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Abstract
Forecasting the motion and evolution of tropical cyclones is a challenging, computationally expensive task.
Complex, interacting physical processes on a wide range of scales need to be considered. Adaptive techniques,
such as local mesh refinement, are a promising way to improve the efficiency of numerical models for
such multi-scale problems. We investigate the interaction of two tropical cyclones in a barotropic model
assuming exact initial conditions and discuss how the impact of discretization errors on the prediction of
storm tracks can be minimized using adjoint-based goal-oriented adaptivity. We propose suitable functionals
for the prediction of storm tracks, interpret the associated sensitivity from a meteorological point of view
and discuss its relation to sensitivity measures commonly used in meteorological applications. We present
numerical results of adaptive simulations on optimized meshes and adaptive time stepping controlled by a
posteriori error estimators that exploit the sensitivity information. Using goal-oriented adaptivity, the storm
tracks can be determined about one order of magnitude more precisely, compared to uniform discretizations
with the same number of unknowns. The highest improvement in accuracy (up to two orders of magnitude)
can be observed for meshes with comparatively low number of cells.

Keywords: goal-oriented space-time finite element method, a posteriori error estimation, automatic grid
refinement, adjoint sensitivity, sensitivity analysis, tropical cyclone dynamics

1 Introduction

The accurate prediction of the motion and evolution
of tropical cyclones (TCs) is a challenging problem
for numerical weather prediction, because interacting
physical processes on a wide range of scales have to be
considered. Processes on convective scales in the inner
core of the cyclone determine the intensity evolution
and thus the storm’s influence on larger scales. The
motion of a TC is mainly determined by the large scale
flow and influences its environment, which in turn has
a strong impact on the convective processes in the core.
Forecasting the development of TCs is thus a multiscale
problem.

Performing TC forecast model runs on uniform grids
with a sufficiently high resolution to resolve the inner
core dynamics and on a domain sufficiently large to con-
tain the relevant scale flow features leads to high com-
putational costs. Adaptive mesh refinement techniques
have been used in previous work to reduce the compu-
tational effort. The most common approach is to em-
bed a high-resolution grid nest containing the core of
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the storm in a coarser grid (see e.g. Birchfield 1960
and Harrison and Elsberry 1972). Current models of-
ten use multiple nests around the storm center. For in-
stance, in the Advanced Hurricane WRF model nested
grids with resolutions of 12 km, 4 km and 1.33 km are
centered on the storm and follow its motion (Cavallo
et al., 2013; Davis and Holland, 2007).

While these nesting approaches certainly present a
huge improvement over uniform grids, they are unlikely
to result in optimal efficiency. Usually the number, size
and resolution of the grid nests is not changed during
a model run. In general, they will include regions that
are not important for the outcome of the forecast. On the
other hand, there may be remote features on the coarse
grid outside of the high-resolution nests that have a
strong impact on the motion and evolution of the storm.
For instance, by means of a linear sensitivity analysis it
has been shown that for TCs interacting with the mid-
latitude flow perturbations several 1000 km upstream
can have a large impact on the storm within 48 hours
(Reynolds et al., 2009; Peng and Reynolds, 2006;
Scheck et al., 2013). A higher grid resolution in such
remote sensitive regions could improve the accuracy of
the forecast.

Ideally, grid refinement methods should automati-
cally determine where and how strongly the grid should
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be refined or coarsened to achieve optimal efficiency.
For a barotropic TC forecast model, Fulton (2001)
used truncation error estimates obtained with a multi-
grid approach to control the grid refinement automati-
cally. Similarly, a posteriori error estimation based on
global norms can be used to control grid adaptation,
for an overview see e.g. Ainsworth and Oden (2000).
These methods aim at reducing the instantaneous, global
discretization error. However, the goal of a TC fore-
cast is primarily to predict the position, structure and
intensity of the storm at the forecast time, which is typ-
ically several days in the future. It would be advanta-
geous if the automatic grid optimization process would
take these specific goals into account. This implies that
not only the instantaneous discretization error, but also
its time evolution and its impact on the specific goals
should be considered in the adaptation process.

The Dual Weighted Residual (DWR) method repre-
sents a generic framework for goal-oriented error con-
trol. It goes back to Eriksson et al. (1995) and has
been used successfully in many fields of application,
for instance for fluid flow with chemical reactions,
cf. Braack and Rannacher (1999), or for investi-
gations of hydrodynamic stability, cf. Heuveline and
Rannacher (2006). The main idea of the DWR method
is to adapt a discretization in a way that minimizes the
error in a goal functional, denoted by J, which is as-
sumed to describe the most important aspect of the in-
vestigated problem. In this case, J(u) should be deter-
mined with high precision, where u denotes the solu-
tion of the original problem denoted the primal prob-
lem in this context. The corresponding dual problem can
be derived introducing a Lagrange functional (similar as
for problems of constraint optimization). It is defined by
means of the adjoint of the primal problem’s linearised
operator and is posed backward in time (see Bangerth
and Rannacher (2003) for details). The solution of the
dual problem represents the sensitivity of the functional
J with respect to perturbations of the primal problem’s
solution u. Based on this linear sensitivity analysis, the
DWR method provides an estimator for the quantifica-
tion of the error J(u) − J(uh), where uh is a Galerkin
approximation of the continuous solution u (which is
a usual situation in the context of finite element meth-
ods, for example). From this estimation, the distribution
of local error contributions can be determined and re-
sults in cell-wise error indicators, based on which cells
can be marked that should be refined or coarsened to
balance the error contributions over all cells.The over-
all procedure of the DWR method, which is an iterative
process, is illustrated in Fig. 1. In each adaptation cycle,
the primal problem is solved on the current mesh for the
complete time interval [0, T ], followed by the solution
of the dual problem, which is posed backward in time.
Subsequently, the error in J is estimated, correspond-
ing error indicators are derived, and finally the mesh is
adapted. This cycle is repeated until the desired accu-
racy is achieved. For many applications, highly efficient
meshes have been constructed using the DWR method

Figure 1: Calculations done in each iteration loop of the Dual
Weighted Residual method: Solution of primal and dual problem,
evaluation of error estimator, and mesh adaptation.

(as described e.g. in the aforementioned references) in
the sense that the error of a corresponding numerical
solution, measured in the functional J, is significantly
smaller compared to the error of a numerical solution on
a uniform meshes with the same number of unknowns.

Since the DWR method allows to optimize the dis-
cretization with respect to user-defined, specific features
of a problem, it represents a promising approach for
the multi-scale problem of forecasting the development
of TCs. As a first step towards the operational appli-
cation of this method, we apply the DWR method to
an idealized TC scenario in this study. As a test case,
we model the interaction of two TCs in a non-divergent
barotropic framework and investigate how the efficiency
in the storm track prediction can be improved. The bi-
nary TC interaction is a challenging test problem for
grid adaptation, as the solution is very sensitive not only
to changes in the initial conditions, but also to numeri-
cal errors. A shallow-water version of this problem has
already been used by Bauer et al. (2014) as a test case
for r-adaptive methods, in which the mesh is adapted by
moving grid points. They investigated how error indica-
tors can be applied to control r-adaptation and demon-
strated that error estimations can successfully be used to
control the grid refinement in a model that makes use
of differing but related model equations. Bauer et al.
(2014) computed the error estimators on a uniform grid
and performed only one DWR step to adapt the grid.

For this study we apply the full iterative DWR
method and focus on the more flexible h-adaptivity ap-
proach. We use a space-time finite element method as
discretization which guarantees that resulting solutions
have a Galerkin property with respect to the time and the
space dimension. We apply a specialized version of the
goal-oriented error estimator that allows for the estima-
tion of the temporal and the spatial discretization error.
To the knowledge of the authors, the investigated dis-
cretization scheme applied to the primal and dual prob-
lem and the corresponding goal-oriented error estimator
have not been discussed in the literature. Therefore, we
provide a very detailed description of the steps of dis-
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cretization and the evaluation of the error estimator. We
propose several meteorologically motivated goal func-
tionals that aim at minimizing the error in the storm
position and calculate the corresponding sensitivity in-
formation in form of the dual solution. It is a unique
advantage of the DWR approach that this sensitivity in-
formation is generated as a free by-product of the error
estimation process. We provide a general physical inter-
pretation of the dual solution and discuss its connection
to sensitivity measures commonly used for meteorolog-
ical applications, like singular vectors and adjoint based
sensitivity. The structure of the dual solution for the bi-
nary TC interaction problem is interpreted using results
of a recent study on the growth of optimal perturbations
for vortices in shear flows. We present results of adaptive
numerical model runs for which the spatial mesh and
also the time partitioning is optimized according to goal-
oriented error indicators for the proposed functionals.
The mesh structure and the accuracy of the solution for
the different goal functionals are discussed. Finally, we
evaluate the efficiency of the adaptive approach, com-
pared to model runs on uniform grids.

This article is organized as follows: In Section 2,
we define the idealized binary cyclone interaction test
problem and several physically motivated goal function-
als. The primal and dual problems and a corresponding
space-time finite element discretizations are introduced
in Section 3. Details on error estimation and adaptation
strategies are specified in Section 4. In Section 5, we
give a physical interpretation of the dual solution and
discuss its structure for the binary cyclone scenario. In
Section 6, adaptive numerical runs are presented and
compared to simulations on uniform discretizations. Fi-
nally, we summarize our results and discuss open ques-
tions in Section 7.

2 Scenario and goal functionals

2.1 A binary cyclone interaction scenario

The interaction of tropical cyclones takes place on av-
erage about two times per year (Dong and Neumann,
1983), often leads to complex cyclone tracks (Lander
and Holland, 1993) and can increase the forecast error
significantly (Brand, 1970; Jarrell et al., 1978). The
cyclones advect each other mutually and the shear of
their circulations induces changes in the vortex structure
and can lead to the formation of filaments. First investi-
gations on this process were carried out by Fujiwhara
(1921); Fujiwhara (1923); Fujiwhara (1931), who
showed in laboratory experiments that two vortices ap-
proached each other in a spiral orbit and merged, when
their initial separation was sufficiently small.

Several studies using idealized, in most cases baro-
tropic, models were carried out to investigate these pro-
cesses further. This vortex interaction problem is rele-
vant not only for tropical cyclones, but also for two-
dimensional turbulence. Melander et al. (1988) carried

out model runs for the symmetric case (i.e. two iden-
tical vortices) and explained the merging of the vor-
tices as the result of an inviscid axi-symmetrization pro-
cess similar to the one occurring for a single elliptically
deformed vortex (Melander et al., 1987). Dritschel
and Waugh (1992) considered the interaction of un-
equal vortices and showed that in addition to merg-
ers and elastic interactions other outcomes are possi-
ble. These include partial mergers and cases in which
one of the vortices is partially or completely converted
into filaments. Prieto et al. (2003) performed a similar
study but considered also spherical geometry and thus
β effects. Ritchie and Holland (1993) and Holland
and Dietachmayer (1993) consider, in contrast to the
studies mentioned so far, vortices including fluid with
negative vorticity at larger radii. The negative vorticity
leads to a faster decay of the tangential velocity with
radius, in better agreement with real TC wind fields.
Ritchie and Holland (1993) derive an expression for
the approximate maximum distance required for a rapid
merger, which lies in the range of 150–300 km. Shin
et al. (2006) discuss the relation between the critical dis-
tance and the vorticity structure between the vortices.

Here we restrict ourselves to the symmetric case
and investigate the interaction of two identical vortices
in a non-divergent barotropic model1. We consider a
case similar to the ones explored in Richter (2012).
For the vortices we assume a tangential velocity profile
introduced by Smith et al. (1990), which is given as

υT(s) = υ0
s(1 + (6b/2a)s4)

(1 + as2 + bs6)2
, (2.1)

where s = r/r0 and ψ0 = −v0r0/2a. For a = 0.3398,
b = 5.377 × 10−4, υ0 = 71.521 ms−1 and r0 = 100 km
the maximum wind is 40 ms−1 (at r = r0). As for some
cases in Ritchie and Holland (1993) and Holland
and Dietachmayer (1993) the outer parts of the vortex
are characterized by weak negative relative vorticity.

We performed high-resolution reference runs on uni-
form grids for different initial separations with the
non-divergent barotropic model used in Scheck et al.
(2011a); Scheck et al. (2011b). In the standard scenario
that will be used for adaptive runs later on, we assume
an initial cyclone separation distance of di = 400 km,
i.e. four times the radius of maximum wind. This sepa-
ration is too large to allow for a merger, but sufficiently
small for the two negative vorticity regions to overlap.
In the first 12 hours, in which the vortices perform about
a quarter of a full orbit (see Fig. 2), the positive cores
are strongly deformed and even connected to each other
(at t = 6 h), but separate again and develop symmet-
ric distributions. During this initial phase, a remarkable
change in the distribution of fluid with negative vorticity
takes place. The latter is advected towards the regions
behind the orbiting positive cores, thereby forming two
cyclone-anticyclone pairs. The pairs are oriented such

1Bauer et al. (2014) use a shallow-water version of this test case.
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Figure 2: Vorticity distribution for the interaction of two vortices with an initial separation of 400 km at t = 0 h, 3 h, 6 h, 12 h, 24 h and 96 h.
Vorticity (in colour) is given in units of 10−3s−1. The blue and green contour lines in the bottom right panel indicate the regions ΩV and ΩE,
respectively, which are used in the definition of the goal functionals (see Section 2.2).

that they propagate away from each other. Thus the or-
biting motion of the positive cores that dominates the
dynamics of the initial phase gives way to a linear prop-
agation of the two pairs into opposite directions. After
about 48 hours, the mutual influence of the pairs is neg-
ligible and they follow straight tracks. This behaviour
has also been found in simulations by Valcke and Ver-
ron (1997) and is reproduced in laboratory experiments
by Beckers et al. (2002).

Further runs for varying initial distance show that the
critical cyclone separation below which mergers occur,
is about 380 km for this set-up (Fig. 3). Below and
close to the critical separation a marked high, nonlinear
sensitivity of the solution with respect to the initial
state exists. A high sensitivity is also given for initial
separations above the critical value. For these cases the
time at which the transition from orbiting to straight
propagation occurs, depends sensitively on the initial
separation and has a large influence on the final cyclone
positions. For instance, the cyclones in the run with
di = 390 km orbit each other for about 15 hours longer
than in the run with di = 400 km. Consequently, the

Figure 3: Evolution of the separation of the two storms for several
initial separations. The lines end when the separation has become
smaller than 100 km. The two storms merge for initial separations
smaller that 380 km.

direction of propagation after the orbiting phase differs
by about 140 ° for these two cases.

The high sensitivity with respect to perturbations in
the initial state suggests that numerical errors, in par-
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ticular in the orbiting phase, will have a large influence
on the solution. A too coarse grid can even result in a
merger of the vortices for initial distances that lead to
a separation for higher resolution. The scenario consid-
ered here therefore presents a challenging test problem
for grid adaptation.

2.2 Goal functionals

The objective of goal-oriented adaptation is the mini-
mization of the discretization error, measured by means
of the chosen goal functional. Therefore, the goal func-
tional should represent the most relevant aspects of the
results. Tropical cyclone forecasts address several im-
portant questions. Where will the cyclone be located?
Or, to be more specific, where are the strongest wind
speeds to be expected? And how will the intensity of the
cyclone develop? The last question cannot be addressed
by barotropic models such as the one used in this study.
However, we formulated goal functionals related to the
first two questions.

The storm centre of an idealized TC located within
the domain D can be characterized by the location of the
vorticity maximum:

JPos(υ) := argmax
x∈D

(∇ × υ(x)), (2.2)

for a fixed velocity field υ. However, JPos is not a con-
tinuous functional, since small perturbations in υ can
lead to large changes in JPos(υ). Therefore, JPos cannot
be utilized in the DWR framework, where functionals
must be three-times differentiable, cf. Bangerth and
Rannacher (2003). As an alternative, we propose func-
tionals that are smooth and strongly correlated with the
quantities of interest.

For a fixed region ΩV containing the high-vorticity
region near the centre of a cyclone, any displacement
of the cyclone will cause the integrated vorticity in ΩV
to change. Therefore, we introduce the following goal
functional:

JV(υ) :=
∫

ΩV

∇ × υ(T, x) dx, (2.3)

where T is the time at the end of the model run. We
define ΩV as the region in which the vorticity at time T
is greater than or equal 50 % of the maximum vorticity
ζmax := maxx∈Ω{∇ × υ(T, x)} in the domain, i.e.

ΩV := {x ∈ Ω | ∇ × υ(T, x) ≥ 0.5 · ζmax}. (2.4)

At the boundary of ΩV the vorticity gradient is strong
and therefore the influence of storm displacements on
JV (υ) can be expected to be strong. During the adapta-
tion cycles of the DWR method, we can determine the
high-vorticity region ΩV based on the solution of the pri-
mal problem, which is solved always before the dual
problem. However, this means that the goal functional
changes from one adaptation cycle to the other.

To investigate the influence of this potential diffi-
culty, we propose a second, similar goal functional, for

which the high-vorticity region is assumed to be known
in advance and is kept constant during the adaptation
cycles. Furthermore, only one of the two storms is con-
sidered in the vorticity integration. This set-up corre-
sponds to situations where the position of only one of
the storms, e.g. the one about to make landfall, is of par-
ticular interest. The two storms thus will not be treated
the same way, demonstrating how the goal-oriented ap-
proach allows us to focus on the user-specific interests,
which would not be possible for alternative grid adapta-
tion methods. The second goal functional is defined as

JV,ref(υ) :=
∫

ΩV,ref

∇ × υ(T, x) dx, (2.5)

with a circular integration domain around the storm
centre of one storm at Pref = (−1043.7 km, 153.4 km),
determined from a high-resolution reference run:

ΩV,ref := {x ∈ Ω | ‖x − Pref‖l2 ≤ rref}. (2.6)

The radius is rref = 93 km since here the vorticity is
approximately 50 % of ζmax and therefore ΩV,ref corre-
sponds roughly to the sub-domain of ΩV containing the
same storm centre.

Finally, we propose a third goal functional which is
related to the area with the highest wind speeds (and
thus, the most severe damage to be expected). Using
energy instead of vorticity, we define

JE(υ) :=
∫

ΩE

‖υ(T, x)‖2 dx, (2.7)

where the domain ΩE corresponds to the region where
the kinetic energy at time T is higher or equal 90 % of
the maximum energy Emax := maxx∈Ω ‖υ(T, x)‖2, i.e.

ΩE := {x ∈ Ω | ‖υ(T, x)‖2 ≥ 0.9 · Emax}. (2.8)

This goal functional is physically as well motivated as
JV , but has the interesting property that it could cause an
asymmetry in goal-oriented adapted grids. On the right
side of the track of a moving TC on the northern hemi-
sphere the absolute wind speeds are higher, because the
translation velocity and the storm circulation have the
same direction. For the definition given above, ΩE will
be dominated by the flow on the right of the storm. In
contrast, ΩV is symmetric and centred on the vortic-
ity maximum. Asymmetries in the structure of TCs are
known to have a potentially large impact on their devel-
opment. The motivation to consider JE is therefore to
test, whether the artificial asymmetry introduced by grid
adaptation has an influence on the quality of the solu-
tion.

3 Model equations and discretization

In this section, we introduce the equations of the model
used to describe the dynamics of the cyclone scenario
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(denoted primal problem) and the corresponding lin-
earized adjoint problem (denoted dual problem) based
on which the goal functional’s sensitivity can be deter-
mined. For these two models we present variational for-
mulations defined on continuous function spaces and de-
scribe the space-time finite element discretization used
later. We consider the variational formulations, since the
goal-oriented error estimator (see Section 4) is defined
in terms of this formulation.

3.1 Primal and dual problem

For the discretization of the scenario described in Sec-
tion 2.1, we use a non-divergent barotropic model.
This widely-used idealization assumes that velocity does
not depend on height and corresponds to the two-
dimensional incompressible Navier-Stokes equations.

We consider the domain Ω := [−L1, L1] × [−L2, L2],
where L1 = 2000 km and L2 = 1732 km and regard the
time horizon [0, T ] with T = 96 h. The solution variables
are the velocity field υ : [0, T ] × Ω → R

2 and the
pressure field p : [0, T ] × Ω → R. The dynamics of the
atmosphere is described by the incompressible Navier-
Stokes equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tυ + (υ · ∇)υ − νΔυ + ∇p = 0,
∇ · υ = 0,
υ|t=0 = υ0,

(3.1)

where the initial velocity field υ0 is defined such that two
vortices with initial separation di = 400 km as described
in Section 2.1 exist. A kinematic viscosity value of ν =

0.005 km2s−1 was chosen, which is sufficiently high to
suppress numerical noise and not too high to lead to an
excessive damping of the vortices during the considered
time interval. We use a space-periodic domain where
velocity and pressure fulfil

υ(t, x + Liei) = υ(t, x − Liei),

p(t, x + Liei) = p(t, x − Liei),
(3.2)

for i ∈ {1, 2}, (t, x) ∈ [0, T ]×Ω and ei denoting Cartesian
unit vectors.

In the following, variational formulations of the
problem (3.1) and the corresponding dual problem are
presented. The definitions of the function spaces X, Y ,
and M and the (·, ·)-notation are given in the appendix.

The continuous primal problem

Find (υ, p) ∈ X × M such that

ρ(υ, p)(ϕ, ψ) = 0 (3.3)

for all (ϕ, ψ) ∈ Y ×M, where the residual operator of the
primal problem is defined by

ρ(υ, p)(ϕ, ψ) :=
∫ T

0

(
(∂tυ + (υ · ∇)υ, ϕ)

+ ν(∇υ,∇ϕ) − (p,∇ · ϕ)

+ (∇ · υ, ψ)
)

dt

+ (υ|t=0 − υ0, ϕ|t=0).

The continuous dual problem

The dual problem associated to (3.3) can be derived for
a user-defined goal functional J : Y → R by the method
of Lagrange multipliers2. It is defined by means of the
adjoint of the primal problem’s linearised operator and
is posed backward in time: Find (z, q) ∈ X ×M such that

ρ∗(z, q)(ϕ, ψ) = 0 (3.4)

for all functions (ϕ, ψ) ∈ Y ×M. The residual of the dual
problem is defined as

ρ∗(z, q)(ϕ, ψ) :=
∫ T

0

(
− (∂tz, ϕ) + ν(∇ϕ,∇z)

+ ((υ · ∇)ϕ + (ϕ · ∇)υ, z)

− (∇ · z, ψ) + (∇ · ϕ, q)
)

dt

+ (z|t=T , ϕ|t=T ) + ∇J(u)ϕ.

3.2 Space-time finite element discretization

For the discretization in space, we consider a triangu-
lation Th of the domain Ω consisting of quadrilater-
als and introduce piecewise bi-quadratic functions for
the velocity and piecewise bi-linear functions for the
pressure variable, both globally continuous. It is well-
known, that these so-called Taylor-Hood elements ful-
fil the Brezzi condition, Brezzi (1974), and are stable,
Brezzi and Falk (1991). The discrete velocity space is
denoted Vh ⊆ V and the discrete pressure space Qh ⊆ Q
(see appendix for details).

For the discretization in time, a finite element method
called cGP(1), Schieweck (2010), is utilized which
makes use of test functions that may be discontinuous
in the time dimension. By means of the discontinuities,
discrete solutions can be determined iteratively by step-
ping through subintervals of the time horizon. In con-
trast to many other time-stepping schemes, the cGP(1)
method provides a Galerkin property related to the time
discretization which allows for an a posteriori error es-
timation based on the DWR method also in time. For a
partitioning 0 = t0 < t1 < . . . < tN = T the trial and
test functions are defined as piecewise polynomials in

2The goal functionals introduced in Section 2.2 fit into this frame and can be
written as J(υ) = ( j, υ(T )) for some j ∈ L2(Ω)2 by a L2-projection. Their
linearisation is ∇J(υ)ϕ = ( j, ϕ|t=T ) and therefore j plays the role of the dual
problem’s initial state posed at the model run’s end time: z|t=T = j.
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time (see appendix for the precise definition of the sub-
sequently used P-notation). For the velocity ansatz func-
tions, we introduce the space Xτh = P

c
1(Vh) of piecewise

linear, globally continuous functions. The velocity test
functions are piecewise constant (corresponding space
denoted Yτh = P

dc
0 (Vh)). For the pressure variable, test

and trial functions are piece-wise constant and elements
of the space Mτh = P

dc
0 (Qh). The spaces Yτh and Mτh

allow for discontinuous only at the points in time ti.
The discrete versions of the primal and dual problem

discussed in the following are formulated in terms of
these discrete function spaces.

The discrete primal problem

The solution of the discrete primal problem is the tuple
(υτh, pτh) ∈ Xτh × Mτh that fulfils

ρ(υτh, pτh)(ϕ, ψ) = 0, (3.5)

for all (ϕ, ψ) ∈ Yτh × Mτh. The operator ρ is defined as
for problem (3.3).

The discrete dual problem

The solution of the discrete dual problem is the tuple
(zτh, qτh) ∈ Xτh × Mτh that fulfils

ρ∗(zτh, qτh)(ϕ, ψ) = 0, (3.6)

for all (ϕ, ψ) ∈ Yτh × Mτh. The operator ρ∗ is defined as
for problem (3.4).

4 Error estimation and adaptation
strategy

In this section, we formulate the estimator for the er-
ror in goal functionals and describe the utilized adap-
tation strategy based on corresponding error indicators.
An extension of the concepts described in Bangerth
and Rannacher (2003) is needed to enable adaptiv-
ity of the time discretization, similarly to Schmich and
Vexler (2007). We present a tailored variant which is
adequate for Petrov-Galerkin approximations as the one
described in Section 3.2. We provide detailed descrip-
tions of the applied error characterization variant and
the corresponding cell-wise error indicators which can
easily be computed. Finally, we describe the adaptation
strategies that are used to construct spatial meshes and
time partitionings based on the goal-oriented error indi-
cators.

4.1 A posteriori error characterization

The goal-oriented error characterization of the primal
problem’s solution is based on an abstract error char-
acterization described in the following. For better read-
ability, we introduce the notations W := X × M and
L := Y × M. A variational form of the primal problem

and the dual problem (assuming a three times differen-
tiable functional J : W → R) is given by: Find u, λ ∈ W
such that

ρ(u)(ϕ) = 0,

ρ∗(λ)(ϕ) := ∇uρ(u)(λ)ϕ = J′(u)ϕ,
(4.1)

for any ϕ ∈ L. The Petrov-Galerkin approximations
uτh, λτh ∈ Wτh are solutions of the discrete version of
problem (4.1), where the spaces W and L are replaced
by discrete counterparts Wτh ⊂ W and Lτh ⊂ L. The
following characterization of the error in J holds:

J(u) − J(uτh) =
1
2

(
ρ(uτh)(λ + λτh − ϕτh)

+ρ∗(λτh)(u − uτh − ψτh)
)

+ R,
(4.2)

with arbitrary ϕτh, ψτh ∈ Lτh and remainder R which is
of third order in the error u − uτh and λ − λτh. A proof
can be found in Baumann (2011). Note that the discrete
solutions uτh, λτh ∈ Wτh are not included in the function
space Lτh in general. The error characterization (4.2) is
given in terms of the unknown quantities u, λ, and R.
It is common practice to neglect the remainder R and
to replace the unknown solutions u and λ by approxima-
tions to obtain a version that can easily be computed, see
e.g. Bangerth and Rannacher (2003). We make use
of higher-order patch-interpolation in space and nodal
interpolation in time to determine approximations. For
the separation of the discretization error in space and
time, we introduce two estimators E(time) and E(space), as
proposed by Schmich and Vexler (2007)3.

In space, we consider the space V̂h × Q̂h consist-
ing of higher-order Taylor-Hood elements Q4/Q2. The
combination of Q2/Q1 and Q4/Q2 allows a straightfor-
ward interpretation of a patch of Q2/Q1-cells as one
larger Q4/Q2-cell as described e.g. in Bangerth and
Rannacher (2003), see Fig. 4(a). We denote the corre-
sponding higher-order patch interpolator by

Î2h : (Vh × Qh)→ (V̂h × Q̂h).

In the time dimension we introduce a higher-order space
only for the pressure. The piecewise constant pressure
functions are transformed into a piecewise linear and
globally continuous function by nodal interpolation:

Îτ : (Pc
1(V̂h) × Pdc

0 (Q̂h))→ (Pc
1(V̂h) × Pc

1(Q̂h)),

see Fig. 4(b). With these interpolations, efficient higher-
order representations of the discrete solutions of the
primal and dual problem can be defined by

(υ̂, p̂) := Îτ(Î2h(υτh, pτh)),

(ẑ, q̂) := Îτ(Î2h(zτh, qτh)),

which will be inserted as test functions in the primal
and dual residual for error estimation. It is well-known
3This approach assumes that the discrete residual operator are good ap-
proximations of the time-discrete operators, i.e. ρ(uτh)(·) ≈ ρ(uτ)(·) and
ρ(λτh)(·) ≈ ρ(λτ)(·).
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(a) Patch of four cells forming one bigger cell with higher finite
element ansatz. The nodal points of the respective Lagrange finite
elements are located at the same places.

(b) Piecewise linear interpolation of a piecewise constant function.

Figure 4: Higher-order interpolation in two space dimensions (a)
and in the time dimension (b). Dots represent nodal points of the
respective finite elements.

that the residual of a Galerkin solution vanishes for all
test functions of the test space associated to the discrete
problem. This so-called Galerkin orthogonality guaran-
tees that the residual remains unchanged when arbitrary
discrete functions are added to the test functions. Hence,
the discrete parts of the higher-order primal and dual
solutions may be subtracted before using them as test
functions during the error estimation which is benefi-
cial when cell-wise contributions are determined. For
the identification of the discrete parts, we introduce the
nodal interpolations

Ih : (V̂h × Q̂h)→ (Vh × Qh),

Iτ : (Pc
1(V̂h) × Pc

1(Q̂h))→ (Pc
1(V̂h) × Pdc

0 (Q̂h)).

Finally, we define the approximations of the time-
discrete solutions of the primal and dual problem by

(υ̂τ, p̂τ) := Iτ(υ̂, p̂), (ẑτ, q̂τ) := Iτ(ẑ, q̂).

With these notations, the error characterization related
to the time discretization can be stated as

E(time) = ρ(υτh, pτh)(Z(time),Q(time)), (4.3)

which can be computed easily since all quantities are
known, i.e.

(Z(time),Q(time)) := (ẑτ, q̂τ) − Iτ(ẑτ, q̂τ).

The error characterization related to the space discretiza-
tion can be stated as

E(space) =
1
2

[
ρ(υτh, pτh)(Z(space),Q(space))

+ ρ∗uτh
(zτh, qτh)(U(space), P(space))

]
,

(4.4)

with computable representations

(Z(space),Q(space)) := (ẑτ + zτh, q̂τ + qτh)

− Ih(ẑτ + zτh, q̂τ + qτh),

(U(space), P(space)) := (υ̂τ − υτh, p̂τ − pτh)

− Ih(υ̂τ − υτh, p̂τ − pτh).

4.2 Error indicators

From the error characterizations (4.3) and (4.4) we de-
rive cell-wise error indicators for the control of subse-
quent adaptation. To this end, the primal and dual resid-
ual functionals ρ and ρ∗ are rewritten as sums of in-
tegrals over cells in the space-time mesh where parts
related to the initial conditions are neglected for sim-
plicity. Assuming a time-independent mesh Th and Ntime
time intervals, the residual of the discrete primal prob-
lem (3.5) has the form

ρ(υτh, pτh)(Z,Q) :=
Ntime∑
i=1

∑
K∈Th

ρK,i(Z,Q),

with contributions

ρK,i(Z,Q) :=
∫ ti

ti−1

(
(∂tυτh + (υτh · ∇)υτh, Z)K

+ ν(∇υτh,∇Z)K − (pτh,∇ · Z)K

+ (∇ · υτh,Q)K

)
dt,

(4.5)

where (·, ·)K denotes an integral over the cell K. Since
ρK,i(Z,Q) is defined on single cells and therefore all ap-
pearing functions are polynomials, integration by parts
can be applied leading to additional integrals over cell
edges. Each cell’s contribution results in

ρ̃K,i(Z,Q) :=
∫ ti

ti−1

(
(R, Z)K + (∇ · υτh,Q)K

+ (r, Z)∂K

)
dt,

(4.6)

where the cell-residual R is defined as

R := ∂tυτh + (υτh · ∇)υτh + ∇pτh − νΔυτh (4.7)

and (·, ·)∂K denotes an integral along the cell’s edge.
The edge residual r represents contributions over the
common edge γ := ∂K′ ∩ ∂K̂ of two neighbouring
cells K′, K̂ ∈ Th. Their contributions are accumulated
resulting in the jump of the derivatives over the common
edge. Denoting (·)′ and ˆ(·) the contributions of (·) on
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the cells K′ and K̂, respectively, the contribution of both
cells is

(ν∂n′υ
′
τh − p′τhn′, Z′)γ + (ν∂n̂υ̂τh − p̂τhn̂, Ẑ)γ

= ν(∂nυ
′
τh − ∂nυ̂τh, Z)γ,

(4.8)

where the fact that the dual velocity Z and the primal
pressure pτh are globally continuous and the normal unit
vectors of the two cells are anti-parallel (i.e. n := n′ =
−n̂) was exploited. Hence, the edge residual is defined
as

r :=

{
1
2ν(∂nυ

′
τh − ∂nυ̂τh), if γ � ∂Ω,

ν∂nυτh − pτhn, if γ ⊆ ∂Ω.

In similar way, the residual of the discrete dual problem
ρ∗υh

(zτh, qτh)(U, P) can be written as sum of cell contri-
butions. Using integration by parts,

ρ̃∗K.i(U, P) :=
∫ ti

ti−1

(
(R∗,U)K − (∇ · zτh, P)K

+ (r∗,U)∂K

)
dt,

(4.9)

where the dual problem’s cell residual R∗ and edge
residual r∗ have the form

R∗ := − ∂tzτh + ( (∇υτh)T − (∇ · υτh)

− (υτh · ∇) ) zτh − νΔzτh − ∇qτh,

r∗ :=

{
1
2ν(∂nz′τh − ∂nẑτh), if γ � ∂Ω,

(υτh · n)zτh + ν∂nzτh + qτhn, if γ ⊆ ∂Ω.

Cell-wise error indicators for the temporal error contri-
butions are defined by

η(time)
K,i := |ρ̃K,i(Z

(time),Q(time))| (4.10)

and the spatial indicators are defined by

η
(space)
K,i :=

1
2
|ρ̃K,i(Z

(space),Q(space))

+ρ̃∗K,i(U
(space), P(space))|.

(4.11)

These indicators contain information about the origin of
errors and can be used to control the adaptation of the
discretization in different ways, e.g. local mesh refine-
ment, nesting, and adaptive time-stepping.

4.3 Adaptation strategy

We consider a restricted form of adaptivity where the
space dimension is decoupled from the time dimension.
In the following, we derive reduced error indicators
(due to the separation of space and time dimension) and
describe the iterative adaptation strategies by which the
spatial error indicators should be balanced over the mesh
and the temporal error indicators over the partition4.

4It has been described in literature for the case of global error norms that
an optimal mesh can be characterized by an equilibrium of local error
contributions, see e.g. Babuška and Rheinboldt (1978); Eriksson and
Johnson (1991).

Adaptation of the space discretization

For the steering of the mesh, we introduce a reduced
form of spatial indicators by taking the maximum error
indication of each cell over all time intervals:

η
(space)
K :=

Ntime
max

j=0
η

(space)
K, j , (4.12)

for any cell K ∈ Th. With regard to the comparison of
optimized meshes based on different goal functionals, an
adaptation strategy is desired that leads to meshes with
a given number of cells. During the mesh adaptation,
the periodicity of the domain must be considered (see
condition (3.2)), the mesh should fulfil the 1-irregularity
condition5, and a patch-structure is required (for effi-
cient computation of the higher-order interpolation, see
Fig. 4(a)). These requirements make the adaptation to-
wards a mesh with given number of cells a non-trivial
task, since each cell-refinement can imply the refine-
ment of several other cells on one hand and cells that
are marked to be coarsened will only be coarsened if all
involved cells are also marked on the other hand. There-
fore, we apply an iterative mesh adaptation procedure
and decouple the steps of coarsening and refinement.

Assume that a mesh consisting of N(opt)
space cells should

be constructed with balanced error indicators. In the ith
adaptation cycle of the DWR method, let the current
mesh consists of Ni

space cells. Then the objective in the
current adaptation step is a mesh consisting of

N(opt),i+1
space := Ni

space + k(N(opt)
space − Ni

space),

cells, where k ∈ (0, 1] is a damping parameter (we used
k = 0.7). We assume that refining a cell into four smaller
cells (for quadrilaterals) results in a reduction of the
error for the covered area by a factor of (1/2)α. The
parameter α > 0 describes the order of the reduction
(we used α = 2). A cell is marked to be coarsened, if its
indicated error is smaller than the coarsening bound of

Bc := ηavg(1/2)α+2 ,

where ηavg is the desired average value, defined as the

sum of the indicators divided by N(opt),i+1
space . The factor

(1/2)α corresponds to error reduction in case of refine-
ment and (1/2)2 accounts for the increased number of
cells (one cell is refined into four). Hence, cells are
marked to be coarsened only if the expected error is ηavg
at most. The coarsening of all marked cells results in a
mesh with N̄i

space cells. If N̄i
space < N(opt),i+1

space , we apply an
iteration of successive mesh refinements. In each step,
a small number of cells with highest error indicators is
refined (only cells are allowed that existed in the mesh
on which the error indicators where calculated). If the

5At most one inner nodal point (i.e. hanging node) of any neighbouring cell
may exist on any edge of any cell in the mesh. This condition reduces the
implementation complexity for global continuity of solutions and reduces
the number of constrained degrees of freedom at hanging nodes.
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resulting mesh contains N(opt),i+1
space cells (with an accuracy

of 5 %), the refinement iteration stops and the mesh is
accepted for the next DWR cycle.

The iteration over DWR cycles terminates, if the pre-
viously described strategy causes no more coarsening or
refining, which means that the error indicators are well-
balanced. The desired number of cells is approximately
achieved (often up to an accuracy of few cells) as long as
enough DWR cycles have been performed. For the adap-
tive runs of the tropical cyclone scenario, we discuss the
number of cells of the meshes during the DWR cycles in
the last paragraph of Section 6.1.

Adaptation of the time discretization

We seek a partition of the time interval with a given
number of sub-intervals for which the corresponding
temporal error indicators are well-balanced. To control
the adaptation, we introduce a reduced error indicator
for each sub-interval corresponding to the maximum
indicator over all cells of the mesh. On the jth time-
interval, the indicator is defined by

η(time)
j := max

K∈Th( j)
η(time)

K, j , (4.13)

assuming a partition t0 < · · · < tNtime . To deduce an
optimal partition based on the error indicators, the fol-
lowing relation between error indicator and time step
Δt j = t j − t j−1 is assumed for any j ∈ {1, . . . ,Nk

time}:

η(time)
j = C j · (Δt j)

β. (4.14)

Here, β > 0 is a parameter that describes the order of the
error that we introduce as a constant over the interval
[0, T ] (we used β = 2). This relation can be stated in
terms of a piecewise constant function

C(t) := η(time)
j /Δt βj , t ∈ [t j−1, t j). (4.15)

The conditions for the optimal partition can be formu-
lated by means of D : [0, T ] → R and E : [0, T ] → R

representing the time-step sizes and the error indication
as functions in time. The optimal partitioning should
consist of N(opt)

time cells, which can be stated as

∫ T

0
1/D(t) dt = N(opt)

time . (4.16)

The error indicators of all sub-intervals should be ap-
proximately at the same level, denoted by a constant
Ē ∈ R.

E(t) ≡ Ē. (4.17)

Assuming that relation (4.15) holds also for the optimal
partition results in C(t) = Ē/D(t)β. By equation (4.16),
the constant indicator Ē can be determined by

Ē =

(∫ T

0
C(t)1/βdt/N(opt)

time

)β

and D has the form

D(t) = (C(t)/Ē)1/β.

The optimized partition can be constructed successively
in terms of function D: Let t0 := 0 and for each j ∈
{1, . . . ,N(opt)

time } let the point in time t j be defined such

that
∫ t j

t j−1
D(t) dt = 1. We implemented this procedure

approximately with a sampling rate of one second for
the TC scenario in which T = 96 h.

Parameters of the adaptation strategy

For the adaptation strategy three parameters α, β, and k,
are used. Since these parameters are not used in the def-
inition of the error estimator or in the stopping criterion
of the iterative adaptation procedure, these parameters
have no direct influence on the optimized mesh or the
optimized partition of the time-interval in case of con-
vergence of the iteration.

However, the parameters can have strong influence
on the convergence properties of the adaptive proce-
dure in general. The parameters α and β represent an
(assumed) convergence rate characterizing the relation
between local error indicator and local discretization
parameter h or Δt. This relation is exploited to derive
guesses for optimal discretizations in space and time.
For the goal functionals JV , JV,ref, and JE the conver-
gence rate however is not known. Noting that these func-
tionals are defined in terms of integrals over the squared
velocity and first-order derivatives, there is a relation
to localized versions of the global H1-norm for which
the convergence rate of the discrete method is known
to be 2, cf. Brezzi and Falk (1991). For the cGP(1)
method applied for the time-discretization, the conver-
gence rate is also 2, cf Schieweck (2010). Therefore,
we chose the two parameters as α = β = 2 and observed
in numerical tests that small variances have small influ-
ence on the convergence property of the over-all adapta-
tion procedure for this scenario.

The parameter k ∈ (0, 1] is introduced as a damping
parameter for the desired number of cells in each adap-
tation cycle. Values k < 1 can lead to an increase in the
number of required adaptation cycles. This can be favor-
able in cases where the sensitivity and the corresponding
error estimates were not very accurate due to large ap-
proximation errors (e.g. first adaptation cycles on very
coarse meshes). As long as k is not too small, the num-
ber of iterations is not increased significantly.

5 Interpretation of the dual solution

In this section, we first give a general, physical inter-
pretation of the dual solution by revealing how it is con-
nected to sensitivity measures used in meteorology. Sub-
sequently, we discuss the structure of the dual solution
for the binary cyclone problem.
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5.1 Relation to meteorological sensitivity
measures

The dual solution as sensitivity

We investigate the influence that perturbations have on
a goal functional based on a formulation that takes per-
turbations into account. For simplicity, we neglect the
constraint of the velocity field being divergence-free and
consider an abstract variational problem in terms of the
residual operator ρ : V → V∗ where V∗ denotes the
space of linear and continuous functions that map func-
tions of the Hilbert space V on R. The unperturbed prob-
lem has the form:

υ ∈ V : ρ(υ)(ϕ) = 0 ∀ϕ ∈ V. (5.1)

The influence of a perturbations p ∈ V can be considered
by including P(p)(ϕ) := (p, ϕ) to problem (5.1). The
solution υ ∈ V of the perturbed problem must fulfill

ρ̃(υ, p)(ϕ) := ρ(υ)(ϕ) + P(p)(ϕ) = 0, (5.2)

for all ϕ ∈ V .
By the implicit functional theorem applied to (5.2),

υ = υ(p) is continuously differentiable and it holds in
the sense of V∗ (see e.g. Hinze et al. (2008)):

0 =
∂

∂υ
ρ(υ(p))υ′(p) + P′(p)

⇔ υ′(p) = −
[
∂

∂υ
ρ(υ(p))

]−1

IdV .

(5.3)

A functional’s sensitivity S on some perturbation δ is
given by means of its directional derivative:

〈S , δ〉 : =
d

dp
J(υ(p)) · δ =

〈
J′(υ), υ′(p) · δ

〉

=
〈[
υ′(p)

]∗ J′(υ), δ
〉

(5.3)
=

〈
−

⎛⎜⎜⎜⎜⎜⎝
[
∂

∂υ
ρ(υ)

]−1⎞⎟⎟⎟⎟⎟⎠
∗

J′(υ), δ

〉
.

(5.4)

The dual problem to (5.2) seeks for z ∈ V such that

ρ∗(z)(ϕ) : =
〈
ρ′(υ)ϕ, z

〉
+ J′(υ)ϕ

=
〈[
ρ′(υ)

]∗ z, ϕ
〉

+ J′(υ)ϕ = 0,
(5.5)

for all ϕ ∈ V . By means of the solution z, the influence
of a perturbation δ can be written as

〈S , δ〉 =
〈
−

([
ρ′(υ)

]−1
)∗

J′(υ), δ
〉

= 〈z, δ〉 . (5.6)

Hence, the sensitivity S corresponds to the dual so-
lution. For many meteorological applications, the in-
vestigation of perturbed initial conditions is very im-
portant. In this case, the scalar product in (5.6) has
only a contribution at initial time t = 0, i.e. 〈S , δ0〉 =
〈z(0), δ0〉. This quantity corresponds to the first-order ap-
proximation described in equation(4) on page 2579 of

Errico (1997). The adjoint of the model used in this
approximation and the dual solution described in our ar-
ticle are based on the same mathematical concept. How-
ever, the numerical approaches used to determine the
two quantities are quite different. We introduced the dual
problem in a functional analytic frame since the error es-
timation is defined in terms of a continuous dual resid-
ual operator. The dual problem is discretised afterwards
to calculate approximate solutions. In contrast, in me-
teorological model systems adjoint sensitivity is often
calculated by generating an adjoint version of the dis-
cretised equations, often using tools automating this pro-
cess (see e.g. Giering and Kaminski (1998)). Numeri-
cally the dual solution and the adjoint sensitivity thus are
not guaranteed to be identical.

The dual solution as optimal perturbation

The adjoint sensitivity can also be considered as an
optimal perturbation. Of all initial perturbations causing
a given change δJ ∈ R in the goal functional J they
have the smallest norm. The dual solution is related
to the same optimization problem, but the underlying
norm is not restricted to the time t = 0. The optimal
perturbations are solution of:

min
δ∈V
‖δ‖2, constraint:

d
dp

J(υ(p)) · δ = δJ , (5.7)

where we assume that the norm is defined in terms
of a scalar product ‖δ‖ :=

√
〈δ, δ〉. A corresponding

Lagrange functional has the form

L(δ, λ) = 〈δ, δ〉 + λ(δJ − 〈S , δ〉). (5.8)

By relation (5.6), it holds 〈S , δ〉 = 〈z, δ〉. An extremum
of (5.8) must fulfill the necessary condition

∂

∂δ
L(δ, λ)ϕ = 2 〈δ, ϕ〉 − λ 〈z, ϕ〉 = 0, (5.9)

for all ϕ ∈ V . Therefore, the optimal perturbation is a
scaled dual solution, i.e. δ ∝ z. Restricting the allowed
perturbations to the initial state at t = 0, the optimal
perturbation is a scaled version of the dual solution at
t = 0, i.e. δ0 ∝ z(0).

The singular vector approach is used in meteorology,
in addition to the adjoint sensitivity, to create optimal
perturbations which are also used to quantify sensitiv-
ity and determine sensitive regions. Singular vectors are
solutions to a different optimization problem. They are
the perturbations showing the strongest growth, e.g. in
the energy norm, for a given time interval (see Scheck
et al. (2013)). Despite the differing optimization prob-
lems in case of adjoint sensitivity and singular vectors,
their structures can be quite similar, as we will show in
the next section.
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Figure 5: Absolute value of the dual velocity at t = 0 for (a) the JE and (b) the JV goal functional computed with HiFlow3 and (c) again for
JE , but computed with the finite difference code of Scheck et al. (2013), which was also used to compute (d) the leading singular vector for
the energy norm. All quantities are scaled such that their integrated perturbation energy in r < 1000 km is the same.

5.2 Structure of the dual solution for binary
vortex interaction

The distributions of the dual velocity for the goal func-
tionals JV and JE at t = 0 (Fig. 5(a,b)) are quite simi-
lar. Both are dominated by thin filaments located north-
west of the western and south-east of the eastern vor-
tex, at distances between 150 km and 300 km. For JE
more structure is visible at larger radii, and for JV some-
what higher sensitivity is found closer to the vortex
centres, but the dominant structures are nearly identi-
cal. For comparison, we computed the adjoint sensitivity
for JE (Fig. 5(c)) and the leading energy singular vector
(Fig. 5(d)) using the finite difference code described in
Scheck et al. (2013). The adjoint sensitivity is nearly
identical to the dual solution, indicating that in both
cases physical processes and not numerical effects deter-
mine these quantities. The same dominant structures as
in the dual solutions are also found in the leading singu-
lar vector, although the latter is the solution of a different
optimization problem.

All of these optimal perturbations have the same ef-
fect – they cause a displacement of the vortices in the

final state. As an example, the linear time evolution of a
vorticity perturbation that is initially proportional to the
adjoint sensitivity for JE (Fig. 5(c)) is shown in Fig. 6.
The thin vorticity filaments are initially tilted against the
shear (Fig. 6(a)). The shear flow “untilts” these struc-
tures, which makes them more compact (see Fig. 6(b))
and increases the perturbation energy, a process known
as the Orr effect, cf. Orr (1907). The circulation asso-
ciated with the evolving vorticity filaments causes a dis-
placement of the vortices visible as dipole structures at
the vortex cores (Fig. 6(b)). Soon these dipoles dominate
the perturbation and grow until the end of the model run
(Fig. 6(c)).

A displacement of the vortices in the final state thus
is the most efficient way to cause a change in the goal
functionals JV and JE and, in case of the singular vector,
to achieve a maximum perturbation energy. To interpret
the structure of the dual solution it is therefore necessary
to understand the displacement process. In the following
we will not perform a full analysis of the perturbation
evolution, but give an explanation based on previous
results. For this purpose we consider the properties of
optimal perturbations for barotropic vortices in shear
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Figure 6: Time evolution of the vorticity perturbation corresponding to the adjoint sensitivity for JE (Fig. 5(c)). The perturbation vorticity
is shown at (a) t = 0, (b) t = 3 h and (c) t = 96 h. The black lines are streamlines in the co-rotating frame (see text).

Figure 7: Schematic view of the flow structures for (a) a westward
and an eastward moving cyclonic vortex steered by anticyclonic
shear flows and (b) two cyclonic vortices orbiting each other. Dashed
lines indicated separatrices in (a) the frames moving with each of the
vortices and (b) the co-rotating frame in which the positions of the
two vortices are nearly constant. Black dots are stagnation points,
the solid black circles labeled “1” and “2” are cyclonic vortices,
“A” indicates the positions of fictitious anticyclones arising from
the transformation into the co-rotating frame. Dotted arrows show
the motion of the cyclones. The black arrows show which parts
of the separatrices are preferred locations for optimal perturbations
and indicate the direction of the flow. The numbers indicate which
separatrix sections in (a) correspond to the separatrix sections in (b).

flows discussed in Scheck et al. (2013)6 and the flow
structure for interacting vortices analysed in Melander
et al. (1988).

Let us consider two interacting vortices, with vor-
tex 1 located north of vortex 2 (Fig. 7(a)). The circula-
tion associated with vortex 2 causes a westward directed,
anticyclonic shear flow at the location of vortex 1, which
will move westward. Analogously, vortex 1 causes an
anticyclonic shear flow at the location of vortex 2, which
moves eastward. For widely separated vortices the mo-
tion of the vortices and the direction of the shear flows
is nearly zonal. North and south of each vortex stag-
nation points exist (black dots in Fig. 7), where in the
co-moving frame the vortex circulation exactly cancels
the shear flow caused by the other vortex. The dashed
lines in Fig. 7 are separatrices, i.e. the streamlines in

6Scheck et al. (2013) consider the energy singular vectors. However, the
adjoint sensitivity for a goal functional analogous to JE is very similar to
the leading singular vector.

the co-moving frame that are connected to the stagna-
tion points.

For vortices in anticyclonic shear flows the optimal
perturbations are aligned with the separatrices (Scheck
et al. (2013)). Perturbation vorticity is found only close
to those sections of the separatrices (marked with thick
black arrows) that are not too far from the stagnation
points and where the flow is directed towards these stag-
nation points (see e.g. Fig. 5b in Scheck et al. (2013)).
These locations allow perturbations to move towards the
stagnation points, where they are able to maintain their
position relative to the vortex centre for a long time. As
discussed in Scheck et al. (2013), this has the advan-
tage that the perturbation circulation is able to displace
the vortex continuously in the same direction.

The assumption of purely zonal shear and zonal
movement is not valid for the binary cyclone interaction
problem considered in this study. The flow structure of
this case differs significantly from Fig. 7(a) because the
two vortices orbit around each other. The angular ve-
locity of the rotation does not vary strongly in the first
hours and the distance between the vortices is nearly
constant. Following Melander et al. (1988), we there-
fore consider the streamlines in the co-rotating frame,
which barely change in the first hours and allow for a
clear view of the flow structure and the advection of per-
turbations. The flow structure in the co-rotating frame
(Fig. 7(b)) can be interpreted as a superposition of the
flow structures in Fig. 7(a), in which the two stagnation
points between the cyclones have fused into one, plus
additional effects related to the rotation of the reference
frame. The transformation into the rotating frame is per-
formed by subtracting 1

2ω(x2 + y2) from the streamfunc-
tion in the non-rotating frame, where ω is the angular
velocity of the co-rotating frame. As discussed by Me-
lander et al. (1988), this transformation results in two
fictitious anticyclones east and west of the cyclone pair
(indicated with “A” in Fig. 7(b)). Under the influence of
these anticyclones the separatrix branches 1 and 8 now
connect the two outer stagnation points. Furthermore,
the stagnation point between the cyclones lies on a inner
separatrix that is not connected to the outer separatrices
crossing at the northern and southern stagnation points.
Despite of these differences, the separatrix sections cor-
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Figure 8: Adjoint vorticity for JE at t = 72 h.

responding to the locations of optimal perturbations in
Fig. 7(a) (thick black arrows numbered as 1 to 8) can be
identified in Fig 7(b). A comparison of Fig. 7(b) with the
dual solution for JE shows that the perturbation vorticity
is located exactly at the same separatrix sections. This
agreement suggests that the perturbation growth mecha-
nism in the binary cyclone interaction problem are very
similar to the mechanisms identified in Scheck et al.
(2013) for vortices in zonal shear flows. The alignment
with separatrices allows for perturbations to grow by the
Orr effect (see discussion in Scheck et al. (2013)) and
accumulate at stagnation points (visible in Fig. 6(b) for
the two outer stagnation points), where they are able to
cause efficient displacement of the vortices.

We conclude that perturbation growth by the same
processes as in Scheck et al. (2013) provides a plausi-
ble explanation of the structure of the dual solution dis-
played in Fig. 5. Up to now only the dual solution at
t = 0 has been discussed. During the phase, in which
the two vortices orbit around each other, the dual solu-
tion is qualitatively similar to the case t = 0. In the co-
rotating frame the sensitive regions evolve only slowly.
When the vortices separate and propagate along nearly
straight tracks, the dual solution becomes similar to the
optimal perturbations discussed in Nolan and Farrell
(1999) and Yamaguchi et al. (2011), which are charac-
terized by thin vorticity spirals winding around the vor-
tex outside the radius of maximum winds (see Fig. 8 for
an example). Only in the last hours the dual solution be-
comes restricted to the vicinity of the regions ΩE and
ΩV , which are used in the definition of JE and JV , re-
spectively. In this phase the dual solution for JE becomes
asymmetric while the one for JV remains symmetric.

6 Adaptive numerical runs
In this section, we present adaptive numerical simula-
tions for the binary TC interaction scenario (see Sec-
tion 2.1) performed with the multi-purpose finite ele-
ment library HiFlow3, Heuveline (2010). The DWR

error indicators (Section 4.2) that control the adaptation
are computed using the dual solutions discussed in the
previous section7 and we apply the strategies discussed
in Section 4.3 to adapt the space and time discretiza-
tion. We discuss the efficiency of the adapted meshes
and time partitions in comparison to uniform grids. For
this purpose, the number of unknowns is considered as
measure for the computational costs, while the costs re-
lated to the DWR cycles needed to construct the adapted
discretization is discussed only shortly. The latter de-
pend strongly on technical and implementation-specific
aspects (e.g. adaptation strategy, possibility to re-use so-
lutions of previous DWR cycles, availability of reduced
models, etc.) and are not in the focus of this investiga-
tion.

For the assessment of the quality of the adaptive runs’
solutions, we calculate a reference solution based on
a mesh with 1,327,104 degrees of freedom (DOFs) in
space (approx. DOF distance of 5 km) and 1,152 time
steps (of length 300 s each). Based on the velocity com-
ponent υref of this solution, we determined the reference
values for the position of the upper left storm at time T
and the three goal functionals:

JPos(υref) = (−1043.7 km, 153.4 km),

JV (υref) = 30.74 km2/s,

JV,ref(υref) = 14.49 km2/s,

JE(υref) = 41.61 km4/s2.

(6.1)

6.1 Adaptation of the spatial mesh

In this section, we describe adaptive numerical simu-
lations where the spatial mesh is adapted with respect
to the proposed goal functionals. The time step is uni-
formly chosen to be 300 s and not changed during the
grid adaptation. All adaptive runs are initialized on a
mesh consisting of 4096 cells.

For the three goal functionals, Figures 9(a), 10(a),
and 11(a) show optimized meshes with about 120,000
DOFs that fulfil the stopping criterion of the DWR
method (see Section 4.3). The cell colour illustrates each
cell’s error contribution according to its reduced error
indicator as defined in equation (4.12). Although the
h-adaptivity approach (coarsening or refining of single
cells) is quite flexible in comparison to alternative tech-
niques (such as nesting for instance), the local variability
of the cell sizes is limited. Besides the fact that coarsen-
ing and refining of cells changes the cell size by a factor
of 4 (in two space dimensions), additional constraints
due to the patch-structure and the 1-irregularity exist.
For instance, sharp discontinuities in the grid resolution
are not allowed. Therefore, a total balance of error indi-
cators over all cells (i.e. all cells would have the same
value) cannot be expected in general. Nevertheless, on
all three meshes the cells with high indicator values (i.e.

7The dual solution used in adaptive runs is computed on adaptive grids, not
on high-resolution uniform grids as in Section 5.



Meteorol. Z., 24, 2015 M. Baumann et al.: Goal-oriented adaptivity for idealized TCs – a binary interaction scenario 283

(a) Reduced error indicators on optimized grid with about 120,000 DOFs.

(b) Relative error in goal functional. (c) Position error at time T .

Figure 9: Adapted mesh, spatial error indicators, and error quantities for functional JV .

in the range of the largest two or three orders of magni-
tude) cover large parts of the domain and have both large
and small sizes. This can be interpreted as evidence for
a good balance of the error indicators and hence a good
distribution of the cell-sizes over the mesh for all goal
functionals.

The differences among these three meshes were
caused by the different error indicators calculated for
the respective goal functionals. A strong similarity be-
tween 9(a) and 10(a) can be discovered, reflecting that
the two underlying goal functionals are defined in terms
of the vorticity integral of one (the upper left) or both
tropical cyclone cores at the final storm position at
time T . Because of the linearity of the dual problem, its
solution for the two-storm-functional JV approximately
corresponds to the superposition of the dual solution for
the one-storm-functional JV,ref with its point reflected
version (in the origin). Since the grid in Fig. 10(a) is de-
signed for the prediction of one storm only, most of the
straight high-resolution section of the second storm is
missing. In the last two days, the second storm moves

through a rather coarse part of the grid. However, in
the first two days the second storm is inside the circular
high-resolution area around the domain centre also. This
difference is related to the fact, that in the first two days
the second storm has a large influence on the motion
of the first storm, whereas in the last two days it does
not. This behaviour illustrates that goal-oriented meth-
ods are able to detect automatically which features have
to be well-resolved at which times to minimize the er-
ror in the goal functional. The degrees of freedom not
required for the second storm can be reinvested to im-
prove the forecast for the first storm, leading to some
finer cells close to the final position of the storm and
in the area of the interaction during the initial phase of
development (compare Figs. 9(a) and 10(a)).

In contrast to the grids of the vorticity-based func-
tionals, no symmetric distribution of high resolution
around the final storm centre positions exist in case
of JE , see Fig. 11(a). This is in accordance with the
asymmetric distribution of kinetic energy around a mov-
ing storm. As discussed in Section 5.2, the dual solution
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(a) Reduced error indicators on optimized grid with about 120,000 DOFs.

(b) Relative error in goal functional. (c) Position error at time T .

Figure 10: Adapted mesh, spatial error indicators, and error quantities for functional JV,re f .

becomes strongly asymmetric only in the last hours. Ex-
cept for the asymmetric features close to the final vortex
positions the high-resolution part of the grid is quite sim-
ilar to the one for JV . The stronger variation of the error
indicators at larger radii in the coarser part of the grid
might be caused by the additional structures in the dual
solution for JE (Fig. 5(a)), compared to the dual solution
for JV (Fig. 5(b)). These additional structures at larger
radii are only present for the energy-based goal func-
tional, because remote vorticity perturbations can have
an influence on JE (their circulation contributes to the
kinetic energy near the cyclone centre), but not on JV .

For the investigation of the efficiency of the adaptive
methods, we first regard the error in the goal functional.
This error measure is well-suited from a methodological
point of view, since this error should be minimized by
the application of the DWR method. In Fig. 10(b), the er-
ror in the goal functional JV,ref on adapted meshes is de-
creased significantly compared to uniform meshes with
approx. the same number of unknowns (a reduction of
about two orders of magnitude). The dashed and dotted

lines represent the estimated error and the summed spa-
tial error indicators, respectively. On meshes with more
than 50,000 DOFs, the estimated error is a very good ap-
proximation of the true error. However, this is no more
the case for the goal functionals JV and JE , see Fig. 9(b)
and 11(b). As described in Section 2.2, the definitions
of these two functionals include the description of an
integration domain which is given by means of a given
approximate solution. In each DWR cycle, we redefined
the goal functional based on the current approximation
of the primal problem’s solution which is essential to
reposition the integration region to the relevant regions
relative to the storm position. The ever-changing defini-
tion of the functional must be taken into account in the
investigation of the error plots 9(b) and 11(b). The er-
ror in the goal functional (i.e. solid line) shows a great
variability, even for the functional JV although this is
closely related to JV,ref as the dual solutions and also the
adapted meshes indicate. The dashed and dotted lines
decrease asymptotically, similar to the behaviour for the
functional JV,ref. This motivates a more cautious conclu-
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(a) Reduced error indicators on optimized grid with about 120,000 DOFs.

(b) Relative error in goal functional. (c) Position error at time T .

Figure 11: Adapted mesh, spatial error indicators, and error quantities for functional JE .

sion that in cases of changing definition of the goal func-
tional, the two error quantities Espace(υτh) and ηspace(υτh)
are still good indications for the quality of the solution
with respect to – abstractly speaking – the structures
close to the storm at the final state. In summary, the error
in the goal functional JV,ref could be reduced strongly,
while for the other two functionals, the estimated er-
ror quantities indicate that the mesh adaptation lead to
an adequate mesh structure, although no smooth conver-
gence behaviour of the error in the goal functional could
be detected. In this sense, at least for the functional JV,ref
the efficiency of the adapted meshes is very high.

The error of the predicted storm position at its fi-
nal state at time T is shown in the plots 9(c), 10(c),
and 11(c). For the adapted meshes the storm position
can be predicted qualitatively correct (i.e. the storms
diverge) with a position error below 100 km even on
grids with less than 20,000 DOFs. On uniform meshes
with about 35,000 DOFs a qualitatively different solu-
tion is obtained, i.e. the vortices merge. This leads to
a position error of about 1, 000 km. Model runs based

on uniform grids yield the correct, non-merging solu-
tion only for 80,000 DOFs and above. Adaptive meshes
with about 30,000 DOFs lead to a position error of
about 10 km for all goal functionals. Using the energy-
based functional JE, a mesh could be constructed with
about 120,000 DOFs leading to a position error of less
than 1 km. This suggests that the dual solution’s asym-
metrical structure with respect to the storm centre and
the asymmetry in corresponding optimized meshes do
not lead to large additional prediction errors. It must
be noted that a storm position characterization in terms
of the location of maximum vorticity is a delicate is-
sue, especially on non-uniform meshes. We regularized
this characterization by considering a vorticity-weighted
barycentre which allows for sub-grid accuracy. Different
error norms (e.g. time-averaged errors) and other char-
acterizations of the storm position might lead to slightly
different error quantities. Nevertheless, the numerical re-
sults for all goal functionals show a considerably de-
crease in the position error compared to uniform meshes
with the same number of unknowns. Therefore, high ef-
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Figure 12: Sequence of meshes (corresponding to line 5 of Tab. 1) during the adaptation cycles of the DWR method for goal functional JV

for desired mesh with 6,000 cells.

Table 1: Number of desired cells (first column), number of DWR
cycles of adaptive method (last column), and number of cells during
DWR cycles (remaining columns) for goal functional JV .

desir. cyc. 1 cyc. 2 cyc. 3 cyc. 4 cyc. 5 cyc. 6 cyc. 7 cyc. 8 N

1000 4096 2032 1528 – – – – – 3
2000 4096 2608 2152 2080 – – – – 4
3000 4096 2824 2920 2968 3004 – – – 5
4000 4096 2848 3640 3880 3940 3964 – – 6
6000 4096 2944 5056 5704 5896 6004 – – 6
8000 4096 2944 5872 7336 7792 7924 8032 – 7

12000 4096 2992 5968 10168 11464 11824 11980 12016 8

ficiency of the adapted meshes is given also with respect
to the track prediction quality – which is the quantity
of real interest that was mimicked by the proposed goal
functionals.

Up to now only the end products of the grid adapta-
tion procedure and their properties have been discussed.
In the following, we give some insight into the evolu-
tion of the mesh during the adaptation procedure. As an
example, the number of cells during the DWR cycles
for the goal functional JV are displayed in the Table 1.
In addition, Fig. 12 shows the 6 meshes corresponding
to line 5 of Tab. 1, i.e. the adaptation towards a mesh
with 6,000 cells. All adaptation runs start on the same
uniform mesh with 4,096 cells (i.e. 36,864 DOFs) and
it takes between 3 (for coarse meshes) to 8 (for fine
meshes) adaptation cycles until the stopping criterion
(see Section 4.3) is reached. In the first adaptation step,

the number of cells decreases strongly (up to a factor
of two). For most of the runs, the number of cells in
the final adapted meshes is close to the desired number
of cells shown in the first row of the table (up to less
than one percent of accuracy). Only for the meshes with
1,000 or 2,000 desired cells the obtained meshes consist
of too many cells. This is a consequence of the stopping
criterion, which aims at well-balanced error indicators
but does not directly take the number of cells into ac-
count. Similar developments of the number of cells dur-
ing the adaptation cycles are obtained for the goal func-
tionals JV,re f and JE.

The computational costs of the over-all procedure
primarily arises from the repeated calculations of the
primal and dual solution during the DWR cycles which
can be estimated from the number of unknowns and the
number of adaptation cycles. The rather slow conver-
gence towards the final number of cells means that for
the experiments conducted for this study the computa-
tional effort for the grid adaptation present a significant
overhead. However, our adaptation strategy was not de-
veloped to minimize the total cost of the adaptation pro-
cess, but to construct an efficient mesh at the end. There
are several possibilities to reduce the total costs, e.g. by
allowing refinement and coarsening by several levels in
each adaptation cycle, which should reduce the number
of cycles. Here we refrain from a detailed investigation
of these possibilities, which are not in the focus of this
work and could be the topic of a separate study.

The initial separation distance between the two vor-
tices in the grid adaptation experiments is close to the
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critical distance for merging. This choice allows us to
study how a quite nonlinear dependence of the solution
on the initial conditions influences the grid adaptation
process. On the initial, uniform mesh with 4,096 cells
used for the grid adaptation experiments (top left panel
in Fig. 12), the numerical simulation cannot reproduce
the physically correct solution in which the cyclones di-
verge. Instead, the two cyclones merge, which leads to
a position error of more than 1,000 km (see Fig. 9(c)).
Since the dual solution is based on a linearization around
the primal solution in which the storms merge, the sen-
sitivity information cannot account for the fact that the
storms should diverge. Therefore, the corresponding er-
ror indicators are high only at the domain’s center and
lead to high resolution in this region (see second mesh in
Fig. 12). Although this mesh is constructed based on the
inaccurate approximate solution, it turns out that due to
the increased resolution at the region of the initial inter-
action phase, the qualitatively correct (diverging) storm
tracks can be reproduced in the next cycle. From there
on, higher resolution develops at sensitive regions and
especially along the correct storm tracks within the iter-
ations.

This rather harmless impact of the bifurcation on the
grid adaptation is obtained also for the goal functionals
JV,re f and JE . However, from these examples it cannot
be concluded that there exists a general mechanism that
always ensures the convergence of the adaptive method
(to the knowledge of the authors no such convergence
proof exists). The employed adjoint sensitivity is based
on a linearization, which is meaningful only for small
perturbations. For highly nonlinear problems, the sensi-
tivity can be very inaccurate even for very small pertur-
bations. If this issue should should slow down or prevent
the convergence of the grid adaptation process for more
complex test cases or models, it may be helpful to con-
sider modified goal functionals that are not only defined
at the forecast time (as the ones considered in this study),
but formulated as a time integral over the full simulated
time period. For such functionals, the sensitivity refers
in particular also to early stages of the solution8 where
the error due to the linear approximation should be small
enough to allow for a meaningful sensitivity information
and thus cause grid refinement in the correct regions.

6.2 Adaptation of the time partition

In this section, we present numerical results for goal-
oriented adaptation of the time-discretisation for the
goal functional JV,ref. To investigate properties related to
the time discretization, we fix the spatial discretization
and use a pre-optimized mesh with 36,864 DOFs. We
determine reduced temporal error indicators and opti-
mize the partition of the time interval based on the adap-
tation strategy described in Section 4.3.

Figure 13 shows the distribution of error indicators
and time step sizes on adaptive and uniform partitions

8In our test case: before the bifurcation.

consisting of 144 and 1,152 sub-intervals. The error
indicators on uniform partitions (black lines in upper
row) vary by several orders of magnitude within the
time interval. High values can be found during the first
20 hours, where the two cyclones are closely located
(phase of mutual interaction) and also on the last few
hours for all partitions. Based on such error indicators,
new partitions can be constructed as described in Sec-
tion 4.3. The structure of optimized partitions after some
DWR cycles are shown in the grey plots in the lower row
of Fig. 13. In phases where error indicators of uniform
meshes are large, smaller time step sizes can be found in
the optimized partitions, and vice versa. The step sizes
vary by a factor of approx. 10 within each partition. The
resulting error indicators on the optimized partitions are
plotted in the upper row of Fig. 13 in grey. The indicators
are well-balanced (i.e. values correspond approximately
to a fixed value) and their variability is smaller for the
case of 1,152 sub-intervals.

Goal-oriented adaptation of the partition leads to re-
markable improvements with respect to the different er-
ror measurements. To analyse the error due to the time-
discretization, we determined a reference solution on a
partition consisting of 9,216 uniform sub-intervals. By
adaptation, the error in the goal functional is reduced by
about one order of magnitude compared to correspond-
ing uniform partitions, see Fig. 14(a). But the agreement
of the estimated error (dashed line) and the true error
in JV,ref (thin black line) is not very good. This prop-
erty might be improved by a more costly approach of a
higher-order representation of the primal and dual so-
lution during error estimation, cf. equation (4.2). The
position error at time T is reduced by about one order
of magnitude, see Fig. 14(b). About three-fourths of the
number of sub-intervals can be saved by adaptation to
achieve the same position error as using uniform parti-
tions. Hence, the efficiency of the partition-adaptation is
very high with respect to the error in the goal functional
and also the position error.

A reduction in the number of time-steps corresponds
roughly to the reduction in computing time of the nu-
merical simulation. Improvements related to adaptivity
in the time dimension is independent of the spatial dis-
cretization. If adaptation of the mesh is not possible or
undesirable for some reason, there might yet be great
potential to increase efficiency by adaptation in the time
dimension.

7 Summary and conclusions

In this article, we presented a goal-oriented grid adapta-
tion approach for efficient tropical cyclone forecasts and
applied it to an idealized problem. The binary cyclone
interaction used in this study presents a challenging
test problem, because the solution depends sensitively
and in a nonlinear way on the initial conditions and is
strongly affected by numerical errors. A non-divergent
barotropic model (corresponding to the incompressible



288 M. Baumann et al.: Goal-oriented adaptivity for idealized TCs – a binary interaction scenario Meteorol. Z., 24, 2015

Figure 13: Error indicators (upper row) and time step sizes (lower row) on uniform and adaptive partitions of the time interval.

(a) Relative error in goal functional. (b) Position error at time T .

Figure 14: Error quantities for goal functional JV,ref on a pre-optimized spatial mesh consisting of 36,864 DOFs.

two-dimensional Navier-Stokes equations) served as an
idealized description of the atmospheric dynamics. For
the numerical solution we used a space-time finite el-
ement method. The discrete solutions are Galerkin pro-
jections with respect to the space and the time discretiza-
tion and are suitable for goal-oriented error estimation
in the framework of the DWR method. This method al-
lows for automatic grid adaptation with the aim of min-
imizing the error in a user-defined goal functional. For
this purpose, a linear sensitivity analysis is carried out,
which identifies the cells having the largest influence on
the goal functional. We investigated several physically

motivated goal functionals that are correlated with the
storm position and computed the associated sensitivity
information in form of the dual solution. The adjoint-
based sensitivity often used in meteorological applica-
tions was identified as a special case of the dual solu-
tion. The structure of the dual solution for the binary
TC interaction scenario could be explained by inter-
preting it as an optimal perturbation, which grows by
mechanisms similar to the ones identified for vortices in
shear flows. We proposed an a posteriori error estimator
for these goal functionals, derived separate error indica-
tors for the space- and time-dimension, and developed
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strategies for the adaptation of the mesh and the time-
partition. We constructed optimized meshes for the trop-
ical cyclone scenario by refining and coarsening cells
(i.e. h-adaptivity) and optimized partitions of the time-
interval. This resulted in well-balanced spatial error in-
dicators over the cells and almost optimally distributed
temporal error indicators over the intervals of the time
partition. In a series of numerical tests on adapted and
uniform grids, we compared the error related to both the
goal functionals and also the predicted storm position.
For a fixed number of DOFs, the adapted grids lead to
significantly reduced errors in both norms. For spatially
adapted configurations with low number of unknowns,
the error in the position error was reduced by about two
orders of magnitude. For a given number of time steps,
the adaptation of the time partitioning resulted in a re-
duction of the error by another order of magnitude. In
this sense, these discretizations are therefore highly effi-
cient.

For the scenario under investigation, the efficiency
could significantly be increased by goal-oriented adap-
tation of the time partition. This demonstrates the great
potential of adaptivity in the time-dimension which can
be achievable even if the mesh can not or should not be
adapted. The temporal error indicators (4.10) quantify
each cell’s contribution to the error related to the time-
discretization for any cell in the space-time mesh. From
these, we derived reduced error indicators (4.13) to
adapt mesh-global time steps instead of adopting adap-
tivity on the level of the space-time mesh directly. The
perspective of a Cartesian product of one spatial mesh
and one partition of the time interval involves strong
limitations with respect to adaptivity, but already al-
lowed for considerably efficiency improvements. Future
investigations should address more flexible adaptivity
techniques including dynamic mesh adaptation. In the
context of such space-time finite element methods, the
consideration of a space-dependent time-discretization
(e.g. varying time-step sizes or locally higher-order
methods for the time-discretization) controlled by goal-
oriented error indicators seems to be promising.

In this article, efficiency was defined in terms of qual-
ity (either error in goal functional or error in storm po-
sition) and the number of unknowns on optimized dis-
cretizations. We did not take the required CPU time into
account, which depends strongly on the implementation
(e.g. applied data structures, solvers, availability of re-
duced models, etc.), on the available hardware, and on
the adaptation strategy (i.e. the way how error indicators
control the mesh adaptation). Investigating the efficiency
of the full adaptive method is beyond the scope of this
study. However, ultimately the computational costs re-
lated to repeated calculations of sensitivity, error estima-
tion, and corresponding adaptation must be included in
the efficiency investigation to clarify whether the adap-
tive method is able to improve the efficiency of the over-
all computation. The goal-oriented approach requires
substantial computational resources for the error esti-
mation, primarily because it involves a linear sensitivity

analysis that allows for a detection of regions that are
important for the development of the storm. There are
alternative, computationally cheaper methods, e.g. error
estimators in global norms, which do not rely on sen-
sitivity information. However, the inability to detect re-
mote regions that could have a large impact on the devel-
opment of the storm could be a serious problem for these
cheaper methods. We plan to compare the goal-oriented
approach and these alternative methods in a future study.

The computational overhead associated with goal-
oriented grid adaptation could be reduced also, for in-
stance by using a model of reduced complexity for the
error estimation. Sensitivity information is computed
on relatively coarse grids in operational weather fore-
casting centers and used successfully for meteorolog-
ical applications like the definition of ensemble per-
turbations. This suggests that computationally cheaper
models could be sufficient also for the error estimation
required in the grid adaptation process. The results of
Bauer et al. (2014) present an argument in favour of the
feasibility of this approach. They demonstrate that er-
ror estimates obtained with a finite element model can
be used successfully to control the grid adaptation in
a finite difference model, even in the case where the
two model equations are not exactly the same. Further-
more, they show that considerable gains in efficiency
can be achieved even if grid adaptation is applied only as
pre-processing step and not implemented as an iterative
process. With similar solutions, efficiency gains might
be achievable even in cases where some components
(e.g. the adjoint model) needed for rigorous a posteri-
ori error estimation do not exist. Such approaches rep-
resent important steps towards goal-oriented adaptivity
for more realistic tropical cyclone forecast models.

In this study we considered two physically equally
well-motivated goal functionals based on regions of
high kinetic energy or high vorticity. Both of them are
strongly correlated with the storm positions and resulted
in highly efficient grids. An analysis of the dual solu-
tions indicated that the most efficient way to change the
value of the goal functionals is in both cases to move the
storm, and the optimal perturbations causing a displace-
ment of the storm are basically the same in both cases.
Furthermore, the fact that the energy-based functional
introduced an artificial asymmetry in the solution did not
result in obvious problems, because this asymmetry in
the grid became evident only at the very end of the simu-
lated time span. These results indicate that at least in the
barotropic case finding an adequate goal functional for
the prediction of tropical storms is not a major problem.
An investigation of goal functionals for more realistic,
three-dimensional models including moisture could start
from a generalization of these goal functionals. We also
investigated the case where only one of the two storms is
of interest and included in the goal functional. This case
illustrates the possibility of the goal-oriented approach
to focus on a specific feature. It would be also possible
to consider more than one feature by using the sum of
several goal functionals. This would e.g. allow for the
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enhanced representation of features that are not impor-
tant for the storm itself, but depend on the storm and
are relevant forecast goals. Remote heavy precipitation
events triggered by tropical storms are an example for
such a feature.

In this study we consider only the discretization er-
ror, which is an important contribution to the model er-
ror, and its impact on the forecast. An even more chal-
lenging problem for numerical weather prediction is the
inherent uncertainty in the initial state and the bound-
ary conditions. Probabilistic forecasts take these uncer-
tainties into account by employing ensembles of model
runs. In general the differences between the indepen-
dently evolving ensemble members become too large
to describe them by a linear model like the discretized
dual problem used in this study. Although the meth-
ods used here can thus not be applied directly to ac-
count for the uncertainty, extensions to this approach
that will address uncertainty are in development. One
first study in this new field of research that focuses on
stochastic advection-diffusion problems, cf. Almeida
and Oden (2010), involves an adaptive algorithm that
adjusts the probabilistic grid and the discretization error.
To our knowledge, such methods have not been applied
to complex atmospheric model systems yet, but repre-
sent promising approaches that could lead to major ad-
vancements in probabilistic numerical weather predic-
tion.

Even without such comprehensive concepts that di-
rectly involve the uncertainty, TC forecasts could ben-
efit from the fact that the sensitivity with respect to
the goal functional, the dual solution, is a free by-
product of the error estimation process. This informa-
tion could be helpful in reducing the uncertainty in the
initial state. For instance, it could be used to determine
where additional observations should be carried out (tar-
geted observations). The assimilation of these observa-
tions will specifically reduce the fastest-growing errors.
Moreover, also in the data assimilation process itself ad-
joint models are required (e.g. for the 4DVar method
used at ECMWF) or could be beneficial, see e.g. Zhang
and Zhang (2012). Obtaining information comparable
to the dual solution (e.g. in form of adjoint sensitiv-
ity or singular vectors) usually requires significant addi-
tional effort. Thus, goal-oriented adaptivity can provide
more than just optimized meshes and for a fair compar-
ison with other grid refinement methods this advantage
should be taken into account.

Appendix

In the following, the notations for the continuous and
discrete function spaces that are used in this article are
outlined.

The continuous function spaces

As is customary in literature, the space of squared
Lebesque measurable functions is denoted by L2(Ω)

with the inner product (a, b) =
∫
Ω

a(x) · b(x) dx and
the two-dimensional variant H := L2(Ω)2. For the pres-
sure variable we introduce the function space Q :=
{p ∈ L2(Ω) |

∫
Ω

p(x) dx = 0}. For the velocity variable
the space of vector-valued functions with distributional
derivatives that fulfil the periodicity condition (3.2) ad-
ditionally is introduced and denoted by V := H1

p(Ω)2

with dual space V∗.
For the time-dependent functions, we introduce the

following notation for arbitrary Banach spaces B (e.g. H
or V). The space of functions f : [0, T ] → B for which∫ T

0 ‖ f (t)‖pB dt < ∞ for p ∈ [0,∞) is denoted Lp(0, T ; B).
Similarly, L∞(0, T ; B) denotes the space of functions for
which M > 0 exists such that ‖ f (t)‖B ≤ M for almost all
t ∈ [0, T ]. With these notations, the functions spaces for
the continuous primal and dual problem (3.3) and (3.4)
are

X := {υ ∈ L4(0, T ; V) | ∂tυ ∈ L2(0, T ; V∗)}
∩ L∞(0, T ; H),

Y := L2(0, T ; V) ∩ L∞(0, T ; H),

M := L2(0, T ; Q),

Since functions in X are almost everywhere equal to a
continuous function in time, Emmrich (2004), the initial
condition for the velocity is meaningful. Further details
on the function spaces and the presented variational for-
mulations can be found e.g. in Emmrich (2004); Temam
(2001).

The discrete function spaces

For the spatial finite element discretization, correspond-
ing function spaces for the velocity variable, Vh ⊆ V ,
and for the pressure variable, Qh ⊆ Q, are defined by

Vh :=
{
υh ∈ C(Ω)2 | υh|K ∈ Q2(K)2 ∀K ∈ Th

}
,

Qh :=
{
ph ∈ C(Ω) | ph|K ∈ Q1(K) ∀K ∈ Th

}
.

Here, Qm(K) denotes polynomials of maximum degree
m ≥ 0 in each variable defined on cell K ∈ Th which in
two space dimensions has the form

Qm(K) := {q : K → R | q(x, y) =
∑

0≤s,t≤m

qst x
syt},

for qst ∈ R and (x, y) ∈ K. Global continuity of the
function spaces Vh and Qh can easily be guaranteed
by simple interpolation conditions, as described e.g. in
Heuveline and Schieweck (2007).

For the discretization in time, we consider B-valued
functions (B being some arbitrary function space) that
are defined on the interval I = [0, T ] and assume a
partitioning of the form 0 = t0 < t1 < . . . < tN = T .
We introduce functions that are polynomials of order k
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on each sub-interval (ti−1, ti) ⊂ I:

P
dc
k (B) := { f : I → B | f|(ti−1,ti)(t) =

k∑
n=0

fnt n

∀t ∈ (ti−1, ti), fn ∈ B, 1 ≤ i ≤ N } .

These functions may be discontinuous at all points in
time ti. We introduce additionally the corresponding
space of continuous functions by intersection with the
space of globally continuous functions, i.e.

P
c
k(B) := P

dc
k (B) ∩ C([0, T ]; B),

which is used for the trial functions of the velocity
variable.
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