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Abstract 

The phase-field method coupled with the Navier-Stokes equations is a rather new approach for 

scale-resolving numerical simulation of interfacial two-phase flows. Due to the diffuse nature of the 

interface, it is attractive for flows with moving contact lines. While the method is nowadays mainly 

used in finite-element in-house codes, it is our goal to implement it as finite-volume method in the 

open source library for computational continuum mechanics OpenFOAM and make it freely 

available. In this paper, we give an overview on the governing equations and shortly discuss the 

numerical method. The focus of the paper is on application and validation of the code for some 

fundamental wetting phenomena, namely the capillary rise in a narrow channel and the spreading of a 

droplet on a flat surface, which is chemically either homogeneous or regularly patterned. The 

numerical results on static meshes are in good agreement with analytical solutions as well as 

experimental/numerical results from literature. We also present first three-dimensional finite-volume 

simulations with adaptive mesh refinement near the interface as a key element to achieve CPU-time 

efficient simulations. 

 

Keywords: Capillary rise, Computational fluid dynamics, Droplet spreading, Moving contact line, 

Phase-field method 
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1 Introduction 

The wetting of a liquid on solid surfaces is a crucial process in many applications in chemical 

industry such as coating, painting, and reactive gas-liquid flows in chemical sponge reactors. The 

technological improvement of these processes requires precise knowledge of wetting dynamics. 

Computational fluid dynamics (CFD) can be a valuable tool to gain these insights [1]. For reliable CFD 

simulations, it is vital to model accurately the motion of the contact line, where the moving gas-liquid 

interface is in contact with the solid surface. In this context, conventional sharp-interface 

hydrodynamic models suffer from a paradox between the moving contact line and no-slip boundary 

condition at the solid wall [2], which leads to a non-integrable viscous stress singularity at the moving 

contact line. Various methods have been proposed such as the precursor film model [3] and the slip 

model [4] to resolve this problem. A recent detailed overview on numerical simulations of flows with 

moving contact lines is provided in the review by Sui et al. [5]. 

Among the various methods for interfacial simulations of two-phase flows [6], the phase-field 

method is one of the most promising approaches for handling moving contact lines. It relies on a 

diffuse interface model [7] that treats the interface between two immiscible fluids as a transition region 

of small but finite width, endowed with surface tension [8]. Based on fluid free energy, the method can 

be traced back to van der Waals a century ago [9]. In recent years, the phase-field method has 

become popular not only for numerical simulation of moving contact lines [10] and related wetting 

phenomena [11] but also for capillary two-phase flows in general [7]. In our study, the most significant 

feature of this method is that it allows motion of the contact line in combination with a no-slip boundary 

condition at a solid wall via a diffusive mechanism induced by a chemical potential gradient [12]. 

In this paper, we shortly present the phase-field method developed and implemented by the 

authors using the free open source library for computational continuum mechanics OpenFOAM. The 

method is novel in two respects. Namely, it is the first finite volume method based implementation of 

phase-field method for two-phase wetting processes with three-dimensional adaptive mesh refinement 

near the interface. Second, it is the first application of the phase-field method for wetting processes 
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using real air-water density and viscosity ratios. The aim of this paper is, first, to validate the method 

for some fundamental wetting phenomena and, second, to demonstrate its capabilities concerning 

physically more complex wetting dynamics. In Section 2, we introduce the mathematical formulation 

and the numerical method. Section 3 presents simulations on capillary rise and droplet spreading on a 

flat surface, and highlights the method’s capability regarding adaptive mesh refinement and wetting on 

chemically heterogeneous substrates. 

2 Mathematical formulation 

In OpenFOAM, the governing equations are solved in dimensional form. In this paper, we 

present all simulation results in non-dimensional terms, based on suitable dimensionless physical or 

geometrical groups. For consistency, we present the governing equations in non-dimensional form as 

well. Similar to [13, 14], we base our normalization on a reference length scale, refL , and a reference 

velocity scale, refU , which are chosen problem-dependent. 

2.1 Phase-field approach for interface evolution 

In the phase-field method, the phase distribution of two phases A and B is described by an order 

parameter, C . Here we take C  as the difference in volumetric phase fractions of both phases, i.e. 

A BC . Thus, C  takes distinct values A 1C  and B 1C  in the bulk phases and varies rapidly 

but smoothly in a thin transition layer (the diffuse interface). In equilibrium, the variation 0.9 0.9C  

occurs over a distance of 4.164  [8], where   is an interfacial thickness parameter which we denote 

here as interfacial width. 

The interface dynamics is governed by an evolution equation for C , the convective Cahn-Hilliard 

equation, which reads in non-dimensional form 

  21

C

C
C

Pe





   


u  (1) 

Here, ref ref/t U L    denotes the non-dimensional time,   is the non-dimensional Nabla operator, u  

the non-dimensional velocity field, and 

3 2 2C C Cn C  (2) 
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is the non-dimensional chemical potential [14]. The term on the right-hand-side of Eq. (1) provides a 

diffusive mechanism for motion of the contact line at a no-slip wall. Based on the wall free energy 

formulation at local equilibrium, one can derive the following boundary condition to account for the 

wettability of the solid substrate [15] 

2e
s

cos2
ˆ (1 )

2
C C

Cn
n  (3) 

Here, e  is the equilibrium (static) contact angle and sn̂  is the unit vector normal to the solid surface. 

In the above equations, two phase-field method specific non-dimensional parameters appear. 

ref ref8 / 9 /CPe L U     is a “Peclet number” for the order parameter, where   is the mobility and   

the interfacial energy. CPe  is a measure for the ratio between the advective and diffusive transport of 

C  and quantifies the diffusion process that governs the motion of the contact line. The Cahn number 

/ refCn L  relates the interfacial width to the macroscopic length scale. We consider CPe  and Cn  

as numerical parameters of our phase-field method for interface capturing, which can be varied via   

and  . The choice of Cn  is influenced, at least, by numerical accuracy, efficiency, and stability [15]. 

The value of CPe  affects the temporal evolution of the simulation but has – when chosen in an 

appropriate range [8] – no influence on the steady results. 

2.2 Equations governing the fluid flow 

In this paper, we consider two immiscible, incompressible, isothermal Newtonian fluids. Hence, we 

can describe the two-phase flow by the following non-dimensional single-field formulation of the 

Navier-Stokes equations 

0u  (4) 

   T

st bC CRe P 


              

u
u u u +( u) +f f  (5) 

The density and viscosity fields depend on the order parameter as 

B

A

1
( 1) ( 1)

2
C C C , B

A

1
( 1) ( 1)

2
C C C  (6) 
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where A/B  and A/B  are the density and viscosity of the pure phases. In Eq. (5), 
1

ref ref/ AP p U L   

denotes the non-dimensional pressure field. The surface tension force and buoyancy force in Eq. (5) 

are 

st

1
( )C C

Ca Cn
f , b

1
ˆ( 1)

2
z

Eo
C

Ca
f e  (7) 

There are three dimensionless physical groups in the above equations: the Reynolds number 

A ref ref A/Re L U , the capillary number 
A ref8 / 9 /Ca U , and the Eötvös number 

2

A B ref( ) /Eo gL , where g  is the gravitational acceleration. Eqs. (6) and (7) couple the Navier-

Stokes Eq. (5) with the Cahn-Hilliard Eq. (1). The latter depends in return on the velocity field u , which 

is obtained from solution of the Navier-Stokes equation. Finally, we remark that the Cahn number 

enters in the definition of the surface tension force while the Peclet number CPe  is absent in the 

Navier-Stokes equations. 

2.3 Numerical aspects 

We implemented the above system of equations in OpenFOAM® in order to solve it numerically 

with a finite-volume method. Spatial derivatives are approximated by a high-resolution scheme (Gauss 

Gamma) and time integration is performed by a second-order two time-level backward scheme 

(Gear’s method). The time step is chosen such that the maximum Courant number is 0.1 . For further 

details we refer to [16] and [17]. In [16], we also verified and validated the code for several test 

problems and studied the influence of CPe , Cn  and the grid resolution. The latter showed a good 

compromise between accuracy and computational cost if the interface is resolved by 4-8 mesh cells 

and 0.01Cn  . In [17] we detail on a robust treatment of large density and viscosity ratios as well as 

the enforcement of boundedness and conservation properties, e.g. by means of a second-order 

implicit block-coupled solution strategy, in which the 4th order Cahn-Hilliard phase-field equation is split 

into two Helmholtz-type equations and then solved simultaneously within one linear solver sweep. 

Similar to [18], we implemented a relative density flux in the momentum equation due to diffusion of 

the two-phase components to achieve volume conservation for two-phase flows with large density 

ratios. 
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3 Results and discussion 

In this section, we apply the code to two phenomena with moving contact lines: capillary rise and 

spreading of a partially wetting droplet on a flat surface. For validation, we start with static-mesh 

simulations for planar and axisymmetric problems, where analytical solutions or experimental data are 

available for comparison. In order to demonstrate the potential of the method for problems of 

increasing computational and physical complexity, we perform three-dimensional (3D) simulations with 

adaptive mesh refinement and consider the spreading on a chemically patterned surface. Concerning 

the initial conditions, we start all simulations with both phases at rest and a smooth hyperbolic tangent 

equilibrium distribution of C  in the interfacial region according to the respective value of Cn . For 

analyzing the results, we take 0C   as position of the interface. 

3.1 Equilibrium height of capillary rise 

In this test case, we reproduce the capillary rise of a fluid A in the gap between two vertical 

parallel plates where it displaces fluid B. The ratio between the final height, h , of the column and the 

distance of the plates, d , is 

e

2

A

2 cos( )h

d gd
 (8) 

The fluids in our simulations are water (
3

A 998kg m  ,
3

A 10 Pa s  ) and air 

(
3

B 1.2kg m  ,
5

B 1.81 10 Pa s   , 20.072 J m  ). The channel width is ref 2mmd L   and 

29.81msg  . The values of the Cahn and Peclet numbers are 0.025Cn   and 327Pe  , 

respectively. We use a uniform isotropic static mesh and resolve the plate distance d  by 40  mesh 

cells. This corresponds to approximately four mesh cells for the region 0.9 0.9C   . In this paper, 

all flows evolve to static state. Thus, there is no characteristic velocity and we define refU  indirectly by 

setting 1Re  . 

Fig. 1 a-d illustrates the time dependent simulation results for 45e   . Initially, the channel is 

filled with air while the water is in the container and the interface is flat (Fig. 1 a). When the simulation 

starts, the wall adhesion force causes the water to creep up along the wall, to meet the prescribed 
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equilibrium contact angle (Fig. 1 b). Then a pressure jump arises across the curved interface, which 

drives the water further upward (Fig. 1 c). This continues until the capillary force is in balance with the 

gravity force (Fig. 1 d). In this study, we performed simulations for five different values of e  in the 

range 30 60e    . For all cases, the computed steady column height (evaluated midway between 

the channel centerline and the right plate) is in good agreement with the analytical solution in Eq. (8) 

as shown in Fig. 1 e. 

(Figure 1) 

3.2 Equilibrium shape of a planar droplet 

We now consider the spreading of a droplet on a flat homogeneous surface and compare 

characteristic dimensions of the computed equilibrium droplet shape with analytical solutions. We start 

from a planar semi-circular droplet with initial radius 0 0 / 2R D  and initial contact angle 0 90  (Fig. 

2 a). We quantify the numerical results for a given value of e  by the equilibrium droplet height H  and 

base length L  (Fig. 2 b). In our 2D simulations, the size of the computational domain is 0 03D D  and 

we resolve 0D  by 50 mesh cells. Furthermore, we use ref 0L D , 0.01Cn   and 1000CPe  . 

We first consider the case when gravity forces are negligible ( 0Eo ) so that capillarity is the only 

driving force. In this case, the droplet is spreading for e 0   and is dewetting for e 0  . In both 

cases, the equilibrium shape is a circular cap. By geometrical constraints it follows 

0 0 e

e e e

2 sin
2( sin cos )

L R  (9) 

0 0 e

e e e

(1 cos )
2( sin cos )

H R  (10) 

Here, we performed numerical simulations for seven distinct values of e  in the range e45 135    . 

In Fig. 2 c we compare the computed values for 0/H R  and 0/L R  with the analytical solutions from 

Eq. (9) and (10). The agreement is very good, both for hydrophilic and hydrophobic situations. 

 

(Figure 2) 
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In the case 0Eo , the droplet spreads on the solid surface due to the combined effect of capillary 

and gravitational forces. In the final stage, gravity tends to spread out the droplet further while the 

capillary force tends to maintain a circular cap. For 1Eo , the gravity force dominates and the 

droplet forms a puddle. Also in the limit Eo  the equilibrium height of the droplet is known 

analytically [19] and given by 

0 e2
sin

2

R
H

Eo
 (11) 

Similar to numerical studies for other methods [20, 21], we performed simulations for one specific 

value of the equilibrium contact angle ( e 60   ) and seven distinct values of the Eötvös number in the 

range 0.01 10Eo  . In Fig. 3 we plot the final droplet height, H , normalized by 0H  from Eq. (10) as 

a function of Eo . For 0.1Eo   the simulation results agree with the asymptotic solutions given by Eq. 

(10), while for 5Eo   they agree with the asymptotic solution given by Eq. (11). At 1Eo  there is a 

transition between both regimes. The inset graphics in Fig. 3 show the equilibrium droplet shape for 

0.1Eo  (a circular cap), 1Eo   (an elongated circular cap) and 10Eo   (a puddle). 

 

(Figure 3) 

 

3.3 Spreading dynamics on a homogeneous surface 

We now turn to the spreading dynamics of a partially wetting droplet on a flat surface. In a 

preliminary study, we neglect gravity ( 0Eo  ) so that spreading is driven by capillary forces only. We 

further assume that the velocities are so small that inertial forces are negligible, too, and set the 

density ratio between the ambient fluid and the droplet to unity. As reference length we choose 

ref 0L D , where 0D  is the initial drop diameter. For presentation of the transient simulation results, we 

scale time by the capillary time scale cap A 0 /t D  . 
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3.3.1 Axisymmetric simulations 

To investigate the dynamic wetting process, we turn from planar to axisymmetric geometry and 

compare the results with experimental data of Zosel [22]. He studied the spreading of droplets of fluids 

with different viscosity on a flat surface and recorded the instantaneous droplet base radius. The 

droplet diameters were in the range 2.4 3 mm  so that gravitational effects are small. The drops were 

released with almost spherical shape and low kinetic energy. 

For comparison, we selected one specific experiment with an equilibrium contact angle e 58    

where a very viscous drop of polyisobutylene ( 0 2.6mmD  , A 25Pa s  , 
3

A 920kg m  , 

20.0426 J m  ) spreads on a polymer surface (PTFE). The viscosity ratio between the ambient air 

and the droplet is 
6

B A/ 10     . In our simulations, we set 0.05  in order to save 

computational effort. A sensitivity study on   showed that a further decrease does not affect the 

results significantly. In our axisymmetric simulations, the size of the computational domain is 

0 02 1.5D D . We resolve 0D  by 100 mesh cells and start from 0 170   . The Cahn number is 

0.01Cn   and we compare simulations for two values of the Peclet number, 200CPe   and 1000 . 

In Fig. 4 we compare the time evolution of the computed base radius of the drop with the 

experimental data [22]. Good agreement is achieved, especially at the later spreading stage. As CPe  

decreases, the base radius changes faster, and the result gets slightly closer to the experimental data. 

This is reasonable since in the phase-field method the contact line moves by diffusion. Thus, a 

stronger diffusion (i.e. a smaller value of CPe ) leads to a faster spreading. 

We also investigated the influence of a dynamic contact angle on the spreading dynamics. 

Following [12, 23], we included in Eq. (3) for this purpose a time-dependent term /C t   multiplied by 

an phenomenological parameter. However, the effect of the dynamic contact model on the spreading 

dynamics turned out to be negligible, a results that can be attributed to the high drop viscosity [23]. 

 

(Figure 4) 
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3.3.2 3D simulations with adaptive mesh refinement 

A key element to achieve high numerical accuracy with moderate computational cost in 3D is the 

use of local adaptive mesh refinement (AMR). This procedure allows providing significantly higher 

mesh densities where most needed – at the interface. This is particularly important for diffuse interface 

simulations. There, the interface must be thin enough to converge to the sharp-interface limit while its 

thickness must be adequately resolved so that interfacial effects are computed accurately [24]. 

In this section, we demonstrate the capabilities of the method with respect to 3D AMR. The AMR 

is handled by the class dynamicRefineFvMesh in the OpenFOAM® C++ library. From the initial state, 

we set a two-level mesh refinement for the interface region compared with the bulk region (Fig. 5). For 

each time step during the simulation, the mesh is refined adaptively in regions where 0.9 0.9C   . 

In Fig. 6 we illustrate the spreading process for e 75   . Starting from the initial contact angle 

0 170 , the droplet is spreading out as time proceeds and approaching to the final state with the 

prescribed equilibrium contact angle. A similar simulation was performed for e 90   . 

 

(Figures 5 and 6) 

 

To verify the 3D AMR simulations, we compare the results with those from static-mesh 

axisymmetric simulations (cf. Sect. 3.3.1) for identical physical and numerical parameters ( 0.94Ca , 

0.1, 0.01Cn , 1000CPe ). In addition, the mesh resolution in the diffuse interface region is the 

same. Away from the interface, the cell width in the 3D AMR simulations is (in each direction) by a 

factor of four larger than in the static mesh axisymmetric simulations. In Fig. 7 we compare the time 

evolution of the normalized drop base radius and find a close agreement, both for e 75  and 90 . 

This figure also demonstrates the effect of the substrate wettability on the spreading process: from the 

very beginning the droplet spreads faster on the substrate with higher wettability (smaller e ). The 

reason is that the spreading is driven by the mismatch between 0  and e  so that a larger difference 

between both angles leads to a faster spreading. 
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(Figure 7) 

 

3.4 Droplet spreading on a chemically patterned surface 

So far, we considered the spreading on a chemically homogeneous substrate where e  is uniform. 

We now extend the study to a chemically heterogeneous substrate, patterned with alternating 

hydrophilic and hydrophobic stripes. The purpose for considering this test case is to demonstrate that 

the method is able to reproduce characteristic phenomena such as anisotropic spreading and stick-

slip motion. 

To allow for a qualitative comparison with literature, we consider a similar scenario as Jansen et 

al. [25] who used the lattice Boltzmann method (LB). The base surface is made up of hydrophilic SiO2 

stripes ( e 40 ) and hydrophobic perfluordecyltrichlorosilane (PFDTS) stripes ( 110e ). The 

stripe width ratio is 
2PFDTS SiO/ 0.5w w  and we use four mesh cells for each SiO2 stripe and two for 

each PFDTS stripe. We set 0.94Ca , 1000CPe , 0.02Cn , 0.1. 

Initially, the 3 microliter polyisobutylene droplet just touches the surface (Fig. 8 a). Subsequently, it 

wets the substrate (Fig. 8 b) but in a manner different from that for a homogeneous surface: due to the 

stripe pattern, the droplet spreads preferentially along the stripes while its motion in direction 

perpendicular to them is hindered (Fig. 8 c). Finally, the droplet adopts an elongated equilibrium shape 

with the larger axis in direction of the stripes (Fig. 8 d). 

 

(Figure 8) 
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In Fig. 9 we display the time evolution of the footprints of the droplet in both directions. The final 

traveling distance of the moving contact line is larger along the stripes than perpendicular to them. 

Furthermore, the contact line advances smoothly along the stripes, while in the perpendicular direction 

it moves in a stick-slip manner. This behavior can be explained as follows. Perpendicular to the 

stripes, the contact line has to overcome a series of high-energy barriers when it passes through 

hydrophobic stripes. This results in the stick-slip-like motion (i.e., the pinning behavior) and limited 

spreading in this direction. In contrast, such discrete energy barriers do not exist along the stripes. In 

this direction, the contact line travels therefore continuously and the droplet spreads over a greater 

distance. 

 

(Figure 9) 

 

We now compare our results with Jansen et al. [25] who performed experiments and LB 

simulations. In the experiment, the final static droplet encompassed around 77 stripes, each of which 

is extremely narrow in width. Resolving so many stripes in a 3D simulation is computationally 

prohibitive for current numerical methods. Therefore, the LB simulations in [25] were made for wider 

stripes and the drop spans only a few of them. In our simulations, we made the same approach. 

Unfortunately, in [25] no physical properties are given for the LB simulations but only dimensionless 

values of the drop and gas density. Furthermore, the LB method in [25] can only be applied for fluids 

that have roughly the same kinematic viscosity. Since the information on the LB simulations is not 

sufficient to recalculate the case with our method, we considered instead the polyisobutylene droplet 

from Zosel’s experiment (cf. Section 3.3). Due to the different physical systems, one may compare the 

LB and phase-field simulation results only qualitatively. 

Fig. 10 shows the evolution of the droplet shape from a bottom-view. At the initial stage, the 

droplet is just slightly elongated (Fig. 10a, e and i) and the effect of the patterned surface is not 

significant. As time proceeds, the drop preferentially spreads in direction of the stripes and its shape 
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further elongates toward its final state (Fig. 10d, h and l). The results of our phase-field simulations are 

in good qualitative agreement with the LB results. 

The contact line profile at the longer ends of the droplet is different in the experiment (where it is 

smooth) and in the simulations (where it is corrugated and wave like). This relates to the different 

number of stripes covered by the droplet. Such corrugation patterns of the contact line were also 

observed in other numerical studies where the droplet spans a small number of stripes [26]. 

 

(Figure 10) 

 

4 Summary and outlook 

In this paper, we have presented a phase-field method for interface resolving numerical 

simulations of two-phase flows with OpenFOAM and applied it to representative capillary flows with 

moving contact lines. For both, the capillary rise between parallel plates and droplet wetting on a flat 

surface the computed equilibrium shape of the interface agrees well with analytical solutions. 

Concerning droplet-spreading dynamics, our time dependent simulation results are in good agreement 

with literature data, both for a chemically homogeneous and a chemically patterned surface. We also 

demonstrated the use of adaptive mesh refinement at the interface. This altogether shows that the 

presented phase-field method is a reliable and promising numerical method for general capillary two-

phase flows involving moving contact lines. 

We now advance the method in OpenFOAM towards a volume-conservative and bounded 

phase-field framework incorporating both Cahn-Hilliard and Allen-Cahn equations [17]. Next, we will 

validate the code with respect to a wall energy relaxation model for dynamic contact angles in rapid 

wetting processes and extend our method to contact angle hysteresis. 
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Symbols used 

Ca  [-] Capillary number 

Cn  [-] Cahn number 

d  [m] distance between parallel vertical plates 

0D  [m] initial drop diameter 

ˆ
ze  [-] unit normal vector in vertical direction 

Eo  [-] Eötvös number 

H  [m] droplet height 

0H  [m] equilibrium droplet height for 0Eo   

H  [m] equilibrium droplet height for Eo  

L  [m] droplet base length 

refL  [m] reference length scale 

sn̂  [-] unit normal vector to the solid surface 

P  [-] non-dimensional pressure 

CPe  [-] Peclet number in Cahn-Hilliard equation 

0R   [m] initial drop radius 

Re  [-] Reynolds number 

t  [s] time 

capt  [s] capillary time scale, 
cap A 0 /t D   

refU  [m s-1] reference velocity scale 

u  [-] velocity field normalized by refU  
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Greek symbols 

  [-] volume fraction 

  [J m-2] interfacial energy 

  [m] interfacial width 

  [m3 s kg-1] mobility 

  [-] viscosity ratio 

  [Pa s] dynamic viscosity 

  [-] non-dimensional chemical potential 

  [kg m-3] density 

  [] contact angle 

  [-] non-dimensional time 

 

Subscripts 

A  phase A 

B  phase B 

e  equilibrium 

ref  reference value 
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Figure legends 

Fig. 1: Capillary rise of water into a planar vertical channel ( 2mmd  , e 45 ) for four instants in 

time: (a) initial state, (b) 3 ms, (c) 30 ms, (d) 100 ms (final state). (e) Comparison of simulated and 

analytical final height for different values of e . 

 

Fig. 2: (a) Initial shape of the droplet released on the surface. (b) Equilibrium shape of the droplet. (c) 

Comparison of simulated and analytical spreading length L  and height H  for different values of the 

equilibrium contact angle e . 

 

Fig. 3: Normalized droplet height as function of the Eötvös number for e 60 . The insets show the 

final droplet shape for the respective Eötvös number. 

 

Fig. 4: Comparison of the temporal evolution of the computed droplet’s base radius with experimental 

data [22] ( e 58 ). 

 

Fig. 5: (a) 3D AMR simulation of droplet spreading (one-quarter geometry, hexahedral mesh) on a flat 

substrate at the initial state. (b) Close-up view of the region with two-level AMR around the interface. 

 

Fig. 6: 3D simulation of droplet spreading on a flat substrate ( e 75 ) with AMR near the interface. 

Visualization of the droplet shape for different instants in time: (a) 0t , 0 170  (initial state), (b) 

cap/ 2t t , (c) 
cap/ 8t t , (d) 

cap/ 30t t  (equilibrium shape). 

 

Fig. 7: Comparison of temporal evolution of droplet’s base radius in 2D static mesh axisymmetric 

simulations and 3D AMR simulations. 
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Fig. 8: Simulation of droplet spreading on a chemically patterned substrate (dark stripes: e 40 , 

light stripes: e 110 ). The spreading process starts from initial state 0t  (a), via 
cap/ 40t t  (b) 

and 
cap/ 200t t  (c), till 

cap/ 1000t t  (d) where the droplet reaches the equilibrium state. 

 

Fig. 9: Temporal evolution of the base radius of the droplet in direction parallel and perpendicular to 

the stripes. 

 

Fig. 10: Time evolution of the droplet shape from bottom-view. (a)-(h): Experiment and LB simulation. 

Reprinted figure with permission from H.P. Jensen et al., Phys Rev E 88, 013008 (2013) Copyright 

(2013) by the American Physical Society. (i)-(l): Present results. The numbers at the bottom left corner 

in subfigures (e)-(h) indicate the time step in the LB simulation while those in subfigures (i) – (l) denote 

cap/t t . 
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Graphical abstract 

A phase-field method for interface resolving numerical simulations of two-phase flows is presented 

and implemented in OpenFOAM. The method is validated for several capillary flows with moving 

contact lines and is used to study dynamic droplet spreading on a flat surface by three-dimensional 

simulations with adaptive mesh refinement near the interface. 
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Figures 

 

Fig. 1: Capillary rise of water into a planar vertical channel ( 2mmd  , e 45 ) for four instants in 

time: (a) initial state, (b) 3 ms, (c) 30 ms, (d) 100 ms (final state). (e) Comparison of simulated and 

analytical final height for different values of e . 
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Fig. 2: (a) Initial shape of the droplet released on the surface. (b) Equilibrium shape of the 

droplet. (c) Comparison of simulated and analytical spreading length L  and height H  for 

different values of the equilibrium contact angle e . 
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Fig. 3: Normalized droplet height as function of the Eötvös number for e 60 . The insets 

show the final droplet shape for the respective Eötvös number. 
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Fig. 4: Comparison of the temporal evolution of the computed droplet’s base radius with 

experimental data [22] ( e 58 ). 
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Fig. 5: (a) 3D AMR simulation of droplet spreading (one-quarter geometry, hexahedral mesh) on a flat 

substrate at the initial state. (b) Close-up view of the region with two-level AMR around the interface. 
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Fig. 6: 3D simulation of droplet spreading on a flat substrate ( e 75 ) with AMR near the interface. 

Visualization of the droplet shape for different instants in time: (a) 0t , 0 170  (initial state), (b) 

cap/ 2t t , (c) 
cap/ 8t t , (d) 

cap/ 30t t  (equilibrium shape). 
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Fig. 7: Comparison of temporal evolution of droplet’s base radius in 2D static mesh 

axisymmetric simulations and 3D AMR simulations. 
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Fig. 8: Simulation of droplet spreading on a chemically patterned substrate (dark stripes: 

e 40 , light stripes: e 110 ). The spreading process starts from initial state 0t  (a), 

via 
cap/ 40t t  (b) and 

cap/ 200t t  (c), till 
cap/ 1000t t  (d) where the droplet reaches the 

equilibrium state. 
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Fig. 9: Temporal evolution of the base radius of the droplet in direction parallel and 

perpendicular to the stripes. 
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Fig. 10: Time evolution of the droplet shape from bottom-view. (a)-(h): Experiment and LB simulation. 

Reprinted figure with permission from H.P. Jensen et al., Phys Rev E 88, 013008 (2013) Copyright 

(2013) by the American Physical Society. (i)-(l): Present results. The numbers at the bottom left corner 

in subfigures (e)-(h) indicate the time step in the LB simulation while those in subfigures (i) – (l) denote 

cap/t t . 

 


