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Abstract 

We present and characterize a versatile device for studying the controlled interaction of free 

nanoparticles with supersaturated vapors. It utilizes a rf- ion trap for storing a cloud (>10
8
 

particles) of singly charged nanoparticles in the sub 10 nm size regime and combines it with a 

static supersaturation chamber operating at low pressure in the free molecular flow regime. This 

allows for the stable production of a homogeneous zone of variable saturation that can reach very 

high levels of supersaturation (S>10
4
). Compared to diffusion chambers, much higher saturations 

and more homogeneous saturation fields can be achieved and convective flow is not an issue. 
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The analysis of the adsorption and nucleation processes on the surface of the nanoparticles can 

be performed by mass spectrometry and optical spectroscopy. We discuss the general function 

principle of the device and demonstrate that it is well suited for studying water adsorption and 

deposition ice nucleation on metal oxide nanoparticles under conditions of the upper atmosphere 

of the Earth and of Mars. 

  

D
ow

nl
oa

de
d 

by
 [

K
IT

 L
ib

ra
ry

] 
at

 0
0:

52
 2

2 
Ju

ne
 2

01
5 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 3 

1. Introduction 

Nanoparticles bridge the gap between atoms and atomic clusters and condensed matter. Due to 

their specific and size dependent properties, they have found widespread application in science 

and technology but also play an important role in many natural processes. In atmospheres, they 

act as condensation nuclei for vapors to promote the formation of the liquid or solid phase. 

During the last decades, substantial progress has been made in cluster and nanoparticle research 

by applying vacuum techniques like electron microscopy (Liu 2005; van der Veen, Kwon et al. 

2013), mass spectrometry (Wang and Johnston 2006; Murphy 2007; Zordan, Pennington et al. 

2010) and x-ray photoelectron spectroscopy (Wu, Yin et al. 2006; Wilson, Shengli et al. 2007; 

Meinen, Khasminskaya et al. 2010; Antonsson, Bresch et al. 2013). These techniques allow 

assessing the interplay between the electronic and geometric structure of the particles and their 

chemical and optical properties. This progress is made however at the cost of removing the 

particles from their natural or technological environment with the risk of altering their properties 

in that process. Therefore, newer techniques like environmental scanning electron microscopy 

(Nishiyama, Koizumi et al. 2014), high pressure photoelectron spectroscopy (Bluhm, Andersson 

et al. 2006; Salmeron and Schlögl 2008; Mysak, Starr et al. 2010) try to extend the modern 

technologies to more realistic atmospheric conditions. 

In the line of this approach, we describe in this contribution the design and characterize the 

performance of a novel type of ion trap for singly or weakly charged nanoparticles. This device 

allows exposing freely levitated nanoparticles to supersaturated vapors for studying the 

nucleation and growths of the condensed phase on these particles. A typical, but not the only area 

of application of such a device is the nucleation of ice particles in planetary atmospheres at low 
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temperatures as occurring in the nucleation of mesospheric ice clouds in the polar summer 

mesopause of the Earth (Rapp and Thomas 2006; Gumbel and Megner 2009). The notion of ice 

in this context is not restricted to H2O ice but may refer to any solid formed from a condensable 

vapor (e. g. CO2, Hydrocarbons etc.). 

This device, which we call the molecular flow ice cell (MICE), is an extension to our apparatus 

TRAPS (Trapped Reactive Atmospheric Particle Spectrometer), that was described previously 

(Meinen, Khasminskaya et al. 2010). It allows to expose a large (>10
8
 particles) and well 

characterized ensemble of sub 10nm dia. nanoparticles to condensable vapors of well-defined 

and variable saturation including high supersaturation. The principle of operation of this novel 

device is similar to the well-known diffusion chamber. There are two fundamental differences 

however. In MICE, we cannot employ the simple co-planar or concentric geometry typically 

found in diffusion chambers but we have to retain the symmetry of the linear quadrupole ion 

trap. More importantly, the background gas pressure in the nanoparticle trap is low. Therefore 

MICE does not operate in the continuous flow regime, where diffusion controls the 

concentrations of the vapor but in the free molecular regime. As it is detailed below, this greatly 

facilitates the creation of high levels of supersaturation. 

This manuscript is organized as follows: In section 2 we provide the underlying principles of 

MICE, while in section 3 we describe the actual design of the new ice cell in detail. In section 4, 

we show representative measurements of the adsorption of water on metal oxide particles and the 

heterogeneous nucleation of ice on the surface of these particles in order to demonstrate the 

proper operation of MICE. In section 5 we discuss possible applications and limitations of the 

device. 
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2. Principle of operation 

The diffusion chamber was introduced by Langsdorf (1939) as a device to create a stationary and 

well-controlled volume of supersaturated vapor. In its most simple form, it consists of two large 

parallel plates held at close distance to each other. The opposing surfaces are coated with the 

condensed phase of the species of interest and are kept at disparate temperatures. If the transport 

of heat and vapor from the warm to the cold plate is governed by diffusion, an approximately 

linear gradient of both parameters is established in the space between the plates (Brown Jr and 

Schowengerdt 1979). 

A schematic representation of this situation is given in Fig. 1a, which illustrates that the highly 

nonlinear dependence of vapor pressure on temperature gives rise to a central zone of 

supersaturation. The diffusion chamber principle is not limited to the coplanar geometry depicted 

above and other geometrical arrangements, like e.g. concentric cylinders have been employed 

(Severynse 1964; Saxena and Carstens 1971; Rogers 1988). It may be extended to arbitrary 

geometries by applying the stationary diffusion equation for temperature and vapor in that 

geometry. If however the device is operated in the regime of free molecular flow, i.e. if the mean 

free path in the gas phase is larger than the distance between the plates, this situation changes. 

Under these conditions, the molecules evaporating from each wall retain their Maxwellian 

velocity distribution corresponding to the temperature of that wall. The particle temperature and 

the concentration of vapor molecules at any point in space can be calculated in a straightforward 

way to be the arithmetic average of the temperatures and saturation concentration of the walls 

weighted with the solid angle fraction under which each wall is seen by the particle (for details 

see appendix). In the case of two parallel plates, the respective high temperature- and low 
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temperature- weighting fractions are constants of ½ and independent of position. This situation is 

depicted in Fig. 1b. As exemplified for the actual geometry of MICE below, the supersaturation 

under free molecular flow conditions is generally higher and spatially more extended than in the 

diffusion limited case. 

3. Design of the ice cell 

MICE is a part of the TRAPS apparatus (Meinen, Khasminskaya et al. 2010), which is sketched 

in Fig. 2 and which is only briefly recalled here. It consists of an high intensity source for singly 

charged small nanoparticles (1), an aerodynamic lens (2) optimized to focus these nanoparticles 

into an vacuum- apparatus, an ion guide (3) to moderate and precool the particles, two 

quadrupole deflectors (4) and (5) to introduce and extract the particles from a temperature- 

variable linear nanoparticle trap (6) and a time-of-flight nanoparticle mass spectrometer (7) to 

analyze the mass of the particles after extraction. 

MICE replaces the linear nanoparticle trap (6). It combines an ion trap with a supersaturation 

chamber and its geometry is depicted in Fig. 3. The ion trap (r0=7 mm) is made of four parallel 

gold plated copper rods (length 480 mm) with semi-circular cross-section (d=16 mm) in a 

quadratic arrangement, to which the rf-AC potentials are applied. The potential on these rods 

creates the trapping fields for the particle containment. The rods are mounted inside a copper 

tube using SHAPAL
1
 ceramic spacers as electrical-insulators providing a high thermal 

conductivity. This assembly is mounted to a He- closed cycle cryostat (DE-104B-Turbo, 

Advanced Research Systems, Inc.) and serves as the cold wall in our setup. Under typical static 

                                                
1™Tokuyama Corp, Tokyo, JP 
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operation conditions, we measured the maximum temperature difference between the outer tube 

and the quadrupole rods (kept at ground potential) to be below 0.1 K. 

Radially located between the cooling tube and the quadrupole rods, is an additional tube made of 

gold plated copper, which has openings at the angular positions of the quadrupole electrodes but 

covers the space between them. It is kept at electric ground potential and acts as the warm wall in 

our setup. Therefore it is mounted to the outer tube using PEEK
2
 spacers which feature a very 

low thermal conductivity. The warm wall is heated using two heating foils located in an 

optimized position to minimize temperature gradients along the element. Six calibrated PT100 

temperature sensors are placed in small cavities along its longitudinal coordinate. One of the 

sensors is used for temperature regulation while the remaining five are used for temperature 

monitoring. 

In order to produce supersaturation, the warm and cold walls have to be covered with a layer of 

the condensable substance while being held at a low temperature. To deposit this layer prior to 

an experiment, a hollow stainless steel tube extending over the full length of MICE may be 

inserted via a feedthrough on the central axis (Fig. 3 (8)). The tube is closed on the far end and is 

connected to the vapor of the condensate at the other end. It carries four rows of laser drilled 

holes along its linear axis. Each row consists of one hundred holes with a diameter of 100 µm 

and 5 mm spacing between each hole such that the length of the particle trap is covered. The 

rows are located at angles of ninety-degrees in the direction of the warm wall, in order to direct 

the vapor exiting through the holes preferentially to the inner surface of the warm wall, as 

                                                
2™Victrex plc. Lancashire, UK 
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indicated by the arrows in Fig. 3a. At typical vapor pressure inside the tube of several hPa, the 

deposition is conducted for about 10 minutes to yield a typical layer thickness of several 10µm. 

For the chosen geometry, the temperature and vapor concentration profiles cannot be calculated 

analytically as compared to the idealized geometry discussed in the previous section. The 

diffusion equation has been solved numerically and the geometrical warm and cold wall 

weighting fractions have been calculated as a function of position. 

In Fig. 4 we compare the calculated temperature distribution and supersaturation profile both for 

diffusive (Fig. 4a) and free molecular flow (Fig. 4b) using the established parameterization for 

the saturation vapor pressure over Ice Ih from Murphy and Koop (2005). The lower panels show 

a central cross section of the temperature and saturation profiles along the horizontal dashed line. 

As noted above, the supersaturation under free molecular flow condition reaches higher values 

and extends over a larger volume than in the diffusive case. In both cases, the profiles are 

sufficiently flat to ensure homogeneous conditions for the particles which are stored in the 

particle trap. The radial particle density distribution in a gas filled linear quadrupole trap has 

been measured and calculated previously (Majima, Santambrogio et al. 2012). From their results 

one can estimate that under typical operation conditions (Vrf=800 V, Ω=2π·50 kHz, m=1.2·10
5
 u, 

q=+1e) and a well filled particle trap (N=10
8
) the ion cloud is radially confined to within a radius 

of 1mm around the central axis of the ion trap (indicated by a red dashed line in Fig. 4). 

Close to the ends of the particle trap, the temperature- and saturation profiles are no longer 

constant, as the ion lenses at the entrance and exit of the MICE are kept on the cold wall 

temperature. This does not introduce much inhomogeneity, as illustrated by the warm surface 

weighting function Fw (c.f. appendix) which is given along the central axis in Fig. 5. A zone of 
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reduced Fw and thus reduced supersaturation extends to about 10 % of the total length of the trap 

into each end of the trap. Fortunately, the end electrodes repel the particles, so that this zone is 

also a zone of reduced particle density (c.f. Fig. 5, dashed line). 

4. Experiments 

The setup presented above has been characterized in a series of experiments using nanoparticles 

of various metal oxides and both water and carbon dioxide vapors. All experiments were 

performed at low temperatures between 80 K and 150 K where the corresponding vapor pressure 

is low enough to obtain a stable operation of the trap and the deposit of solid phase on the warm 

walls is depleted at a rate low enough to be compatible with several hours of operation of MICE. 

The trap is operated at a background of Helium gas of about 0.2 Pa. Under these conditions, 

Helium atoms are much more abundant than vapor molecules. This ensures that the temperature 

of the nanoparticles and the wall surfaces is not influenced by the latent heat associated with 

evaporation- and condensation processes. At the same time, the density of helium atoms is still 

low enough to operate the trap in the regime of free molecular flow (c.f. discussion of Fig. 10 

below), which allows for a higher and more homogeneous supersaturation to be applied. 

A typical MICE-TRAPS experiment starts by cooling MICE to a temperature well below the 

lowest temperature to be applied to the cold wall. Under these conditions, the condensed phase 

of the material under investigation is frozen out on the wall electrodes as detailed above. The 

thickness of the applied layers has to yield a reasonable reservoir of material on the warm wall 

surface for an extended period of operation of the supersaturation cell and at the same time 

should not significantly disturb the electrical characteristics of the particle trap. It was found, that 
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a layer thickness of about 100 µm is acceptable. After applying the vapor, the particle trap is 

warmed to the temperature of the cold wall and after complete thermalization, the warm wall is 

heated further to its preset operation temperature. 

Small nanoparticles of a radius of 2 – 4 nm are produced in a microwave discharge particle 

source by mixing a volatile metal-organic precursor gas with oxygen and a superabundance of 

helium and exposing the mixture to a microwave discharge (Chou and Phillips 1992; Vollath, 

Szabo et al. 1997; Janzen, Kleinwechter et al. 2002; Szabó 2013). The resulting nanoparticles are 

introduced into the vacuum system via an aerodynamic lens optimized for particles of that size 

(Meinen, Khasminskaya et al. 2010). They are moderated in a first He- filled octupole ion guide 

before singly charged particles of one polarity are directed into MICE by means of an 

electrostatic quadrupole deflector operating at a deflection voltage between 50 V and 250 V. In 

Fig. 6, we give the total number of particles in MICE as a function of duration of filling. The 

maximum capacity of the trap of about 8·10
8
 particles is approached after filling it for about 60s. 

For the experiments described herein, the trap was operated at a total charge of about·10
7
 

particles which relates to an ion cloud radius of less than 0.5 mm. This is reached after a short 

filling time of 1-2 seconds. Then, the electrostatic entrance lens of MICE is closed and no more 

particles are admitted to the trap. Without any condensable vapor present, the particles may be 

stored under these conditions for more than 1000s with negligible losses. This is shown in Fig. 7 

where the amount of particles in the trap is given as a function of storage time. The slight 

variation in stored particle amount is due to fluctuations in the particle number density of the 

nanoparticle source during the independent experiments. 
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During a typical experiment, bunches of nanoparticles are extracted from MICE at subsequently 

longer residence times in the trap via the exit lens and are fed into the time-of-flight (TOF) mass 

spectrometer. Each bunch consists of ~ 10
5
 particles, so that the trap is not substantially depleted 

by the extraction. The TOF mass spectrometer is a home build device which employs a Daly- 

type detector for an efficient detection of large particles (Daly 1960). Its acceleration region is 

made of a modified quadrupole deflector unit. This allows interfacing the particle beam to other 

detectors and to further experiments. This flexibility comes at the cost of a reduced mass 

resolution of about m/m =100 which is sufficient for the application described herein. Details 

of this setup will be given in a subsequent publication. Any particle mass change with trapping 

time is attributed quantitatively to condensation processes occurring within MICE, as the flight 

time in the mass spectrometer is too short for significant evaporation of the particles in the mass 

spectrometer. 

This measurement principle is demonstrated in Fig. 8, where raw mass spectra of nanoparticles 

exposed to a low (a) and a high (b) concentration of water vapor are displayed as a function of 

residence time. It is evident that in both cases the particles gain mass by the deposition and 

growth of ice, but the growth rate is much higher at the higher nominal supersaturation. 

From such measurements, the mass growth rate of the nanoparticles can be determined as a 

function of the experimental parameters. In Fig. 9, we exemplarily present three different types 

of observed behavior. At low supersaturation (Fig. 9a) we observe an initial rapid growth of the 

particles that quickly levels off. At moderate supersaturation (Fig. 9b) a transition into an 

unlimited growth regime can be observed, while at higher supersaturation (Fig. 9c) the unlimited 

growth starts immediately and proceeds faster. 
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From the asymptotical value of the adsorption traces as shown in Fig. 9a we get the equilibrium 

concentration of molecules on the particle surface assuming a Langmuir-type adsorption model 

(Langmuir 1918) assuming sub-monolayer coverage and spherical adsorbates. We can further 

analyze the surface concentration using an adsorption – desorption equilibrium model 

(Pruppacher and Klett 2004, chap. 9.1.3). As the vapor concentration in the gas phase and the 

temperature are well known, the only remaining free parameter is the surface adsorption energy 

of vapor molecules, which can thus be deduced. In the unlimited growth regime (c.f. Fig. 9c) the 

sticking coefficient can be derived by comparing the measured to the theoretical mass growth 

rate in the gas kinetic regime (Brown, George et al. 1996; Davis 2006). 

From the growth curves at intermediate supersaturation as depicted in Fig. 9b, the critical 

saturation and under favorable conditions the nucleation rate can be obtained. By applying 

classical surface diffusion nucleation theory (e.g. Keesee 1989; Pruppacher and Klett 2004; 

Määttänen, Vehkamäki et al. 2005) using the above determined parameters of desorption energy 

and nucleation rate, the effective contact angle between nanoparticle surface and the solid phase 

of the vapor can be deduced. Details of this analysis for different gases and nanoparticle 

materials will be given in forthcoming publications. 

In Fig. 10, we plot the mass growth rate of water ice on silicon dioxide particles as a function of 

the He background gas pressure and associated Knudsen number (Kn, upper axis) under 

otherwise constant conditions. The curve clearly features a plateau region at lower pressure. At 

higher pressure, we observe a pronounced decrease in growth rate, which we attribute to the 

onset of the transition flow regime which is accompanied by reduced supersaturation at the trap 

center. It is reassuring that an area of operation can be found that allows for stable trapping of the 
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particles but is not influenced by the complications of the transition flow regime. For our 

experiments, we always limit the background gas pressure to remain in the molecular flow 

regime. 

5. Discussion 

So far we have studied the formation of solid water ice and of carbon dioxide ice on mineral 

nano- particles made of iron oxide, silicon oxide and iron- silicates which are considered a proxy 

of meteoric dust nanoparticles found in upper planetary atmospheres. The size- material- and 

supersaturation- dependent nucleation and growth rates measured will be the focus of subsequent 

publications. Here we summarize our findings on the general applicability and limitations of this 

new device. 

MICE proved to be a powerful tool in observing the adsorption- nucleation and growth of 

condensable vapors in a pressure regime compatible with molecular flow. By analyzing surface 

adsorption measurements, we were able to derive effective nanoparticle surface areas and surface 

desorption energies. In future experiments, it might be possible to study the effect of surface 

coatings and functional groups on these properties. 

We observe that the critical vapor supersaturation needed for the nucleation of the new phase 

depends strongly on the type of vapor (so far, H2O and CO2 have been investigated). Comparing 

to classical heterogeneous nucleation theory, the effective contact angle between nanoparticle 

surface and the solid phase of the vapor can be determined. By analyzing the mass growth rate of 

the particles at high supersaturation, we can determine temperature- dependent sticking 

coefficients for the various vapors. 
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As detailed above, the proper functioning of the device is bound to some constraints. The 

pressure of the background gas needed for trapping and thermalization (He in our case) has to be 

much higher than the partial pressure of the vapors involved and should lie between 0.01 Pa and 

0.4 Pa. The lower limit ensures sufficient friction to trap and store the particles, while the upper 

limit is given by the molecular flow constraint (c.f. Fig. 10). Both limits are slightly geometry- 

and background gas- dependent. At the same time, the concentration of vapor molecules has to 

be much lower than the concentration of the background gas atoms in order to ensure thermal 

equilibrium especially under conditions of depositional growth. At 170 K warm wall temperature 

and a background pressure of 0.2 Pa, the concentration of water molecules is below 1 % of the 

concentration of He atoms. Under these conditions, the latent heat of condensation warms the 

particles by at most 0.15 K. The rate of evaporation and the thickness of the condensed phase on 

the warm walls limit the operation over longer periods of time of the MICE at higher 

temperatures. At 170 K the rate of evaporation of water ice Ih in vacuo is about 4 µm/h. With an 

initial deposit thickness of several ten microns, this results in acceptable maximum experiment 

duration of 4h. At warmer temperatures, the deposit will be depleted much faster. The respective 

upper temperature limit for CO2 experiments is about 90 K. Experiments are limited towards 

lower temperatures by the availability of vapor. Under growth conditions, the amount of 

deposited vapor within the experimental duration has to exceed the mass resolution of the time-

of-flight mass spectrometer. These constraints define a particle temperature and saturation range 

which can be investigated with the device. The accessible range is given in Fig. 11 exemplarily 

for water vapor and for carbon dioxide. 
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So far, we have successfully applied the device to study the nucleation of water and carbon 

dioxide vapors on nanometer sized proxy- particles for meteoric smoke found in upper planetary 

atmospheres. We envision however, that similar devices may be used successfully in other fields 

of science ranging from catalysis to food- or drug- science. In the future, we will use MICE to 

extend these studies by performing an elemental analysis of the processed nanoparticles using 

complete laser evaporation (Wang, Zordan et al. 2006; Zordan, Pennington et al. 2010) and by 

studying the optical properties of growing nanoparticle systems by cavity enhanced absorption 

spectroscopy (Meinen, Eritt et al. 2012). We envision that tools like MICE are not only useful in 

atmospheric research, but that similar devices may prove useful in other fields of science ranging 

from catalysis to food- or drug- science. 
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 Appendix: The calculation of supersaturation in MICE 

We discuss the equilibrium temperature and saturation seen by a particle completely surrounded 

by several (n) walls kept at temperatures   1iT i n   and covered with the condensed phase of a 

volatile substance. The space within the walls is filled with atoms of an inert background gas, 

which are assumed to be much more abundant than the molecules of the vapor, but still rarefied 

enough to ensure free molecular flow. The notion of atoms of the background gas and molecules 

of the vapor is ambiguous and adopted here only for brevity; in principle both gases may either 

be atomic or molecular. Neglecting radiative and latent heat transfer, the particle temperature at a 

location  r  is governed by the exchange of thermal energy with the atoms originating from the 

walls. 

Once a stationary state has been assumed, the flux of atoms from each wall is identical. With 

each collision between an atom and a particle, an energy of i v iU c T   is exchanged; here α is 

the energy accommodation coefficient, cv is the heat capacity of the atom and iT  is the 

difference between particle temperature and the temperature of the wall that emitted the atom. 

Solving for a stationary particle energy budget in thermal equilibrium under the assumption of a 

negligible variation of  with temperature (Semyonov, Borisov et al. 1984), the position 

dependent particle temperature is calculated to be: 

   
1

F T
n

p i i

i

T r r


   Eq. 1 

Here the weighting function Fi is the relative solid angle under which the wall (i) is visible from 

the position r . 

D
ow

nl
oa

de
d 

by
 [

K
IT

 L
ib

ra
ry

] 
at

 0
0:

52
 2

2 
Ju

ne
 2

01
5 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 23 

In the molecular regime, the saturation S at the particle location is given by the ratio of the flux 

of condensable vapor molecules at the particle location relative to the flux of molecules the 

particle would experience when being in equilibrium with the condensed phase at the particle 

temperature. 

 
 

 , 

S
vap

vap sat p

J r
r

J T
  Eq. 2 

The equilibrium flux over the condensed phase is 

 , 
4

sat th
vap sat p

B p

p v
J T

k T
  Eq. 3 

, where psat is the saturation vapor pressure and 8 /th B pv k T m  is the mean thermal velocity 

of the vapor phase molecules of molecular mass m at the particle temperature pT . The total flux 

of condensable vapor molecules towards the particle surface is given by the sum of the fluxes 

from the walls weighted with their respective weighting function. 

   
1

J F J (T )
n

vap i vap i

i

r r


   Eq. 4 

Equations 1 and 4 show that in the molecular regime temperature and saturation conditions are 

determined by the solid angle weighting functions. In contrast, in the continuum case the 

conditions are governed by the temperature and concentration gradients. 

In this manuscript we deal with two walls only, i.e. the warm wall at temperature wT  with 

weighting function wF  and the cold wall at temperature cT  and weighting function (1 )wF . 
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Figure 1 Schematic representation of a supersaturation chamber (a) diffusion cloud chamber, (b) 

free molecular flow cloud chamber. The slightly rounded edges of all curves in (b) reflect the 

fact that the molecular flow assumption breaks down for infinitely sized plates. 
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Figure 2 Schematic setup of the TRAPS apparatus including MICE. The labeled parts are: (1) 

nanoparticle source, (2) aerodynamic lens, (3) octupole ion guide, (4) quadrupole deflector, (5) 

quadrupole deflector rotated by 90° into plane, (6) MICE, (7) wide range time-of-flight mass 

spectrometer, (8) Daly-type nanoparticle detector, (9) mass flow regulated gas inlet, (10) cryo 

stage, (11) residual gas analyzer and pressure gauge, (12) Faraday cup detector, (13) high 

reflectivity optical cavity mirror. 
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Figure 3 Design of MICE. Radial cross section shown in panel (a) and perspective view on 

reduced scale with cooling tube omitted in panel (b). The labeled parts are: (1) cooling tube, (2) 

quadrupole ion trap electrodes, (3) SHAPAL spacers, (4) heated electrode on ground potential, 

(5) PEEK spacers, (6) heating foils, (7) temperature sensor cavities, (8) retractable condensable 

vapor applicator tube. 
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Figure 4 Calculated radial temperature and saturation profiles of MICE (a) in the viscous and (b) 

in the molecular regime for selected temperatures of 130 K (cold electrodes) and 160 K (warm 
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electrodes). Horizontal cross sections are shown right below each plot. Vertical dashed lines and 

the central dashed circles indicate ion cloud extent during typical operation conditions. 

  

D
ow

nl
oa

de
d 

by
 [

K
IT

 L
ib

ra
ry

] 
at

 0
0:

52
 2

2 
Ju

ne
 2

01
5 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 29 

 

Figure 5 Warm surface weighting function Fw (solid line, left scale) and particle density from a 

SIMION simulation (circles, right axis) along the axis of the MICE. For symmetry reason only 

one half of the device is shown. 
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Figure 6 Total number of particles stored in the Ion trap as function of the filling time for 

m=1.8·10
5
 u SiO2 particles with Vrf=950 V and f=50 kHz. The trap capacity for SiO2 particles of 

the selected mass is about 8·10
8
 particles which corresponds to an average particle density within 

the ion cloud of about 4.5·10
8
 1/cm³. 

  

D
ow

nl
oa

de
d 

by
 [

K
IT

 L
ib

ra
ry

] 
at

 0
0:

52
 2

2 
Ju

ne
 2

01
5 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 31 

 

Figure 7 Trapping efficiency of the MICE. Shown is the number of particles stored in the ion 

trap normalized to the average as a function of trapping time for two selected particle masses. 

  

D
ow

nl
oa

de
d 

by
 [

K
IT

 L
ib

ra
ry

] 
at

 0
0:

52
 2

2 
Ju

ne
 2

01
5 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 32 

 

Figure 8 Time-of-Flight spectra for silicon oxide particles at water vapor growth conditions in 

the MICE for five different trapping times. Raw data in gray overlayed with smoothed curves 

using 3
rd

 order Savitzy-Golay filter. 
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Figure 9 Deposition growth of water vapor on silicon oxide particles measured at three different 

particle temperatures and saturations at a constant water vapor concentration. Solid lines are fits 

using a linear combination of exponential decay and 2
nd

 order polynomial. 
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Figure 10 Water vapor deposition rate on silicon oxide particles as function of Helium 

background gas pressure (lower scale) and corresponding Knudsen number (upper scale). 
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Figure 11 Operation regimes of the MICE for water vapor and carbon dioxide. Isothermals of 

the cold wall (solid lines) and of the warm wall temperature (dashed lines) with numbers given in 

degree Kelvin. 
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