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ABSTRACT: Laser-induced acoustic desorption (LIAD) has
recently been established as a tool for analytical chemistry. It is
capable of launching intact, neutral, or low charged molecules
into a high vacuum environment. This makes it ideally suited to
mass spectrometry. LIAD can be used with fragile biomolecules
and very massive compounds alike. Here, we apply LIAD time-
of-flight mass spectrometry (TOF-MS) to the natural
biochromophores chlorophyll, hemin, bilirubin, and biliverdin
and to high mass fluoroalkyl-functionalized porphyrins. We
characterize the variation in the molecular fragmentation
patterns as a function of the desorption and the VUV
postionization laser intensity. We find that LIAD can produce
molecular beams an order of magnitude slower than matrix-
assisted laser desorption (MALD), although this depends on the substrate material. Using titanium foils we observe a most
probable velocity of 20 m/s for functionalized molecules with a mass m = 10 000 Da.

Many analytical chemistry studies have focused on how to
launch and control charged molecules, for instance using

matrix-assisted laser desorption ionization (MALDI)1 or
electrospray ionization (ESI).2 However, it is of analytical
relevance to revisit methods that are capable of transferring
neutral or lowly charged molecules into the gas phase, free from
any carrier gas or matrix. LIAD3 is a method that avoids these
contaminants and allows analytes to be launched into a high
vacuum environment, for example, close to the ionization
region of a TOF-MS. It minimizes transfer losses between the
source and the mass analyzer with the potential to detect rare
samples very efficiently. In contrast to MALDI and ESI, LIAD
separates the launch and the ionization mechanism. This
enables particle specific detection through multiphoton
ionization.
In a typical LIAD experiment the analyte molecules are

placed on the front side of a metal foil that is several
micrometers thick. A short, intense laser pulse incident on the
back side ablates some foil material. Shock waves induced by
thermo-mechanical stress in the foil4,5 eject analyte molecules
and substrate material from the front side.
LIAD was originally used to launch electrons and ions3 and

soon after it was extended to large polypeptides6 and even
DNA strands.7 It has also been used to load neutral or lowly

charged medium-sized molecules into mass spectrometers8 and
even to launch silicon nanoparticles9 or biological cells10 up to
a mass of 1010 Da.
Here, we extend the application of LIAD to biochromo-

phores, study the softness of this technique, and the effect of
molecular functionalization on the desorption process. In
addition, we investigate the velocity of the desorbed molecules
and find that even for these very large particles the velocity is
significantly lower than in MALDI. This will be beneficial for
analytical chemistry, physical chemistry, spectroscopy, ioniza-
tion studies,11,12 classical beam deflectometry,13−15 molecular
cooling,16 and matter-wave experiments.17,18

■ EXPERIMENTAL SECTION

Molecules. Hemin, bilirubin, biliverdin, and zinc tetraphe-
nylporphyrine (ZnTPP) were obtained commercially from
Sigma-Aldrich. The chlorophyll a was extracted and purified
from spinach in ethanol following an established procedure.19

ZnTPP was dissolved in acetone, while all other molecules were
dissolved in dimethyl sulfoxide (99.9%) with a concentration of
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10 mg/mL. An array of small droplets (∼2 μL) of this solution
was deposited onto a clean, thin titanium foil with a thickness
of 10 ± 2 μm and a purity of 99%. The sample was then
transferred into the vacuum chamber.
To explore how perfluoroalkyl-functionalization can facilitate

the desorption process, we synthesized two sets of molecules
(see the Supporting Information). The diporphyrin 1Lx, shown
in Figure 1a, is a molecular library that covers a mass range of

3 630−5 470 Da in steps of 460 Da. It can be synthesized from
two porphyrin building blocks in a single step using a Glaser-
Hay coupling.20,21 All substituents of the phenyl rings in the
porphyrin meso positions are either fluorine atoms or
perfluoroalkylsulfanyl groups. Figure 1b shows our second
molecular library 2Lx which covers masses beyond 10 000
Da.22,23

The perfluoroalkylated molecules were prepared in diethyl
ether and dried on a pure tantalum foil as this was found to
increase the number of detected particles. The addition of 2
mg/mL of 2,5-dihydroxybenzoic acid (DHB) to the solution of
2Lx also increased the signal. In contrast to MALDI, where
DHB fosters molecular ionization, we detect no ions originating
from the LIAD process without the postionization stage.
Experimental Setup. Figure 2 shows a drawing of the

experimental setup. A motorized manipulation stage positioned
the foil targets at a distance D = 23 ± 1 mm to the detection
laser beam when using the natural chromophores and at D = 43
± 2 mm otherwise. The light of a frequency tripled Nd:YAG
laser was focused to a waist of 1 mm diameter on the back side
of the metal foil. In order to expose a fresh sample spot to every
desorption laser pulse, the stage was translated laterally. The
neutral molecules fly into the extraction region of the TOF-MS
where they intersect a 157.6 nm fluorine-laser beam which
ionizes them.

■ RESULTS: BIOCHROMOPHORES
Mass Spectra. Figure 3 shows typical LIAD mass spectra of

all four biochromophores at comparable photoionization laser
intensities. Each spectrum is an average over 30 shots.
Figure 3a shows the hemin mass spectrum [Fe Por-Cl]+ at m

= 652 Da as well as [Fe Por]+ and further peaks attributed to
the loss of CH2COOH-groups. Chlorophyll is a derivative of
hemin, and its core survives the LIAD process undamaged. We
observe a peak at 871 Da, corresponding to pheophytin a, i.e.,

the intact parent molecule without the central magnesium
atom. However, we also find a fragment signal at 536 Da which
is attributed to pyropheophorbide a. LIAD is also capable of
generating beams of intact neutral bilirubin (Figure 3c) and
biliverdin (Figure 3d). Bilirubin exhibits additional fragments at
286 and 300 Da which indicate cleavage of the molecule into
two sections. Biliverdin is the most stable chromophore in our
series. Given the same desorption and postionization intensities
as used for chlorophyll a, it remains intact during desorption
and postionization.

Intensity Dependence. We record the abundance of the
intact hemin as a function of the desorption laser intensity I.
We see that it can be described by S = S0 · I

n with n = 1.36 ±
0.13. Similar to other experiments,4,24 we do not observe any
saturation of the desorbed molecular flux in this intensity range.

Fragmentation. Molecular fragmentation may occur
chemically during the sample preparation, thermally during
desorption4 or through light-induced processes during
postionization. Earlier postionization studies observed sub-
stantial fragmentation of hemin, even when the molecule was
desorbed into a buffer gas.25

In Figure 4 we show that LIAD is intrinsically soft and that
all hemin fragments observed in Figure 3 are due to VUV
ionization. In Figure 4a we plot the fragment-to-parent ratio as
a function of the desorption laser intensity. The fragment ratio
remains constant, within 20%, even when we vary the
desorption intensity by more than a factor of 60, confirming
the softness of the LIAD process. As a function of the detection
laser intensity, however, this ratio grows by a factor of 5 and
saturates (Figure 4b). This is demonstrated by the hemin
spectra at low and high ionization laser intensity in Figure 4c,d.
The situation is different for chlorophyll a, where molecules

can lose their side chain even at the lowest ionization intensity
required to get a sufficient signal. This indicates that
fragmentation most likely occurs during the desorption process.
In an independent experiment we have tested the ionization

of hemin at 266 nm and find that this two-photon process leads
to substantial fragmentation. This shows that 157.6 nm light
provides more efficient ionization than 266 nm, making it
better suited to mass spectrometry of biochromophores.

Figure 1. Perfluoroalkylated porphyrins for desorption studies with
LIAD. In panel a the diporphyrin library 1Lx is displayed. Each of the
fluorine atoms on the outer phenyl rings can be substituted with a
perfluoroalkyl chain. In panel b the structure of the porphyrin library
2Lx is sketched. To achieve higher molecular masses, a number x of
branched alkyl side chains have been used.

Figure 2. Molecules are volatilized by laser-induced acoustic
desorption from the front surface of a thin metal foil by irradiating
its backside with intense pulsed laser light with λdes = 355 nm, τdes = 4
ns, Φdes = 10−510 MW/cm2. The emerging plume is postionized
using vacuum ultraviolet light, with λion = 157.6 nm, τion = 8 ns, Φion =
0.16−2.2 MW/cm2, and characterized using TOF-MS.
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Figure 3. LIAD mass spectra after VUV ionization of (a) hemin, (b) chlorophyll, (c) bilirubin, and (d) biliverdin. Chlorophyll a, bilirubin, and
biliverdin were desorbed with Φdes = 54 MW/cm2, hemin with Φdes = 89 MW/cm2. The ionization intensity for all molecules was Φion = 1.1(1)
MW/cm2.

Figure 4. Comparison of LIAD-VUV-TOF-MS for hemin at (a) Φion = 0.7(1) MW/cm2 and (b) Φion = 2.0(2) MW/cm2 reveals that ionization at
VUV high intensities leads to fragmentation, while the LIAD process itself is soft.
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Velocity Distribution. Many applications in physical
chemistry require slow particle beams. We therefore character-
ize the molecular beam velocity after LIAD by counting the
number of molecules as a function of the delay between the
desorption and the photoionization laser pulses. The resulting
distribution is shown in Figure 5. For hemin launched from

titanium, we find a most probable velocity of (49 ± 5) m/s and
still substantial signal as low as 25 m/s. The error bar in the
velocity includes the estimated uncertainty in the desorption
time of up to several tens of microseconds.4,11

■ RESULTS: LIBRARIES

Mass Spectra. A typical mass spectrum of 1Lx is shown in
Figure 6a. The most abundant molecule contains six
perfluoroalkyl side chains and has a mass of approximately
4 550 Da. The peaks are separated by Δm = mchain − mF = 460
Da. Finding mF in the mass difference corroborates the
hypothesis that the observed mass distribution is due to the
chemical synthesis. In the case of LIAD-induced fragmentation,
the broken bond would not be refluorinated. The same holds
true for 2Lx (Figure 6b). Here the peak distance of 763 Da also
corresponds to the mass difference between a side chain
(SH15C20F26) and a fluorine atom.

Mass Dependent Velocities. Earlier experiments23

showed that thermal beams of 2Lx at T = 500 K had a most
probable velocity around 80 m/s. In comparison, Figure 7

shows the mass-dependence of the molecular velocities after
LIAD for several porphyrin derivatives, from ZnTPP (m = 678
Da) to functionalized molecules beyond m = 10 000 Da. All
were launched from an 8 μm thick tantalum foil.
A linear fit to the double-logarithmic plot indicates a power

law for the mass dependence of the most probably velocity v ∝
m−0.42±0.06. Similar experiments were carried out to determine
the initial velocity of ions in MALDI.27 The authors found a
similar power law v ∝ m−0.32±0.2, albeit with particle velocities
10 times larger. A comparison of LIAD with matrix-free direct
laser desorption26 of 2Lx shows that LIAD velocities are
generally at least 3 times slower than MALDI.

Substrate Dependence. The choice of foil material also
influences the most probable velocity. A comparison of hemin
(Figure 5, 49 m/s) with ZnTPP (Figure 7, 177 m/s) shows that
LIAD generates 3−5 times slower beams using titanium foils
rather than tantalum. A more detailed comparison of LIAD
with ZnTPP confirms this material dependency (see Figure 8).

Figure 5. Velocity distribution of neutral hemin released by LIAD
from a titanium foil with Φdes = 15 MW/cm2 and Φion =1.3(1) MW/
cm2. Each data point is an average over 30 shots for each of five
individual samples. The red line is a guide to the eye. The vertical error
bars represent the standard error caused by sample inhomogeneities.

Figure 6. LIAD mass spectrum of the perfluoroalkyl-functionalized porphyrin libraries (a) 1Lx and (b) 2Lx. The observed peak separation supports
the assumption of fragment-free desorption.26

Figure 7.Mass-dependence of the molecular beam velocity after LIAD
from tantalum. A linear fit to the double-logarithmic graph yields the
power law v ∝ m−0.42±0.06.
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For a given foil material and thickness, different desorption
laser intensities change the overall flux but not the beam
velocity (Figure 8). This finding is in good agreement with
previous studies.4 In Figure 8 we find no dependence of particle
velocity on the foil thickness even though thinner metal sheets
are expected to reach higher surface temperatures. Many
mechanisms have been suggested to explain this substrate
dependence. Zinovev et al.4 proposed that molecular micro-
crystals on the sample may not be in their minimal energy state.
During the desorption process, these crystals may thus eject the
analyte molecules with an excess energy. It depends on the foil
and the analyte material and is expected to be higher for
tantalum than for titanium. In addition, the desorption laser
deforms the foil, forming dimples and bumps on the back and
front side of the metal sheet. Finally, substrate particles are
coejected in the desorption process.28 Thus, energy will not
only be transferred by heating but also through mechanical
stress. The shock-wave induced longitudinal pressure on the
surface is larger for tantalum than for titanium. As a result, the
velocity of the desorbed molecules is also expected to be higher
for tantalum.

■ CONCLUSION AND OUTLOOK
We have demonstrated that LIAD enables natural biochromo-
phores and massive, functionalized porphyrins to be launched
into the gas phase with only minor fragmentation in all cases
but one. LIAD can be performed in high vacuum close to the
acceptance volume of a mass spectrometer, which is a benefit
for analytical chemistry. Single photon postionization at 157.6
nm is a sensitive and specific preparation tool for many
molecules below 2000 Da.29

In addition, we find that laser-induced acoustic desorption
emits very slow molecular beams, which is useful for numerous
experiments in chemistry and physics. Long interaction times
are important for precision spectroscopy where gains in
resolution typically scale with 1/v. In classical13,30 and quantum
deflectometry,18 low velocities are even more important as the
resolution scales with 1/v2.31 The analyte velocity also
determines its de Broglie wavelength in matter-wave interfer-
ometers. LIAD of biliverdin or chlorophyll provides beams with
λdB = 2 × 10−11 m, i.e., 10 times longer than in typical thermal
beams of molecules with a similar mass.17

The slow velocities obtained using LIAD are comparable to
those realized through electric,16 magnetic,32 or mechanical33

slowing methods. However, slowing has only been demon-
strated for atoms and small molecules so far.
Laser desorption into an adiabatically expanding gas jet

provides an equally soft method to launch biomolecules34 and
even large amino acid clusters35 into the gas phase with a
narrow velocity distribution. In comparison, LIAD beams are
typically 5−10 times slower.
For particles around m = 25 000 Da,36 we observed velocities

as low as 6 m/s in our LIAD experiments. This may one day
enable a molecular fountain of neutral molecules. Even lower
velocities, v = 1.5 m/s, have been achieved for naphthalene
(C10H8) using a cold, effusive buffer gas.

37 Demonstrations with
fragile biomolecules have, however, remained a challenge. LIAD
is currently the most universal method of generating slow
molecular beams of neutral, or low charge, particles which can
easily be incorporated into existing analytical instruments.
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