 260 nm UV lamp (Intensity = 5 mW·cm
-
²) under argon for 0 sec,  5 sec, 15 sec,  30 sec, 60 

sec, 4 min,  7 min and 10 min, respectively. Solvents were evaporated under vacuum. The residues were 

redissolved in THF and withdrawn for GPC measurements.  

Figure 2A shows a model polymer conjugation experiment that was conducted. For this purpose, O-(2-

mercaptoethyl)-O’-methylpolyethylene glycol 5 (MW 5000 g/mol) was utilized as the thiol-terminated polymer 

(PEG-thiol). Equimolar amounts of 4 and 5 were dissolved in THF (3 mg/mL) and subsequently irradiated with 

UVλ=260 nm light. The reaction mixture was analyzed by GPC at different irradiation times (Figure 2B). A distinct 

shift of the GPC traces to lower elution volumes indicates successful formation of a higher molecular weight 

polymer 6 by polymer-polymer conjugation. Half of the starting material already reacted after only 1 min of UV 

irradiation, and no significant difference was observed for samples taken after 7 min. The remaining small GPC 

peak corresponding to the starting material could be due to the incomplete tetrazole functionalization of the 4 as 

well as the non- equimolar ratio of the reactants. These results demonstrate that the UV-induced tetrazole-thiol 

reaction can also be applied for the conjugation of macromolecules. 

 

 

Preparation of 12.5 μm-thin porous HEMA-EDMA films 

Here we employed a published procedure developed in our group to make porous HEMA-EDMA polymer 

layers.
[3]

 Briefly, two 12.5 μm-thin strips of Teflon film (American Durafilm Co.) were placed at the edges of one 

3-(trimethoxysilyl)propyl methacrylate modified glass-plate and one fluorinated glass slide was clamped on top of 
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it. 70 μL of polymerization mixture of HEMA (24 wt%), EDMA (16 wt%), 1-decanol (12 wt%), cyclohexanol (48 

wt%) and 2,2-dimethoxy-2-phenylacetophenone (DMPAP) (photoinitiator, 1 wt% with respect to monomers) 

were injected in the mold between the glass slides and irradiated for 15 min with 5 mW·cm
-
² 260 nm UV-light. 

The mold was then carefully opened using a scalpel. The resulting superficial surface was removed by applying 

and rapidly removing adhesive film (“Scotch tape”) after separating the plates while the layer was still wetted. A 

homogeneous porous surface was formed. The plate was washed extensively with ethanol and kept in ethanol for 

some minutes before drying. 

 

Preparation of tetrazole-modified HEMA-EDMA films (tetrazole surface) 

Two glass plates coated with a HEMA-EDMA layer were immersed into 50 mL of dichloromethane solution 

containing 4-(2-phenyl-2H-tetrazol-5-yl)benzoic acid (80 mg, 0.3 mmol) and catalyst 4-(dimethylamino)pyridine 

(DMAP) (56 mg, 0.46 mmol). Then, the coupling reagent N,N’-diisopropylcarbodiimide (DIC) (185.5 μL, 1.2 

mmol) was added to the solution at 0°C. After stirring the solution at RT for 24 h, the plates were washed 

extensively with acetone, followed by drying. 

 

UV-induced tetrazole-thiol reactions on tetrazole surface 

1H,1H,2H,2H-perfluorodecanethiol 7 modification: the tetrazole surface was wetted with an ethyl acetate 

solution containing 20 vol% 1H,1H,2H,2H-perfluorodecanethiol 7, covered with a photomask, and irradiated by 5 

mW·cm
-
² 260 nm UV light for different time. After removing the photomask, the tetrazole surface was washed 

with acetone extensively and dried with a nitrogen gun. 

Rhodamine-SH modification: the tetrazole surface was wetted with an acetone solution containing 1 wt% 

Rhodamine-SH, covered with a photomask, and irradiated by 5 mW·cm
-
² 260 nm UV light for 2 min. After 

removing the photomask, the tetrazole surface was washed with acetone extensively and dried with a nitrogen gun. 

1-dodecanethiol modification: 1-dodecanethiol (20 vol%) was dissolved in ethanol, ethyl acetate, acetone, 

dichloromethane, toluene, and tetrahydrofuran. The tetrazole surface was wetted with one of these thiol solutions, 
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covered with a quartz slide, and irradiated by 5 mW·cm
-
² 260 nm UV light for 2 min. After removing the cover, 

the tetrazole surface was washed with acetone extensively and dried with a nitrogen gun.  

 

Preparation of superhydrophobic-hydrophilic micropatterns via tetrazole-thiol reaction 

First, the tetrazole surface was wetted with acetone solution containing 20 vol% 1H,1H,2H,2H-

perfluorodecanethiol 7, covered by a photomask,  and irradiated by UV light (5 mW·cm
-
²) for 2 min. After 

removing the photomask, the surface was washed with acetone and dried. The polymer layer was wetted with an 

ethanol-water mixture (1:1) containing 20 wt% cysteamine hydrochloride and irradiated by UV light for another 2 

min. Finally, the plate was washed extensively with acetone and dried with a nitrogen gun. 
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Designing a cell microarray on produced superhydrophobic-hydrophilic micropattern 

mCherry-expressing rat mammary carcinoma cells were cultured in DMEM containing 10% of fetal 

bovine serum (FBS). A cell suspension was obtained by trypsinizing a confluent (80% monolayer) 

culture grown in a Petri dish in an incubator (37°C, 5% CO2) for 2-3 days. For sterilization, the glass 

substrate with a superhydrophobic-hydrophilic pattern was kept in ethanol for 20 min, dried in air, and 

placed in a 10 mL Petri dish. 5 mL of cell-suspension was added so that the plate was fully covered 

(seeding density: 43200 cells/cm
2
). The culture medium was changed after culturing the seeded array in 

the incubator for 5 h. The cell array was cultured for another 25 h. 

 

Immobilization of biotin-PEG-thiol on tetrazole surface and Streptavidin binding 

Firstly, the tetrazole surface was wetted by an aqueous solution containing 10 vol% ethanol. Then the 

plate was washed extensively with pure water to replace the solution in the pores. Excess water was 

shaken off from the surface. 2 mg/mL biotin-PEG-thiol aqueous solution was dropped on the surface. 

The polymer layer was irradiated with 365-nm UV light (2 mW·cm
-
²) through a photomask for 10 min. 

Then, the plate was washed extensively with water. The water wetted surface was then irradiated for 

another 10 min under 365-nm UV light to decompose the residual tetrazole groups. Substrate surfaces 

were incubated for 30 min in PBS buffer at 37 
o
C. Subsequently, the substrates were covered with a 

solution of streptavidin (Alexa Fluor 594 labeled streptavidin, 1 mg/mL) in PBS buffer. After 30 min, 

the surfaces were washed with the PBS buffer, rinsed with distilled water and dried with a nitrogen gun. 
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