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The GHG CCI project is one of several projects of the European Space Agency's (ESA) Climate Change Initiative
(CCI). The goal of the CCI is to generate and deliver data sets of various satellite derived Essential Climate
Variables (ECVs) in line with GCOS (Global Climate Observing System) requirements. The “ECV Greenhouse
Gases” (ECV GHG) is the global distribution of important climate relevant gases atmospheric CO2 and CH4

with a quality sufficient to obtain information on regional CO2 and CH4 sources and sinks. Two satellite instru
ments deliver the main input data for GHG CCI: SCIAMACHY/ENVISAT and TANSO FTS/GOSAT. The first order
priority goal of GHG CCI is the further development of retrieval algorithms for near surface sensitive column
averaged dry air mole fractions of CO2 and CH4, denoted XCO2 and XCH4, to meet the demanding user require
ments. GHG CCI focuses on four core data products: XCO2 from SCIAMACHY and TANSO and XCH4 from the
same two sensors. For each of the four core data products at least two candidate retrieval algorithms have
been independently further developed and the corresponding data products have been quality assessed and
inter compared. This activity is referred to as “Round Robin” (RR) activity within the CCI. The main goal of the
RR was to identify for each of the four core products which algorithms should be used to generate the Climate
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Research Data Package (CRDP). The CRDP will essentially be the first version of the ECV GHG. This manuscript
gives an overview of the GHG CCI RR and related activities. This comprises the establishment of the user require
ments, the improvement of the candidate retrieval algorithms and comparisons with ground based observations
andmodels. Themanuscript summarizes the final RR algorithm selection decision and its justification. Com
parison with ground based Total Carbon Column Observing Network (TCCON) data indicates that the
“breakthrough” single measurement precision requirement has been met for SCIAMACHY and TANSO
XCO2 (b3 ppm) and TANSO XCH4 (b17 ppb). The achieved relative accuracy for XCH4 is 3 15 ppb for
SCIAMACHY and 2 8 ppb for TANSO depending on algorithm and time period. Meeting the 0.5 ppm sys
tematic error requirement for XCO2 remains a challenge: approximately 1 ppm has been achieved at the
validation sites but also larger differences have been found in regions remote from TCCON. More research
is needed to identify the causes for the observed differences. In this context GHG CCI suggests taking advan
tage of the ensemble of existing data products, for example, via the EnseMble Median Algorithm (EMMA).

1. Introduction

Carbon dioxide (CO2) is the most important anthropogenic green
house gas (GHG) contributing to global warming (Solomon et al.,
2007). Despite its importance, our knowledge of the CO2 sources and
sinks has significant gaps (e.g., Canadell et al., 2010; Stephens et al.,
2007) and despite efforts to reduce CO2 emissions, atmospheric CO2

continues to increase at a rate of approximately 2 ppm/year (Fig. 1 top
panel; see also Schneising et al., 2011, and references given therein;
for a detailed discussion of Fig. 1 see Section 4). An improved under
standing of the CO2 sources and sinks is needed for reliable prediction

of the future climate of our planet (Solomon et al., 2007). This is
also true for methane (CH4, Fig. 1 bottom panel). Atmospheric meth
ane levels increased until about the year 2000, were rather stable
during ~2000 2006, but started to increase again in recent years
(Dlugokencky et al., 2009; Frankenberg et al., 2011; Rigby et al.,
2008; Schneising et al., 2011). Unfortunately, it is not well under
stood why methane was stable in the years before 2007 (e.g., Simpson
et al., 2012) norwhy it started to increase again at a rate of approximately
7 8 ppb/year (Schneising et al., 2011).

Global satellite observations sensitive to near surface CO2 and CH4

variations can contribute to a better understanding of the regional
sources and sinks of these important greenhouse gases. Information
on GHG surface fluxes (emissions and uptake) can be obtained by
inverse modeling of surface fluxes (e.g., Bergamaschi et al., 2009;
Chevallier, Bréon, & Rayner, 2007), where satellite observations
are compared with predictions of a (chemistry) transport model
(e.g., Fig. 2) and satellite minus model mismatches are minimized
by modifying the surface fluxes used by the model. This requires
satellite retrievals to meet challenging requirements, as small errors
of the satellite retrieved atmospheric GHG distributions may result
in large errors of the inferred GHG surface fluxes (e.g., Chevallier,
Engelen, & Peylin, 2005; Meirink, Eskes, & Goede, 2006). Instead of
direct optimization of surface fluxes it is also possible to optimize
(other) model parameters used to model the fluxes, as done in Carbon
Cycle Data Assimilation Systems (CCDAS) (e.g., Kaminski, Scholze,
& Houweling, 2010; Kaminski et al., 2012) or other approaches
(e.g., Bloom, Palmer, Fraser, Reay, & Frankenberg, 2010).

The goal of the GHG CCI project is to generate the Essential Climate
Variable (ECV) Greenhouse Gases (GHG) as defined by GCOS (Global
Climate Observing System): “Distribution of greenhouse gases, such as
CO2 and CH4, of sufficient quality to estimate regional sources and
sinks” (GCOS, 2006). In order to get information on regional GHG
sources and sinks, satellite measurements must be sensitive to near
surface GHG concentration variations. Currently only two satellite in
struments deliver (or have delivered until recently) measurements
which fulfill this requirement: SCIAMACHY on ENVISAT (March 2002
April 2012) (Bovensmann et al., 1999) and TANSO FTS on board GOSAT
(launched in January 2009) (Kuze, Suto, Nakajima, & Hamazaki, 2009).
Both instruments perform (or have performed) nadir observations of
reflected solar radiation in the near infrared/short wave infrared (NIR/
SWIR) spectral region, covering the relevant absorption bands of CO2

and CH4. They also cover the O2 A band spectral region to obtain “dry
air columns” needed for computing GHG dry air column averaged mole
fractions and/or to obtain information on clouds and aerosols. These
two instruments are therefore the two core sensors used by GHG CCI
and the near surface sensitive column averaged dry air mole fractions
of atmospheric CO2 and CH4, denoted XCO2 (in ppm) and XCH4 (in
ppb), are the core data products of GHG CCI. In addition, other sensors
or viewing modes are also used (e.g., MIPAS/ENVISAT and SCIAMACHY
solar occultation mode for stratospheric CH4 profiles and IASI/METOP
for mid/upper tropospheric CO2 and CH4 columns) as they provide

Fig. 1. Top: Northern hemispheric monthly mean XCO2 time series retrieved from
SCIAMACHY/ENVISAT (algorithms: WFMD and BESD) and TANSO/GOSAT (algorithms:
SRFP and OCFP) satellite data. Shown are monthly mean values for the 0°–60°N latitude
range. Clearly visible is the CO2 increase primarily caused by the burning of fossil fuels
and the seasonal cycle primarily caused by uptake and release of CO2 by the terrestrial
biosphere. Bottom: As top panel but for XCH4 (algorithms: SCIAMACHY: WFMD and
IMAP, TANSO: SRFP, SRPR, OCFP, OCPR). The seasonal cycle of methane is primarily due
to wetland emissions, which are largest in summer/early autumn, when soils are warm
and humid. Also clearly visible is the not yet well understood recent methane increase.



additional constraints for atmospheric layers above the planetary
boundary layer. The focus of the first two years of the GHG CCI
project (September 2010 August 2012) was to develop existing re
trieval algorithms further, in order to improve the accuracy of the
retrieved GHG data products.

The focus of GHG CCI lies on ECV Core Algorithms (ECAs) and
their core data products XCO2 and XCH4, which is also the focus of this
manuscript. Other algorithms, referred to as Additional Constraints Algo
rithms (ACAs), are algorithms to retrieve CO2 and/or CH4 information
from satellite data which have no or only little near surface sensitivity
but are sensitive to GHG variations in upper layers (the ACAs are listed
in Table 3 and further discussed in Section 6).

Several existing candidate ECAs were selected at the outset of the
project for ongoing development, and have been iteratively improved
upon through the course of the algorithm inter comparison and valida
tion activity. This activity is referred to as “Round Robin” (RR) exercise
within the CCI.

The goal of the RR was to determine which ECA performs best to
generate a given GHG CCI core data product. The selected ECAs will be
used in the third year of this project to generate the Climate Research
Data Package (CRDP), which will essentially be the first version of
the ECV GHG. The description of the RR approach and its results is the

focus of this manuscript. Note that previous publications focused on in
dividual algorithms and their data product. Only recently have results
obtained using different algorithms been compared, most notably by
Oshchepkov et al. (2012), for TANSO/GOSAT XCO2. This manuscript is
therefore one of the first focusing on inter comparisons.

This manuscript is structured as follows: Section 2 presents an over
view of the GHG CCI project followed by a description of the user re
quirements in Section 3. In Section 4 the retrieval algorithms are
briefly described. The main part of this manuscript is Section 5 where
the RR approach and its main results are presented and discussed.
Section 6 provides a short overview of the Additional Constraints
Algorithms (ACAs) also used within GHG CCI but not the focus of this
manuscript. Section 7 gives a short overview of the Climate Research
Data Package (CRDP) to be generated using the selected algorithms. A
summary and conclusions are given in Section 8.

2. GHG-CCI project overview

The GHG CCI project covers all aspects needed to generate the ECV
GHG and to assess its quality and usefulness. This includes the use
of appropriate satellite instruments (primarily SCIAMACHY/ENVISAT
and TANSO/GOSAT to generate global XCO2 and XCH4 time series),

Fig. 2. Global XCO2 maps from SCIAMACHY (left) and CarbonTracker (right) for two seasons (April–June, top, and July–September, bottom) and two years (2003 and 2009). The
CarbonTracker model data have been sampled according to the SCIAMACHY measurements and the SCIAMACHY averaging kernels have been applied to CarbonTracker.
Figure adapted from Heymann, Bovensmann, et al. (2012).

Table 1
GHG-CCI XCO2 and XCH4 random and systematic uncertainty requirements for measurements over land. Abbreviations: G = Goal requirement (themaximum that needs to be achieved;
better performance likely not needed as other errors (e.g., modeling errors) will dominate), B = Breakthrough requirement (“good” performance somewhere between G and T), T =
Threshold requirement (the minimum that needs to be achieved for the specified application, here: global regional-scale surface flux inverse modeling). See also main text for a detailed
explanation. From GHG-CCI User Requirements Document (URD, Buchwitz, Chevallier, et al., 2011).

Requirements for regional CO2 and CH4 source/sink determination using SCIAMACHY/ENVISAT and TANSO/GOSAT

Parameter Requirement type Random error Systematic error Stability

Single observation 10002 km2, monthly

XCO2 G b1 ppm b0.3 ppm b0.2 ppm (absolute) As systematic error but per year
B b3 ppm b1.0 ppm b0.3 ppm (relative) "
T b8 ppm b1.3 ppm b0.5 ppm (relative) "

XCH4 G b9 ppb b3 ppb b1 ppb (absolute) As systematic error but per year
B b17 ppb b5 ppb b5 ppb (relative) "
T b34 ppb b11 ppb b10 ppb (relative) "



calibration aspects (related to “Level 0 1 processing”, primarily for
SCIAMACHY), and development and application of retrieval algorithms
to convert the satellite measured spectra into atmospheric CO2 and CH4

information (“Level 1 2 processing”). Also included is the analysis of
the resulting global data sets, including validation and user assessments,
focusing on inverse modeling of regional surface fluxes (i.e., “Level 2 4
processing”). Note that the fluxes (Level 4 products) will most likely be
derived from Level 2 data rather than from (spatio temporally averaged
and potentially gap filled) Level 3 data products, as Level 2 data contain
more information than those at Level 3 and usually benefit from better
error characterization.

Level 1 data (i.e., geolocated and calibrated radiances) are input data
for CCI (i.e., Level 0 1 processing is covered by other projects).
SCIAMACHY Level 0 1 processing experts are part of the GHG CCI
team in order to provide expertise and to ensure that the findings of
the study feed back to improve future Level 1 data products if necessary.
Close links have been established with the GOSAT team at JAXA for
GOSAT Level 1 data access, expertise and feedback.

The SCIAMACHY and TANSO Level 1 data products are de facto used
as Fundamental Climate Data Records (FCDRs, see GCOS, 2006) despite
the fact that no dedicated inter calibration or merging efforts are
currently foreseen. Consistency between the time series of the two
GHG CCI core satellites is addressed at the level of the Level 2 data
products. Ideally, an ECV data product or Thematic Climate Data Record
(TCDR) of a given quantity should be a single merged data record ob
tained from all available appropriate sensors such as SCIAMACHY and
TANSO for satellite derived XCO2. However, within the present initial
stage of this project only first steps in this direction have been carried
out (see Section 5).

The ground based validation of the “satellite derived” XCO2 and
XCH4 data products largely relies on the Total Carbon ColumnObserving
Network (TCCON) (Wunch, Toon, et al., 2011; Wunch et al., 2010)
as this network has been designed and developed for this purpose.
Methods to also use data from other sources in the future (e.g., NDACC
(see Sussmann et al., 2013), GAW) are being developed in parallel.

Aircraft observations, e.g., HIPPO (e.g., Wecht et al., 2012; Wofsy
et al., 2011), are also interesting, but have not yet been used directly
(indirectly some of these data have been used via the calibration of
TCCON, see Section 5.2.1).

A dedicated GHG CCI Climate Research Group (CRG) has been set up
to represent theusers of the satellite derived CO2 andCH4 data products
and to provide expertise on inverse modeling of surface fluxes, CCDAS
and other user related aspects. A strong link exists between GHG CCI
and the EU FP7 GMES project MACC II (Monitoring of Atmospheric
Composition and Climate Interim Implementation, http://www.
gmes atmosphere.eu/) that provides feedback on the data quality.

Key activities carried out in the first two years of this project were
the establishment of the user requirements (Section 3), the further
development of retrieval algorithms (described briefly in Section 4)
and data processing and data analysis with the goal of identifying
which algorithms perform best (“Round Robin” (RR)). The description
of these RR activities and their results is the focus of this manuscript
(Section 5). In the third year of this project the selected algorithms
will be used to generate the CRDP (see Section 7), which will subse
quently be validated and assessed by users.

3. User requirements

An important initial activity carried out in this project was the
establishment of the user requirements. They have been formulat
ed in detail in the GHG CCI User Requirements Document (URD)
(Buchwitz, Chevallier, & Bergamaschi, 2011). The requirements
are based on peer reviewed publications primarily prepared in
the context of existing or planned satellite missions and GHG CCI
CRG user expertise and experience with existing satellite data.

Most critical are the requirements on random and systematic errors
listed in Table 1. The most challenging requirement is the one on
biases for XCO2. The threshold requirement is 0.5 ppm because
even errors of a few tenths of a ppm can result in large errors of the
inferred CO2 surface fluxes when used as input data for inverse

Table 3
Overview GHG-CCI Additional Constraints Algorithms (ACAs).

GHG-CCI Additional Constraints Algorithms (ACAs)

Algorithm ID Data product Sensor Algorithm References

CO2_AIR_NLIS Mid/upper trop. column AIRS NLIS Crevoisier et al. (2004)
CO2_IAS_NLIS Mid/upper trop. column IASI NLIS Crevoisier, Chédin, et al. (2009)
CO2_ACE_CLRS Upper trop./strat. profile ACE-FTS CLRS Foucher et al. (2009)
CO2_SCI_ONPD Stratospheric profile SCIAMACHY ONPD Noël et al. (2011)a

CH4_IAS_NLIS Upper trop./strat. profile IASI NLIS Crevoisier, Nobileau, et al. (2009)
CH4_MIP_IMK Upper trop./strat. profile MIPAS KIT/IMK MIPAS von Clarmann et al. (2009)
CH4_SCI_ONPD Stratospheric profile SCIAMACHY ONPD Noël et al. (2011)

a Note that CO2_SCI_ONPD is a new algorithm “similar” as the one described in Noël, Bramstedt, Rozanov, Bovensmann, & Burrows, 2011,which has been added in the 2nd year of GHG-CCI.
Details on each of these algorithms are also given in the GHG-CCI ATBD (Reuter, Schneising, et al., 2012) and in Buchwitz, Reuter, et al., 2012.

Table 2
Overview GHG-CCI ECV Core Algorithms (ECAs). Details on each of these algorithms are also given in the GHG-CCI ATBD (Reuter, Schneising, et al., 2012) and in Buchwitz, Reuter, et al.
(2012). Column “Algorithm short name” lists the GHG-CCI algorithm identifiers (names in brackets are names (also) used in the literature (see column “References”)).

GHG-CCI ECV Core Algorithms (ECAs)

Algorithm ID Data product Sensor Algorithm short name References

CO2_SCI_WFMD XCO2 SCIAMACHY/ENVISAT WFMD (WFM-DOAS) Schneising et al. (2012), Heymann, Bovensmann, et al. (2012)
CO2_SCI_BESD XCO2 SCIAMACHY BESD Reuter et al. (2010, 2011)
CO2_GOS_OCFP XCO2 TANSO/GOSAT OCFP (UoL-FP) Cogan et al. (2012)
CO2_GOS_SRFP XCO2 TANSO/GOSAT SRFP (RemoteC) Butz et al. (2011)
CH4_SCI_WFMD XCH4 SCIAMACHY WFMD (WFM-DOAS) Schneising et al. (2011, 2012)
CH4_SCI_IMAP XCH4 SCIAMACHY IMAP Frankenberg et al. (2011)
CH4_GOS_OCFP XCH4 TANSO/GOSAT OCFP Parker et al. (2011)
CH4_GOS_OCPR XCH4 TANSO/GOSAT OCPR Parker et al. (2011)
CH4_GOS_SRFP XCH4 TANSO/GOSAT SRFP Butz et al. (2011)
CH4_GOS_SRPR XCH4 TANSO/GOSAT SRPR Schepers et al. (2012)



modeling schemes (e.g., Chevallier et al., 2005). However, to what ex
tent systematic errors result in biases of the inferred fluxes depends
on the spatio temporal pattern of the systematic errors. A global bias,
even if considerably larger than the required 0.5 ppm, would not be
critical because it can easily be detected and corrected ad hoc. Most
critical are state dependent systematic errors, which result in
regional scale (~1000 km) biases on medium time scales (~ month
ly), because they will likely bemissed by bias correction schemes. As
the overall impact of the atmospheric concentration error on the sur
face flux error depends on the spatio temporal pattern of the con
centration error, the values listed in Table 1 have to be interpreted
with care. The requirements reflect what the GHG CCI users would
like to see achieved. The utility of the data can ultimately only be
determined by careful analysis. The numbers listed in Table 1 serve
to give a rough indication of the required uncertainties but should
not be over interpreted.

The requirements for XCH4 are also challenging but somewhat
less demanding than those for XCO2. The main reason is that
XCH4 is more variable compared to XCO2 relative to its background
value on the spatio temporal scales relevant for the satellite retrievals
(e.g., Bergamaschi et al., 2009; Frankenberg, Meirink, van Weele,
Platt, & Wagner, 2005; Frankenberg et al., 2011; Meirink et al.,
2006; Schneising et al., 2011, 2012).

4. Retrieval algorithms

In this section, a brief overview of each retrieval algorithm used for
the GHG CCI RR is given. The reader is referred to peer reviewed publi
cations for details. All algorithms used within the GHG CCI RR are also
described in the GHG CCI Algorithm Theoretical Basis Document
(ATBD) (Reuter, Schneising, et al., 2012).

The ECV Core Algorithms (ECAs) generate one or more of the four
GHG CCI core data products, XCO2 (in ppm) and XCH4 (in ppb) from
SCIAMACHY and TANSO (each of the four combinations is a separate
product). An overview of these algorithms is given in Table 2 and briefly
described in the following sub sections. Results obtained with all ECAs
are shown in Fig. 1: the top panel shows northern hemispheric (NH)
time series of XCO2 and the bottom panel XCH4 time series. As can be
seen, the variousXCO2 time series (generatedwith the various algorithms
described in the following sub sections) are similar but not exactly iden
tical. There are clear differences, e.g., a difference of the seasonal cycle
amplitude, between the two SCIAMACHY algorithms WFMD (Heymann,
Bovensmann, et al., 2012; Schneising et al., 2011) and BESD (Reuter
et al., 2011) likely due to sub visual cirrus clouds not explicitly considered
by WFMD. Differences are also due to the different spatial sampling of
the various data products. From Fig. 1 it can therefore typically not be
concluded which data product is the most accurate. This requires, for ex
ample, a careful comparison with independent accurate ground based
observations (see Section 5.2). However, one obvious problem can be
identified: the SCIAMACHY XCH4 product generated with the IMAP algo
rithm (Frankenberg et al., 2011) suffers from a significant high bias
(relative to several other TANSO/GOSAT XCH4 data products) during
the year 2010 (highlighted by the dotted line). This problem is related
to SCIAMACHY detector degradation issues which are not yet properly
dealt with by the SCIAMACHY radiometric calibration nor compensated
by the IMAP algorithm (note that the second SCIAMACHY XCH4 algo
rithm WFMD (Schneising et al., 2011) has not yet been applied to 2010
data; the WFMD time series covers only the years 2003 2009). As will
be discussed in more detail below, the most challenging problems
addressed within GHG CCI are related to achieving the required
accuracy: for XCO2 this is a challenge because of demanding user
requirements and for XCH4 the most important challenge was to deal
with the progressive SCIAMACHY detector degradation in the spec
tral region needed for methane retrieval which started in October
2005 (see Frankenberg et al., 2011; Schneising et al., 2011, for a
detailed discussion).

4.1. Full Physics (FP) and Proxy (PR) algorithms

Within GHG CCI, two types of ECAs can be distinguished: The “Full
Physics” (FP) algorithms and the light path “Proxy” (PR) algorithms
(see also Schepers et al., 2012).

FP algorithms model all relevant physical effects such as scattering
by aerosols and clouds and have corresponding elements as part of
the state vector, which contains all parameters which are to be re
trieved. The FP algorithms obtain the dry air column averagedmole frac
tion (needed to compute the dry air column averaged mole fractions
of the GHG, i.e., XCO2 and/or XCH4) either from the retrieved surface
pressure or using meteorological information.

The PR algorithms are based on computing the dry air column
averaged mole fraction using a “reference gas”, which has to be much
less variable than the gas of interest on the relevant spatio temporal
scales. The PRmethod is used for XCH4 retrieval using CO2 as a reference
gas. The XCH4 is essentially obtained from computing the ratio of the
retrieved CH4 column and the retrieved CO2 column. The advantage of
this method is that it is potentially very fast, accurate and robust (as
several systematic errors cancel in the CH4/CO2 column ratio). The
disadvantage is that a correction is needed for CO2 variability, typically
based on a global model (see, e.g., Frankenberg et al., 2005, 2011;
Parker et al., 2011; Schneising et al., 2009, 2011; Schepers et al., 2012).

4.2. SCIAMACHY XCO2 algorithms

TheWeighting FunctionModified (WFM)Differential Optical Absorp
tion Spectroscopy (DOAS) algorithm (WFM DOAS or WFMD) has been
developed to retrieve vertical columns of several atmospheric gases in
cluding the GHGs discussed in this manuscript (Buchwitz, Rozanov, &
Burrows, 2000). During the last decade, this algorithm has been signifi
cantly improved and used to generate global multi year XCO2 and XCH4

data sets from SCIAMACHY (Buchwitz et al., 2005, 2007; Schneising
et al., 2008, 2009). Within GHG CCI, WFMD has been further improved
and used to generate long term consistent time series (Heymann,
Bovensmann, et al., 2012; Heymann, Schneising, et al., 2012; Schneising
et al., 2011, 2012). WFMD has been implemented as a fast look up
table (LUT) based retrieval scheme to avoid time consuming radia
tive transfer (RT) simulations. WFMD is a least squares method
using a single constant atmospheric prior (e.g., single constant CO2

and CH4 mixing ratio profiles, a single aerosol scenario, no clouds).
WFMD can process one orbit of SCIAMACHY observations in a few
minutes on a single workstation. Aerosols and cirrus clouds are
only treated approximately by considering spectrally broad band
effects by a low order polynomial and by post processing filtering.
Overall, this results in small but significant biases, especially for XCO2

(Heymann, Schneising, et al., 2012). Recently, an improved version of
WFMD has been developed for SCIAMACHY XCO2 retrieval (Heymann,
Bovensmann, et al., 2012, see also Fig. 2) and the XCO2 data set generat
ed with this latest version has been used for the GHG CCI RR. For
SCIAMACHY XCH4 retrieval, the WFMD version described in Schneising
et al., 2011, 2012, has been used (see below).

The Bremen Optimal Estimation DOAS (BESD) FP algorithm was
specifically developed for accurate and precise SCIAMACHY XCO2 re
trieval considering aerosols and clouds thereby overcoming limitations
of the WFMD algorithm (Reuter et al., 2010, 2011). In contrast to
WFMD, BESD is not based on a LUT scheme but uses on line RT model
simulations. BESD is therefore computationally muchmore demanding.
Also, unlikeWFMD, BESD is based on Optimal Estimation (OE, Rodgers,
2000) and aerosol and cirrus parameters are state vector elements and
retrieved in addition to XCO2.

4.3. TANSO XCO2 algorithms

Both GHG CCI TANSO XCO2 retrieval algorithms are FP algorithms:
the University of Leicester's (UoL) OCO (Orbiting Carbon Observatory,



Crisp et al., 2004) FP (“UoL FP” or OCFP) algorithm (Cogan et al., 2012;
Parker et al., 2011) and the RemoteC (or SRON Full Physics (SRFP)) al
gorithm (Butz et al., 2011). Both algorithms are based on adjusting
parameters of a surface atmosphere state vector and other parame
ters to the satellite observations, but differ in many details (different
RT models, different inversion schemes (OE or Tikhonov Phillips),
different schemes for aerosol modeling and inversion, use of differ
ent pre processing and post processing steps, etc.) as discussed in
Cogan et al. (2012), andParker et al. (2011), Butz et al. (2011).

4.4. SCIAMACHY XCH4 algorithms

For SCIAMACHY XCH4 retrievals, PR algorithms are used: WFMD
(Schneising et al., 2011, see above) and IMAP (Iterative Maximum A
Posteriori) DOAS (Frankenberg et al., 2011). These algorithms were
already well developed when GHG CCI started but had essentially
only been applied to retrieve XCH4 from the first three years of the
ENVISAT mission (e.g., Schneising et al., 2008). Within GHG CCI, this
time series has been significantly extended. The key challenge was
(and partly still is, see Fig. 1) to deal with the significant detector degra
dation in the spectral region needed for methane retrievals after 2005
(see Frankenberg et al., 2011; Schneising et al., 2011, for details).

4.5. TANSO XCH4 algorithms

To overcome the key limitation of the XCH4 PR algorithms, namely
the need to correct the retrieved XCH4 for CO2 variations using a
model, FP algorithms are also used within GHG CCI, but only for
TANSO. TANSO has higher spectral resolution than SCIAMACHY which
is exploited to also retrieve scattering parameters in addition to CH4.
Two TANSO XCH4 FP retrieval algorithms are being used within GHG
CCI, which are also used for TANSO XCO2 retrieval (see above), OCFP
(Parker et al., 2011) and SRFP (Butz et al., 2011), in addition to the two
PR algorithmsOCPR (Parker et al., 2011) and SRPR (Schepers et al., 2012).

5. Round Robin approach and results

In this section an overview of the GHG CCI Round Robin (RR)
activities is given which have been carried out in the first two years of
this project.

5.1. Round Robin approach

The ultimate goal of the GHG CCI RRwas to identifywhich algorithms
and corresponding data products to use for generating the CRDP. This
comprised the further development of existing retrieval algorithms
with the goal of meeting the challenging user requirements, the
application of these algorithms to generate global multi year XCO2

and XCH4 sets, the comparison with ground based reference data and
inter comparisons of the data products generated with the competing
ECAs.

The selection procedure for ECAs and ACAs is described in the
GHG CCI Round Robin Evaluation Protocol (RREP, Buchwitz, Reuter,
Chevallier, & Bergamaschi, 2011). Initially the plan was to develop
a score based selection scheme, i.e., to compute a single number
for each algorithm/data product (the higher the number, the better
the algorithm), mainly based on satellite ground based observa
tion differences. However, this was not pursued because a scientifi
cally sound basis for the classification could not be established.
Instead a set of Figures of Merit (FoM), mostly based on differences
between satellite and ground based observations, have been defined
(see RREP, Buchwitz, Reuter, et al., 2011) and evaluated. However, as
explained in the RREP and also shown in this manuscript, the com
parison with the ground based observations is only one component
for the final selection primarily because of the sparseness of the
ground based network (see Section 5.2). Another major component

of the selection procedure was the analysis of (global and regional)
maps and time series, including comparisons with global state of
the art models, and inter comparisons of the data products generated
with the different candidate algorithms. Note that “blind testing” has
not been used as it would have been possible to identify the algorithms/
products by using some of their characteristics such as averaging kernels
and spatial coverage. Some key results of this RR activity are presented
here including a summary of the main RR decision results given in
Section 5.6 for ECAs and Section 6 for ACAs.

According to the initial ESA specification of the CCI RR exercise it was
required to evaluate “algorithms”. However, complex algorithms such
as the ones used within GHG CCI can hardly be evaluated, especially
not in terms of identifying “the best one” in terms of smallest biases
when applied to real data. Simulated retrievals have been performed
(see, e.g., Buchwitz, Reuter, Schneising, et al., 2011; Buchwitz, Reuter,
et al., 2012, and references given therein) but only for the individual al
gorithms and not in a consistentmanner. This would have been amajor
activity incompatible with the CCI schedule especially if the goal would
have been to obtain a better understanding of the differences between
the data products obtained from the real observations. In this context
it has not been identified that any of the algorithms suffer from obvi
ous shortcomings. All XCO2 algorithms, for example, use different
approaches to mitigate biases due to scattering by aerosols and
(thin) clouds, but it is virtually impossible to identify a priori, e.g., based
on a description of the algorithms and the simulation results, which of
the approaches will result in the smallest XCO2 or XCH4 biases when
applied to real data.

What has been evaluated in detail are the endproducts, i.e., the qual
ity of the XCO2 and XCH4 data products. This means that primarily data
products have been evaluated during RR but not algorithms. As shown
in this manuscript, this is not a trivial task, e.g., due to the sparseness
of the TCCON reference data. Therefore, as shown in this manuscript,
the RR decisions are not only based on comparisons with TCCON. The
satellite retrieval team focused on producing the best possible end prod
ucts. Which input data to use and how to treat them, e.g., in a dedicated
pre processing step, has not been prescribed. Pre processing steps may
be critical for the quality of the end product. This is particularly true
if the instrument shows significant degradation as is the case for
SCIAMACHY after 2005 especially in the spectral region needed for
methane retrieval. To deal with this, quite different approaches have
been used by the two algorithms IMAP (Frankenberg et al., 2011) and
WFMD (Schneising et al., 2011, 2012). For example, IMAP uses as
input data spectra that have been specifically calibrated at SRON and
IMAP also uses a single so called “Dead and Bad detector Pixel Mask”
(DBPM), needed to reject detector pixels which are not useful. In
contrast, WFMD uses the official standard SCIAMACHY Level 1 data
product with standard calibration and several DBPMs, each optimized
for a certain time period, typically covering one or more years (see
Schneising et al., 2011, for details).

Finally, it is important to highlight the preliminary nature of the RR.
This is due to the fact that all Level 1 input data and retrieval algorithms
are continuously being improved. An algorithm/data product currently
identified to be the best one will not necessarily be the best one in the
future. GHG CCI therefore needs to be flexible and will aim to consider
this in future phases of the CCI.

5.2. Comparison with ground based (TCCON) observations

5.2.1. TCCON data and error characteristics
The most relevant ground based observations for the validation of

the satellite derived XCO2 and XCH4 data products are the correspond
ingdata products of the TCCON. The TCCONdata products have been ob
tained from the TCCON website (www.tccon.caltech.edu/; latest access
Feb. 2012 using version GGG2009, i.e., not the latest version GGG2012,
which was not available for the GHG CCI Round Robin comparison) or
have been provided by the TCCON PIs. The TCCON products have been



calibrated to WMO/GAW in situ trace gas measurement scales using
aircraft observations (Deutscher et al., 2010; Geibel et al., 2012;
Messerschmidt et al., 2012; Wunch et al., 2010). The best independent
estimates of the TCCON inter site comparability to date are provided
by these independent aircraft calibration data. While not exhaustive,
these demonstrate consistency at the 0.1% level (1 sigma) for XCO2

(~0.4 ppm) and 0.2% for XCH4 (~4 ppb), with no obvious inter
hemispheric differences (Wunch et al., 2010). Nevertheless, the
TCCON team recognizes that inter site comparability needs to be
better characterized, especially for methane (e.g., at Darwin and
Wollongong, not discussed in the references cited above), and work
is in progress to achieve this. The systematic and random errors of single
TCCON data are therefore typically 0.4 ppm for XCO2 (1 sigma) and
4 ppb (1 sigma) for XCH4 (Notholt et al., 2012, based on Wunch et al.,
2010). Due to these errors of the TCCON data (but also for other reasons,
e.g., non perfect spatio temporal co location) the estimated systematic
and random errors of the satellite retrievals as reported here have to
be interpreted as upper limit estimates, i.e., the satellite data errors
are likely smaller than reported here.

5.2.2. Inter comparison method
Different inter comparison methods have been used, e.g., to ensure

robustness of the findings. In addition to the method used and results
obtained by the validation team (Notholt et al., 2012), which are
summarized in this manuscript, independent inter comparisons of
the satellite data products with TCCON have also been carried out
by the satellite data product provider (Buchwitz, Reuter, et al.,
2012). The methods differ by various aspects such as investigated
time period and direct comparison or comparison after transforma
tion to common a priori profiles and application of averaging kernels.
Each satellite data product provider performed an independent val
idation of his data product (considering averaging kernels or not)
covering the entire time series (to the extent possible given the lim
itations of the TCCON data, see Table 4). In contrast, the validation
team has applied the same method to all satellite data products
and has, for a given product, only used a time period where data
from all competing algorithms were available (SCIAMACHY: XCO2:
2006 2009; XCH4: 2003 2009, TANSO: mid 2009 2010).

Themethod usedby the validation team is based on a direct compar
ison of the co located satellite and TCCON data products. No correction
for different a priori profiles and averaging kernels has been applied.
Note that it is not trivial to consider averaging kernels for the XCO2

and XCH4 satellite and TCCON retrievals as strictly speaking this re
quires a reliable estimate of the real atmospheric variability, which is
unknown. This aspect is discussed in detail in Wunch, Wennberg,
et al., 2011, where the impact of this correction for TANSO XCO2 is

discussed at Lamont, USA, where the real variability of the CO2 profiles
is obtained using regular aircraft and other observations. For the global
data sets this is not possible. Nevertheless, for someof the satellite prod
ucts, averaging kernels have been applied by the satellite data provider.
For example, Reuter et al. (2013), has applied individual averaging ker
nels for all XCO2 products from SCIAMACHY and TANSO by adjusting all
retrievals to a common a priori using the Simple Empirical CO2 Model
(SECM) described in Reuter, Buchwitz, et al. (2012). They found that
the adjustments are typically a few tenth of a ppm. Reuter, Buchwitz,
et al. (2012), estimated the smoothing errors and found that it is typical
ly 0.17 ppm for SCIAMACHY XCO2 and 0.05 ppm for TCCON XCO2.
These results indicate that the impact of applying or not applying the
averaging kernels for satellite TCCON comparisons is small. The reason
is that the averaging kernels of the TCCON and the satellite data are
close to unity and the resulting smoothing error is therefore typically
quite small, especially for XCO2. For methane the (relative) smoothing
errors are somewhat larger, as methane is more variable. For example,
Parker et al. (2011), found that “the mean smoothing error differ
ence included in the GOSAT to TCCON comparisons can account for
15.7 to 17.4 ppb for the northerly sites and for 1.1 ppb at the lowest
latitude site”. For the SCIAMACHY XCH4 validation results presented
in Schneising et al. (2012), it has been found that applying averaging
kernels (by using TM5 model profiles as a common a priori) leads to
adjustments of 0.4% (approx. 7 ppb). Overall it has been found that
the validation results obtained by the validation team (Notholt
et al., 2012) and the satellite data provider (Buchwitz, Reuter, et al.,
2012), where averaging kernels have been applied for at least some
of the products, agree well, especially for XCO2 (Buchwitz,
Chevallier, Bergamaschi, & Kaminski, 2012). The comparison of the
various methods used to quantify random and systematic errors of
the satellite products (Buchwitz, Chevallier, et al., 2012) indicates
that the RR validation results are robust.

In the following, the results obtained by the validation team are
presented. Detailed results will be reported elsewhere (Dils et al.,
2013). Therefore we here give only a short overview highlighting
major findings.

For each product and each TCCON site a number of Figures of Merit
(FoMs) have been computed by the validation team. Key results are
shown in Fig. 3 for XCO2 and Fig. 4 for XCH4., discussed in detail in ded
icated sub sections below. Shown are comparisons of the four GHG CCI
core data products generated with two or more of the candidate algo
rithms at the 10 TCCON sites listed in Table 4. The results shown in
Figs. 3 and 4 have been generated using a spatio temporal co location
criterion of 2 h and 500 km (for alternative co location criteria see
Notholt et al., 2012). Several numerical values are given, which are
also listed in Table 5, computed from satellite minus TCCON differences
for each single satellite retrieval and the corresponding TCCON mean
value. On the left hand side of Figs. 3 and 4 the mean satellite TCCON
differences are shown for each of the 10 TCCON sites and all four core
data products and their corresponding ECAs. For each ECA the standard
deviation of the station to station bias has been computed (“StdDev”)
and the total number of co located satellite retrievals used for compar
ison (“N”). The standard deviation of the station to station bias is
interpreted as a relevant measure of the systematic error (“relative
accuracy” or “relative bias”). The standard deviation is more relevant
to characterize systematic errors compared to, for example, the
mean difference. Most critical is to achieve high “relative accuracy”
(or low “relative bias”) not necessarily high “absolute accuracy”
(although this would of course be better). For example, a constant
offset of the satellite data would not be critical if the data are being
used for surface flux inversemodeling (see Section 3) and this is con
sidered by computing the standard deviation. On the right hand side
of Figs. 3 and 4 the standard deviations of the satellite TCCON differ
ences are shown for each TCCON site. They are a measure of the
random error (scatter) of the satellite retrievals. The corresponding
mean value over all TCCON sites is used to characterize the mean

Table 4
TCCON sites as used for the validation of the satellite-derived XCH4 andXCO2 Round Robin
(RR) data products by the GHG-CCI validation team (from Notholt et al., 2012).

TCCON validation sites used for GHG-CCI Round Robin

Name ID Latitude
[deg]

Longitude
[deg]

Altitude
[km]

Time coverage
MM/YYYY–MM/YYYY

Bialystok BIA 53.231 23.025 0.183 03/2009–03/2011
Bremen BRE 53.104 8.850 0.027 01/2009–12/2010
Karlsruhe KAR 49.102 8.440 0.110 04/2010–05/2011
Orleans ORL 47.965 2.113 0.132 08/2009–11/2010
Garmisch GAR 47.476 11.063 0.744 05/2009–12/2010
ParkFalls PAR 45.945 90.273 0.442 06/2004–04/2011
Lamont LAM 36.604 97.486 0.320 07/2008–05/2011
Darwin DAR 12.425 130.891 0.030 08/2005–02/2011
Wollongong WOL 34.406 150.879 0.030 06/2008–03/2011
Lauder LAU 45.050 169.680 0.370 06/2004–06/2011



random error (or “precision”) of the corresponding satellite data
product. In the following, Figs. 3 and 4 are discussed in more detail for
each of the products.

5.2.3. Satellite XCO2 comparisons with TCCON
The comparison of the two SCIAMACHY XCO2 retrieval algorithms

WFMD and BESD with TCCON shows the following (Fig. 3, top half):
BESD has typically lower systematic errors (0.7 ppm) compared to
WFMD (1.3 ppm) and also a higher precision (2.3 ppm compared to
5.1 ppm). Ultimately it can be expected that the biases of BESD will be
even lower as it has been identified (not shown) that the BESD RR
data set suffers from problems related to the SCIAMACHY Level 1 data
product used (version 7 consolidation level u, “L1v7u”). This data prod
uct was used because it was the latest version available when the final
RR data set had to be generated and because it also covers the time pe
riod after 2009. The previous Level 1 version 6 (L1v6), used by WFMD,
does not suffer from these problems but is only available until the end
of 2009, where theWFMDdata set ends. It has been found that BESD re
trievals for selected months using the improved new version L1v7w

have much lower biases especially because the many outliers caused
by the L1v7u spectra are not present any more (not shown). It is there
fore necessary and planned to reprocess the entire SCIAMACHY data set
with BESD using L1v7w, e.g., for the generation of the CRDP. A potential
ly important pro for WFMD for certain applications is the much larger
number of data points.

The comparison of the two TANSO XCO2 retrieval algorithms OCFP
and SRFP with TCCON shows the following (Fig. 3, bottom half): The
biases depend on site and are typically in the range +/−1 ppm. They
are very similar for both algorithms. This is also true for the standard
deviation of the difference between the TANSO and TCCON esti
mates, which is typically in the range 2 3 ppm. The number of co
locations is also nearly identical for both algorithms but varies signif
icantly from site to site, which is true for all comparisons shown in
Figs. 3 and 4.

As shown in Table 5, the precision requirement for XCO2 ismet by all
algorithms. WFMD meets the threshold requirement and the other
algorithms including BESD even meet the breakthrough requirement.
The challenging 0.5 ppm bias requirement has however not yet been

Fig. 3. Comparison of the GHG-CCI core ECV XCO2 data products from SCIAMACHY/ENVISAT (top half, i.e., first 3 panels) and TANSO/GOSAT (bottom half) with TCCON ground-based
observations (see Table 4 for details on the TCCON sites). Shown are the mean difference (“Mean” in ppm) with respect to TCCON (left), the standard deviation of the difference
(right), and the number of co-locations (middle). A 500 km/2 hour spatio-temporal co-location criterion has been used to compute the satellite–TCCON differences. The numerical values
listed are: Left: “StdDev” is the standard deviation of the mean differences as obtained at the TCCON sites, i.e., a measure of the station-to-station bias, and can be interpreted as relative
accuracy (relative bias) of the satellite retrievals. “N” is the number of satellite data used for comparison (only those data points are shown where at least 10 satellite observations are
available for a given site). Right: “Mean” is the mean value of the standard deviations show by the symbols and is a measure of the achieved overall precision. Note that the number of
co-locations is significantly different for the different TCCON sites, e.g., due to clouds.



met but several algorithms achieve a performance close to the threshold
requirement (0.6 0.9 ppm, depending on algorithm).

5.2.4. Satellite XCH4 comparisons with TCCON
The comparison of the two SCIAMACHY XCH4 retrieval algorithms

WFMD and IMAP with TCCON shows the following (Fig. 4, top half):
Overall, the systematic differences with respect to TCCON vary from
site to site from nearly 0 ppb at Lamont to 20 30 ppb at the southern
hemisphere (SH) sites Darwin, Wollongong, and Lauder, but are very
similar for WFMD and IMAP. The reason for the large differences at
these SH sites has not yet been identified. This is probably not due to
the TCCON reference data as these differences are larger than the esti
mated TCCON inter site comparability (see Section 5.2.1) and also the
comparison with TANSO XCH4 (see below) does not show this type of
systematic deviation (the OCFP results however also show a low bias
at the SH sites compared to the northern sites esp. at Darwin). Agree
ment is within +/−10 ppb if these SH sites are excluded. In order to
obtain an estimate of the relative biases (i.e., considering that an overall
offset is not critical), the standard deviation of the station to station
biases has been computed: it amounts to 11 ppb for WFMD and
15 ppb for IMAP. The standard deviation of the satellite TCCON dif
ferences, which is a measure of the single measurement precision
(1 sigma), is on average 82 ppb for WFMD and 50 ppb for IMAP. Be
cause nearly all TCCON sites started operation after 2005 (see

Table 4), i.e., after the loss of important SCIAMACHY methane detector
pixels due to detector degradation, the values listed for SCIAMACHY in
Fig. 4 are not representative for the years 2003 2005. Until the end of
2005 the performance was much better and the corresponding values
are listed in curved brackets in Table 5. A possible explanation for the
larger scatter (worse precision) of WFMD after 2005 is that WFMD is
an unconstrained least squares algorithm whereas IMAP is based on
Optimal Estimation and uses detailed CH4 information (as a function
of latitude, altitude and time but not longitude) from a global model
as a priori information. This raises the question why the precision of
the two data products is similar for 2003 2005. This could be related
to the fact that only a single DBPM is used by IMAP whereas WFMD
has used a DBPM optimized for 2003 2005. Another possible explana
tion could be the use of differently calibrated input data. As shown in
Fig. 4, the number of satellite soundings used varies significantly from
site to site, but overall is very similar for WFMD (N = 37,628) and
IMAP (39,489) (at least at TCCON sites, for other locations this may
not be true, see Figs. 9 and 10).

The comparison of the four TANSO XCH4 retrieval algorithms
(OCPR, OCFP, SRPR, SRFP) with TCCON shows the following (Fig. 4,
bottom half): The biases depend on the TCCON site but are in the
range +/−15 ppb. The estimated relative bias is best for OCPR
(2 ppb) and worst for OCFP (8 ppb). OCPR has the largest number
of data points (followed by SRPR). The number of data points is

Fig. 4. As Fig. 3 but for the GHG-CCI XCH4 data products.



higher for the PR algorithms (OCPR and SRPR) compared to the FP
algorithms (OCFP and SRFP). The FP algorithm with the lowest rela
tive bias is SRFP (3 ppb). The PR algorithm with the lowest relative
bias is OCPR (2 ppb). The standard deviations of the satellite TCCON
differences are nearly identical for all four algorithms.

As shown in Table 5, the SCIAMACHY XCH4 product for 2003 2005
meets the threshold precision requirement (but not for 2006 and later
years due to the detector degradation). In contrast, the TANSO XCH4

has a much higher precision and even the breakthrough precision re
quirement is met by all algorithms. All TANSO XCH4 algorithms meet
the relative accuracy (relative bias) user requirement some are
close to or even better than the goal requirement. For SCIAMACHY this
is only true for 2003 2005.

Concerning the final RR algorithm selection decision, it is important
not to over interpret the numerical values listed in Table 5 due to the
sparseness of the TCCON sites. For this and other reasons, the TCCON
comparisons presented and discussed in this section are only one key
component of the GHG CCI RR activities. Therefore, more comparisons
have been conducted, for XCO2 and XCH4, as described in the following.

5.3. Inter comparison of XCO2 data products

Within GHG CCI two algorithms have been further developed to
retrieve XCO2 from SCIAMACHY, namely WFMD and BESD, and two
algorithms to retrieve XCO2 from TANSO, namely OCFP and SRFP. In
addition, there are three non European TANSO algorithms presented
and discussed in the peer reviewed literature whose data products
have also been used for comparison: (i) the official operational TANSO
algorithm (v02.xx) developed at the National Institute for Environmen
tal Studies (NIES) in Japan (Yoshida et al., 2011; in the following
referred to as “NIES” algorithm), (ii) a scientific algorithm called
PPDF (Pathlength Probability Density Function) also developed at
NIES (Bril, Oshchepkov, Yokota, & Inoue, 2007; Oshchepkov, Bril,
Maksyutov, & Yokota, 2011; Oshchepkov, Bril, & Yokota, 2008, 2009,
2012; Oshchepkov et al., 2012), and (iii) NASA/JPL's ACOS (Atmospheric
CO2 Observations from Space) v2.9 algorithm (Crisp et al., 2012; O'Dell
et al., 2012).

The global XCO2 data products fromall 7 algorithmshave been inter
compared within GHG CCI (Buchwitz, Chevallier, et al., 2012; Reuter
et al., 2013). The analysis revealed the following: The various satellite
XCO2 data products all capture the expected large scale variations of
atmospheric CO2 such as the time dependent north south gradient

(Figs. 5 and 6, discussed below) and the CO2 increase and seasonal
cycle (Fig. 1) but exhibit differences in the spatio temporal pattern
which depending on region and time may exceed the relative bias
user requirement of 0.5 ppm.

Typical examples are shown in Figs. 5 and 6. Fig. 5 shows compar
isons of the four GHG CCI XCO2 algorithms (BESD, WFMD, SRFP, OCFP).
Fig. 6 shows the GHG CCI algorithms as well as the three non European
algorithms mentioned above (ACOS (v2.9), PPDF (NIES PPDF D), and
NIES (v02.xx)) for the two months September 2009 and May 2010. Also
shown is the ensemble data product generated with the EnseMble
Median Algorithm (EMMA) algorithm, discussed below, TCCON XCO2,
and XCO2 from NOAA's CO2 assimilation system CarbonTracker (CT)
(Peters et al., 2007). As can be seen, all satellite retrieval algorithms
capture the north south XCO2 gradient, which is significantly different
for the two months shown, in good to reasonable agreement with
TCCON and CarbonTracker (Fig. 6). As can also be seen, differences
between the data products often exceed 0.5 ppm, particularly at
locations remote from TCCON sites (e.g., Sahara, South America,
Africa). As discussed in Section 5.2, it appears virtually impossible
to use TCCON to determine which algorithm performs best, at least
for TANSO. For SCIAMACHY it has been shown that BESD outper
forms WFMD in terms of single measurement precision and bias
not however in terms of number of observations, which is signifi
cantly higher for WFMD. It is also likely that a “best data product”
for all conditions does not exist at present as each retrieval algorithm
is expected to have its strengths and weaknesses. Therefore, which
algorithm performs best may depend on the spatio temporal interval
of interest. Clearly, more research is needed to understand the differ
ences between the various XCO2 data sets shown in Figs. 5 and 6. One
approach to further assess the relative quality of the various satellite
derived global XCO2 data sets is to compare them with their median.
This approach is presented in the following section.

5.3.1. Comparison with ensemble median (EMMA)
In this section we aim at answering two related questions: (i) How

to determinewhich data product is likely “the best”, if the largest dif
ferences are at locations remote from validation sites (ii) Which
data product should be used for inverse modeling of surface fluxes
if all products differ and if it is not clear which product would give
the most reliable results To answer these questions we use the me
dian of the various XCO2 products. The situation appears to be similar
to that for climate modeling: it is not clear which “model” is the best

Table 5
Estimated precision and biases of the satellite XCO2 (top) and XCH4 (bottom) GHG-CCI core data products retrieved with ECAs obtained from comparisons with ground-based TCCON
retrievals (see Figs. 3 and 4 for details). Numbers in curved brackets are for SCIAMACHYmethane retrievals during 2003–2005, i.e., before significant detector degradation of themethane
channel: values from Buchwitz, Reuter, et al. (2012), are indicated by “ ” and value from Schneising et al. (2012) is indicated by “ ”. Values in square brackets for SCIAMACHY methane
retrieval are from Buchwitz, Reuter, et al. (2012), based on an analysis of all available retrievals (all years) and using a different assessment method. Also listed are the GHG-CCI user
requirements as given the GHG-CCI User Requirements Document (URD (Buchwitz, Reuter, et al., 2011), see also Table 1, e.g., for the explanation of T, B, G).

Comparison of GHG-CCI core data products (ECAs) with TCCON

Algorithm Sensor Estimated precision single observation Estimated relative biases Number of satellite obs.

XCO2 p pm
WFMD v2.2 SCIAMACHY 5.1 1.3 30,752
BESD v1a SCIAMACHY 2.3 0.7 9467
OCFP v3.0 TANSO 2.7 0.6 2830
SRFP v1.1 TANSO 2.8 0.9 2558
Required (URD): b8 (T), 3 (B), 1 (G) b0.5 (T), 0.3 (B), 0.2 (G) –

XCH4 ppb
WFMD v2.3 SCIAMACHY 82 (~30 ) 11 (~3 ) [4–12 ] 37,628
IMAP v6.0 SCIAMACHY 50 (~30 ) 15 [4–13 ] 39,489
OCFP v3.2 TANSO 16 8 3176
SRFP v1.1 TANSO 15 3 2558
OCPR v3.2 TANSO 13 2 7323
SRPR v1.1 TANSO 14 3 4900
Required (URD): b34 (T), 17 (B), 9 (G) b10 (T), 5 (B), 3 (G) –

a The exact version number for BESD is v01.00.01.



and (remote from validation sites) there is no truth to compare with.
A promising approach to deal with this is to make use of the fact that
several state of the art algorithms and corresponding XCO2 data
products are available, i.e., an ensemble of data products, which can be
exploited. This is the underlying idea of the EnseMble Median Algorithm
(EMMA, Reuter et al., 2013). As described in more detail below and in
Reuter et al. (2013), EMMA computes the median of an ensemble of
individual XCO2 data products, which can be used for comparison with
the individual data products, e.g., to identify outliers. However, the
EMMA XCO2 product has also been generated to be useful as a stand
alone XCO2 data product for inverse modeling and other applications.

The strength of using an ensemble of satellite data products was
highlighted at the end of the first year of the GHG CCI project
(Buchwitz, Reuter, Schneising, et al., 2011), when biases (0.5%) between
Bialystok TCCON XCO2 and co incident satellite data were identified in
the majority of algorithms participating in the GHG CCI. This bias oc
curred due to an empirical correction of known magnitude, to account
for a laser sampling bias in the FTS data before September 21, 2009,
inadvertently being applied in the wrong direction. A bias in XCH4 in
the early part of the Bialystok time series that occurred due to missing
fits in one of the CH4 micro windows was also brought to light by com
parisons to the ensemble of satellite retrievals. The identification and

Fig. 5. Maps of monthly mean XCO2 at 10° × 10° resolution as obtained using different GHG-CCI retrieval algorithms: WFMD and BESD for SCIAMACHY, OCFP and SRFP for TANSO and
SCIAMACHY and TANSO merged using EMMA for September 2009 (left) and May 2012 (right).



quantification of these biases would most likely not have been possible
with a single algorithm/data product, due to difficulty in proving that
such relatively small differences are not due to possible retrieval
algorithm issues.

A detailed description of EMMA is presented in Reuter et al. (2013).
Therefore here only a short overview is given. The presented version of
EMMA (v1.3a) uses the 7 individual satellite XCO2 products shown in
Figs. 6 and 7 and generates a Level 2 product (i.e., a product containing
the XCO2 of the individual satellite soundings including uncertainty
estimate and other information such as averaging kernels) using the
median in each 10° × 10° monthly grid cell (“voxel”). In short, EMMA
works as follows: For each voxel, the mean XCO2 value is computed
for each of the 7 individual data products. The median of the 7 mean
values determineswhich of the individual satellite Level 2 data products
is used for the EMMAdata product for that voxel (if a certain voxel is not

covered by all 7 data products, a smaller number of data products is
used). Using themedian has several advantages compared to, for exam
ple, using themean value. A key aspect is that themedian is robust with
respect to outliers. Using themedian essentially removes outliers. This is
of critical importance as each of the individual data products appears to
suffer from outliers but where they appear and when is not known a
priori and depends on the algorithm. Of at least equal importance is
that the GHG CCI users need a Level 2 data product (individual sound
ings) and not a Level 3 data product (e.g., gridded monthly averages).
Furthermore, the use of an ensemble of data products possibly permits
the generation of more reliable uncertainty estimates, obtained from a
combination of the ensemble scatter and the reported uncertainties of
the individual algorithms (which are primarily estimates of the random
uncertainty). This would in particular be important to get a handle
on the systematic error component of the uncertainty, which is very

Fig. 6. Comparison matrix of monthly XCO2 maps for September 2009 (top (a)) and May 2010 (bottom (b)) generated using several individual satellite retrieval algorithms: BESD and
WFMD for SCIAMACHY and SRFP, ACOS, OCFP, PPDF, NIES for TANSO. The EMMA data product has been generated from the ensemble of the individual SCIAMACHY and TANSO XCO2

data products (see main text for details). Also shown is XCO2 from TCCON and NOAA's CarbonTracker (CT, v2011). The diagonal elements show the monthly XCO2 maps (using color
bar “mean”). The above diagonal elements show the XCO2 differences for all combinations (color bar “difference”). The below diagonal elements show the numerical values of the
Root Mean Square Difference (RMSD) as well as color coded smileys of the RMSD (green: RMSD b 1.2 ppm, red: RMSD N 2.4 ppm, otherwise yellow).



difficult (if not impossible) to reliably quantify for each algorithm indi
vidually. For an ensemble, this would strictly speaking require that the
median is bias free which is unlikely to be the case. Nevertheless, the
spatio temporal intervals where the various data products disagree
are very likely intervals where the data products need to be used with
care. In any case, reliable XCO2 error estimates of the satellite retrievals
are of critical importance for the user of the GHG CCI atmospheric data
products.

Figures such as Fig. 6 also permit the determination of which of the
data sets agree and which disagree. For example, the EMMA product,
but also most of the individual TANSO products and SCIAMACHY/
BESD, agree well or at least reasonably with each other as well as with
TCCON and CarbonTracker (see green and yellow smileys), whereas
this is not always true for the two very fast algorithms WFMD and
PPDF (see red smileys). Fig. 7 shows pie charts indicating the overall
agreement and disagreement of each of the individual algorithms with
the median. The results are consistent with the already reported find
ings, e.g., better performance of BESD compared to WFMD and similar
performance of the TANSO XCO2 algorithms.

A large number of other comparisons of the individual data products
and the EMMA product with TCCON but also with CarbonTracker have
been carried out. Fig. 8 shows, as an example, a comparison of the
amplitude of the XCO2 seasonal cycle. As can be seen, all satellite
data shown suggest that the seasonal cycle is underestimated by

CarbonTracker by ~1.5 +/− 0.5 ppm peak to peak. Using only a
single data product it would be difficult to “prove” that such a rela
tively small difference (~0.3% of the total column) is significant and
not caused by or at least significantly influenced by retrieval issues
(see, e.g., the discussion given in Schneising et al., 2011, on this topic).
Using an ensemble of data products based on more than one satellite
and using several essentially independent algorithms allow one to
draw more confident conclusions with respect to the interpretation of
satellite model XCO2 differences than would be possible using a single
data product only. Within GHG CCI it is therefore planned to continue
the efforts on EMMA in addition to further developing the individual
algorithms.

5.4. Inter comparison of SCIAMACHY XCH4 data products

The multi year global retrievals obtained from the two SCIAMACHY
XCH4 algorithms, WFMD and IMAP, have been compared with one an
other. Fig. 9 shows, as a typical example, a comparison of one month
(August 2005) of the global WFMD and IMAP data products (Fig. 10
shows the corresponding results for July 2009; results for other months
are shown in Buchwitz, Reuter, et al. (2012). As can be seen, themonth
ly XCH4 maps generated with the two algorithms show depending on
region similar but also significantly different patterns. Both maps
show higher methane concentrations over the Northern Hemisphere

Fig. 8. Comparison of theXCO2 seasonal cycle amplitude (peak-to-peak) of the individual XCO2 algorithms and EMMAwith TCCON (left) and CarbonTracker (v2011) (right). Thefigurehas
been adapted from Reuter et al. (2013), where results for all investigated XCO2 data products are shown, i.e., includingWFMDand PPDF, not shown here as their error bars do not indicate
good enough agreement with TCCON. As can be seen, all XCO2 satellite data suggest that the amplitude of the CO2 seasonal cycle is underestimated by CarbonTracker by approximately
1.5 +/ 0.5 ppm peak-to-peak.

Fig. 7. Pie charts showing the agreement (left) and disagreement (right) with the EMMAmedian obtained using the listed satellite XCO2 data products. Thefigure has been obtained using
the EMMA Level 3 data product (10° × 10°, monthly = 1 voxel). For each voxel the mean XCO2 value for each algorithm has been computed and the median using all algorithms. The
“Agreement with the Median” (left) has been computed as follows: For algorithm i the number of voxels which agree with the median within 0.2 ppm have been counted (=Ni).
100% corresponds to the sum of these numbers (N = Σi Ni). The percentages shown are Ni / N ∗ 100%. The percentages of “Potential Outliers” (right) have been calculated using the
same method except that all voxels have been counted where the differences to the median are larger than 2 ppm. As can be seen from the left figure, the data product which agrees
best with themedian is the ACOS product (v2.9, 21% agreement) followed by the similar OCFP algorithm (19% agreement). The largest number of potential outliers have the data products
generated with the two very fast algorithms WFMD (32%) and PPDF (16%).

–



(NH), where most of the methane sources are located, compared to the
Southern Hemisphere (SH). Both data sets agree reasonablywell (with
in typically +/−10 ppb) over most parts of the SH land areas but over
some areas WFMD XCH4 can be up to approximately 20 ppb higher.
Over the NH the situation appears to be more complex. Both data sets
show elevated methane over large parts of China, south east Asia and
India, but the patterns are not identical, with WFMD being higher over
south east Asia and lower over parts of India compared to IMAP.
WFMD and IMAP not only use differently calibrated input data (stan
dard versus non standard calibration) and different retrieval methods
(least squares versus OE), but also different post processing quality fil
tering schemes. The latter is reflected by differences in spatial coverage
(e.g., WFMD methane is not restricted to land observations only) and
number of retrievals over a given region (see right hand side panels of
Fig. 9). The data density differs significantly depending on region. Typi
callyWFMDhasmanymore data points over the Sahara and other areas
in the ~10° 40°N latitude range but also over mid/northern Australia
and the mid/western part of the US, whereas IMAP has higher data
density over South America and mid/high northern latitudes. Large dif
ferences between the two data sets are also visible over large parts of

northern Africa, where IMAP methane is higher (by approx. 40 ppb)
and Greenland, where WFMD methane is higher (by approx. 40 ppb).
The reasons for the differences have not yet been identified. It has also
not yet been assessed to what extent inferred regional methane fluxes
would differ depending on which data set is used as input data for
inverse modeling of regional methane fluxes. Significant differences
can be expected as the regional differences exceed the bias threshold
requirement of less than 10 ppb. The discussion also shows that de
pending on region the differences can be significantly larger than the
estimated biases listed in Table 5, which are based on the analysis of
the satellite data at TCCON sites only. Clearly, more research is needed
to understand the differences between the two SCIAMACHY methane
data sets discussed in this section.

5.5. Inter comparison of TANSO XCH4 data products

Within GHG CCI, four TANSO XCH4 retrieval algorithms have been
further developed and used to generate global data sets which have
been inter compared and compared with TCCON retrievals and global
model data (Buchwitz, Reuter, et al., 2012). The four retrieval algorithms

Fig. 9. Comparison of two SCIAMACHY XCH4 data products retrieved usingWFMD (top) and IMAP (middle) for August 2005. Global maps of the retrieved XCH4 are shown on the left and
the number of retrievals per 5° × 5° grid cell on the right. The WFMD-IMAP difference is shown in the bottom row. Listed in the bottom left are the following parameters: d: mean
difference ( 2.12 ppb), s: standard deviation of the difference (18.53 ppb), r: linear correlation coefficient (0.75).



are the FP and PR algorithms developed by SRON (SRFP, SRPR) and Univ.
Leicester (UoL; OCFP and OCPR algorithms).

For the PR algorithms, which are based on the retrieval of ratios of
the CH4 to CO2 columns, followed by a model based CO2 correction to
compute XCH4, the column ratios have been compared as well as the

final XCH4 product. As expected, it has been found that the agreement
between the ratios is typically somewhat better compared to the XCH4

products due to differences between the model based CO2 correction
as used by SRON andUoL (see Buchwitz, Reuter, et al., 2012, for details).
Overall and in line with the discussion presented in Section 5.2, it has

Fig. 10. As Fig. 9 but for July 2009.

Fig. 11. Comparison of the two GHG-CCI TANSOXCH4 PR data products retrieved using theOCPR and SRPR retrieval algorithms. Left: Percentage XCH4 difference OCPR-SRPR for July 2009.
Right: Scatter plot of 6751 co-locatedOCPR versus SRPR retrievals at TCCON sites. The standard deviation of the difference is 10 ppb (1-sigma) and the linear correlation coefficient is 0.91.



been found that the two PR products agree nearly equally well with the
TCCON ground based observations. A direct comparison of the two data
products at TCCON sites is also shown in Fig. 11 indicating agreement
within typically 10 ppb (1 sigma). Nevertheless, inspection of global
maps also reveals significant differences, depending on region and
time. Qualitatively, this is similar to the results found for the
SCIAMACHY data sets discussed in the previous section, but the differ
ences shown in Fig. 11 for TANSO are significantly smaller compared
to the differences for SCIAMACHY shown in Figs. 9 and 10. Fig. 11
shows a global OCPR SRPR methane difference map for July 2009. As
can be seen, the differences may exceed 5 ppb (breakthrough require
ment) or even 10 ppb (threshold requirement) over certain extended
regions such as India. Comparisons between the two FP TANSO XCH4

data products OCFP and SRFP have also been carried out. Using SRFP,
two years of global TANSO data have been retrieved but the comparison
had to be limited to TCCON sites only because of limitations of the OCFP
data set which is not yet available globally. It has been found that
the inter station bias is smaller for SRFP (~4 ppb) compared to OCFP
(~8 ppb) and that the scatter of the SRFP data is somewhat smaller
compared to the OCFP (14 ppb versus 16 ppb). These findings are
consistent with the results presented in Table 5 but have been derived
independently (see Buchwitz, Reuter, et al., 2012). It has also been
found that the agreement between the two PR algorithms is significant
ly better than the agreement between the two FP algorithms. This may
be due to the fact that PR algorithms are simpler but may also indicate
that at the current stage of development the PR algorithms are more
mature (note that they also deliver much more data points, see
Section 5.2).

5.6. Algorithm selection results

The main goal of the RR exercise was to determine which satellite
retrieval algorithms to use to generate the CRDP. Based on the results
presented and discussed in the previous sections, algorithms have
been selected. The selection results are presented in the following
sub sections.

5.6.1. Selection results: SCIAMACHY and GOSAT XCO2

Within GHG CCI, two SCIAMACHY and two TANSO XCO2 algorithms
have been further developed and the corresponding data products have
been inter compared. They have also been compared with three other
TANSO XCO2 data products generated outside of this project: with the
two TANSO XCO2 products generated at NIES, Japan, (i.e., the operation
al TANSO product (Yoshida et al., 2011) and the scientific PPDF product
(Oshchepkov et al., 2011)) and with the NASA ACOS team product
(Crisp et al., 2012; O'Dell et al., 2012). Analysis of all seven products
indicates that the precision requirement has been met, but not the
very demanding bias requirement of less than 0.5 ppm (approximately
1 ppm has been achieved at TCCON sites). Clearly, more work on the
individual retrieval algorithms is required to achieve this goal and it
has been decided to continue with all algorithms. A possible exception
is the fast SCIAMACHY XCO2 WFMD algorithm, which shows a reduced
data quality in terms of precision and biases compared to the computa
tionally much more demanding BESD algorithm. On the other hand
the WFMD product has significantly (3 4 times) more data points
compared to BESD and therefore much better coverage compared to
any of the other data products including BESD. GHG CCI aims at taking
advantage of the fact that an ensemble of state of the art data products
exists which can be exploited. To this end, the EnseMble Median Algo
rithm (EMMA) has been developed (Reuter et al., 2013). EMMA gener
ates a Level 2 XCO2 product using the median of the individual data
products thereby largely eliminating outliers of the data products gen
erated with the individual algorithms. EMMA may also improve the
error characterization using the ensemble scatter. Preliminary analysis
indicates that EMMA outperforms each of the individual algorithms.
EMMA also permits the identification of potential weaknesses of the

individual algorithms, which can be used to improve the individual al
gorithms. Taking this into account, it has been decided to proceed
with all satellite XCO2 algorithms and to add the EMMA data product
to the GHG CCI product portfolio.

5.6.2. Selection results: SCIAMACHY XCH4

Data products generated with two algorithms have been assessed:
WFMD (Schneising et al., 2011, 2012) and IMAP (Frankenberg et al.,
2011). Comparison with ground based TCCON observations revealed
that both data products are very similar with respect to biases. This is
also true for the estimated single measurement precisions for the time
period 2003 2005, when the SCIAMACHY detector did not yet suffer
from major degradation in the spectral region needed for methane
retrieval.

After 2005, the WFMD methane shows a larger scatter (~80 ppb)
compared to IMAP (~50 ppb). Both data products have to be used
with care for the time after 2005 due to potential bias issues related to
detector degradation as indicated by the TCCONcomparison at southern
hemisphere TCCON sites, where both data products show a low bias of
20 30 ppb depending on FTS site. Considering only this analysis, one
would conclude that both data products are essentially equivalent and
one may therefore select one of them. Analysis of spatially resolved
global methane distributions as generated by the two algorithms how
ever shows significant differences, depending on region and time,
which are larger than the requiredmaximumbias of 10 ppb, i.e., are sig
nificant for regional scale methane surface flux inversions. Due to the
lack of appropriate reference data such as TCCON, it was not yet possible
to determine which of the two data products is the most accurate.
Therefore, it has been decided to proceed with both algorithms and to
contribute with both alternative data products to the CRDP pointing
out the strength and weaknesses of the two approaches. Users will be
encouraged to use both data sets, to determine to what extent their
findings depend on the data product used, and to report these findings
to the GHG CCI retrieval experts.

5.6.3. Selection results: TANSO XCH4

Four algorithms and their corresponding data products have been
evaluated: OCFP and OCPR (Parker et al., 2011) and SRFP and SRPR
(Butz et al., 2011). All data products showvery similar biases and scatter
when compared with ground based TCCON observations. The number
of data points is however significantly higher for the “Proxy” (PR) algo
rithms compared to the “Full Physics” (FP) algorithms and the agree
ment between the two PR data products is better than for the FP
products, indicating a higher level of maturity of the (simpler) PR algo
rithms. Note that the SCIAMACHY XCH4 algorithms, WFMD and IMAP,
are also PR algorithms and that the FP algorithms are relatively new
and currently in their early stages of development. Overall, the OCPR
algorithm shows a slightly better performance compared to SRPR
(primarily in terms of number of data points at TCCON sites). It has
therefore been decided to continue with OCPR within GHG CCI. The
PR XCH4 algorithms depend on a CO2 correction using model data. The
long term goal of GHG CCI is to use a FP algorithm that is independent
of a CO2 model. Because the SRFP algorithm shows a somewhat better
performance compared to the OCFP algorithm (e.g., lower station to
station biases at TCCON sites), it has been decided to continue with
the SRFP algorithm, despite the lower number of data points compared
to OCFP. In summary, four TANSOXCH4 algorithms have been evaluated
as part of theGHG CCI RR and two of these algorithms have been select
ed for further use within GHG CCI: OCPR and SRFP.

6. Additional Constraints Algorithms (ACAs)

The Additional Constraints Algorithms (ACAs) are algorithms to
retrieve CO2 and/or CH4 information for layers above the planetary
boundary layer. ACAs are applied to several satellite instruments. An
overview of the ACAs used within GHG CCI is given in Table 3. As the



ACAs are not the focus of this manuscript the reader is referred to the
references listed in Table 3 (including caption) for details on each of
these algorithms and corresponding data products.

For ACAs only one algorithm per data product has been considered
within GHG CCI, i.e., ACAs are also being further developed but not in
competition and not by covering all aspects (e.g., no dedicated valida
tion). For ACAs a number of criteria have been defined which need to
be fulfilled to contribute to the CRDP but detailed user requirements
have not been formulated.

Only a limited assessment of the data products generated with ACAs
has been conducted during the initial phase of GHG CCI described in
this manuscript because the focus was on ECAs. However, for each of
the ACAs listed in Table 3 it has been determined if the selection criteria
specified in the Round Robin Evaluation Procedure (RREP, Buchwitz,
Reuter, et al., 2011) have been met. The RREP defines 11 criteria for
ACAs which need to be fulfilled for a given ACA to contribute to the
CRDP. The criteria are mostly qualitative and refer to a required mini
mum level of documentation, error analysis and related auxiliary infor
mation. All ACA products are potentially useful for GHG CCI climate
applications as they deliver additional information on CO2 and/or CH4

thereby providing potentially important constraints when used, for
example, within an appropriate inverse modeling framework to derive
regional surface fluxes from the satellite observations. However, no
detailed user requirements are currently available, no dedicated valida
tion has been performed within GHG CCI and it has also not been
assessed to what extent the existing products are useful or not useful
for GHG surface flux inverse modeling. More research is needed to
assess the usefulness of these data products for climate relevant applica
tions. It has been identified that all ACAs fulfill the requirements listed in
the RREP and that all ACA products can therefore be included in the
CRDP.

7. Climate Research Data Package (CRDP)

The goal of the GHG CCI RR was to decide which algorithms to
use to generate the CRDP. It is planned to generate the CRDP during
September 2012 to March 2013. Table 6 presents an overview of
the planned content of the CRDP in terms of data products and
their spatio temporal coverage. The CRDP will contain all relevant
information needed for inverse modeling such as single observation
uncertainties, a priori profiles and averaging kernels. The CRDP will
be validated during March May 2013 and subsequently evaluated
by the GHG CCI users (June August 2013). By the end of August,

the CRDP along with the corresponding documentation will be made
publicly available via the GHG CCI website.

8. Summary and conclusions

An overview of the main activities and results achieved during the
first two years of the GHG CCI project of ESA's Climate Change Initiative
(CCI) has been presented, focusing on the CCI “Round Robin” (RR)
exercise. The goal of CCI is to generate a number of Essential Climate
Variables (ECVs) in line with GCOS (Global Climate Observing System)
requirements and guidelines using European Earth observation data
and data from ESA Third Party Missions (TPM) such as GOSAT. To
achieve this, several existing state of the art retrieval algorithms
for retrieving XCO2 and XCH4 from SCIAMACHY/ENVISAT and TANSO/
GOSAT nadir radiance spectra have been further improved in order to
meet challenging requirements for the targeted regional CO2 and CH4

surface flux (source/sink) application as defined by the GHG CCI Climate
ResearchGroup (CRG). The ultimate goal of the RRwas to identify and se
lect the best algorithms to be used for generating the Climate Research
Data Package (CRDP), which will essentially be the first version of the
CCI ECV GHG data base. In addition, retrieval algorithms for a number of
other satellite instruments such as IASI andMIPAS have also been further
developed, but not in competition.

Substantial progress has been made during the first two years
(September 2010 August 2012) of the GHG CCI project. For exam
ple, longer XCO2 and XCH4 time series have been generated from
SCIAMACHY with improved data quality and better error characteri
zation (Frankenberg et al., 2011; Heymann, Bovensmann, et al., 2012;
Heymann, Schneising, et al., 2012; Reuter et al., 2011; Schneising et al.,
2011, 2012). The same is true for TANSO (Butz et al., 2011; Cogan et al.,
2012; Parker et al., 2011; Schepers et al., 2012).

Several retrieval algorithms have been further developed in
competition during the GHG CCI RR and used to generate global multi
year data sets of XCO2 and XCH4 from SCIAMACHY and TANSO. The
data products have been evaluated by comparison with ground based
TCCON observations, by inter comparisons of the data products generat
ed with the different candidate algorithms, and by comparisons with
other data sets including global models. Due to the sparseness of
the TCCON network it was not planned to base the algorithm selection
decision only on satellite TCCON comparisons. It has been found that
nearly all candidate algorithms produce data with very similar quality
at TCCON sites, i.e., show similar satellite TCCON differences. Significant
differences have however been found remote from TCCON when

Table 6
Overview of the planned content of the GHG-CCI CRDP. Products: (1) mid/upper tropospheric columns, (2) (primarily) stratospheric vertical profiles.

Planned content of the GHG-CCI Climate Research Data Package (CRDP)

Product ID Product
(Level 2, mixing ratios)

Algorithma Coverage Comment

Data products generated with ECV Core Algorithms (ECAs)
XCO2_SCIA XCO2 BESD Global, land, 2003–2010b –

XCO2_GOSAT XCO2 OCFP and SRFP Global, mid 2009–2010b 2 alternative products
XCO2_EMMA XCO2 EMMA Global, mid 2009–2010b Merged SCIA and GOSAT
XCH4_SCIA XCH4 IMAP and WFMD Global, 2003–2010b 2 alternative products
XCH4_GOSAT XCH4 SRFP and OCPR Global, mid 2009–2010b 2 alternative products

Data products generated with Additional Constraints Algorithms (ACAs)
CO2_AIRS CO2 (1) NLIS Tropics, 2003–2007 –

CO2_IASI CO2 (1) NLIS Tropics, 2007–2010b) –

CH4_IASI CH4 (1) NLIS Tropics, 2007–2010b) –

CH4_SCIA_OCC CH4 (2) ONPD NH mid/high lat., 2003–2010b –

CO2_SCI_OCC CO2 (2) ONPD NH mid/high lat., 2003–2010b –

CH4_MIPAS CH4 (2) KIT/IMK MIPAS Global, 2005c–2010b –

CO2_ACEFTS CO2 (2) CLRS Globald, 2004–2010b –

a See Tables 2 and 3.
b May end later.
c May start earlier.
d Mainly high latitudes.



comparing the global data sets, e.g., when comparing global maps.
Depending on region and time, it has been found that the differences
may exceed the systematic error requirements of less than 0.5 ppm
for XCO2 and 10 ppb for XCH4. It has been identified thatmore research
is needed in order to understand the differences between the various
data sets. It was therefore not possible for all products to clearly identify
which of the candidate algorithmsperforms best. The goal of the RRwas
to identify which of the competing algorithms to use for the CRDP.
The selected algorithms are listed in Table 6. A summary of the RR
algorithm selection decision and justification is given in Section 5.6
for the GHG CCI ECV core data products and in Section 6 for additional
products generated with algorithms not in competition during the
RR phase.

The climate and inverse modeling community requires long term
datasets of near surface sensitive CO2 and CH4 observations that are
as accurate and precise as possible. The goal of GHG CCI is to build up
such a time series starting with SCIAMACHY/ENVISAT (March 2002
April 2012) and being continued with GOSAT (launch 2009) and future
GHG satellite missions such as OCO 2 (Boesch, Baker, Connor, Crisp,
& Miller, 2011), Sentinel 5 Precursor (Butz et al., 2012) and potentially
CarbonSat (Bovensmann et al., 2010). As shown in this manuscript,
significant progress has been made to achieve this goal, but more work
is needed in order to meet the demanding user requirements for as
many conditions as possible.
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