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Polarization of atoms plays a substantial role in molecular interactions. Class I and II force fields mostly calculate with fixed atomic
charges which can cause inadequate descriptions for highly charged molecules, for example, ion channels or metalloproteins.
Changes in charge distributions can be included into molecular mechanics calculations by various methods. Here, we present
a very fast computational quantum mechanical method, the Bond Polarization Theory (BPT). Atomic charges are obtained via a
charge calculationmethod that depend on the 3D structure of the system in a similar way as atomic charges of ab initio calculations.
Different methods of population analysis and charge calculation methods and their dependence on the basis set were investigated.
A refined parameterization yielded excellent correlation of 𝑅 = 0.9967. The method was implemented in the force field COSMOS-
NMR and applied to the histidine-tryptophan-complex of the transmembrane domain of the M2 protein channel of influenza A
virus. Our calculations show that moderate changes of side chain torsion angle 𝜒

1
and small variations of 𝜒

2
of Trp-41 are necessary

to switch from the inactivated into the activated state; and a rough two-side jump model of His-37 is supported for proton gating
in accordance with a flipping mechanism.

1. Introduction

Substantial effort has been put in the development of polariz-
able force fields to understand the function of biomolecules in
their realistic environment, that is, biomembranes or aqueous
solutions. Standard Class I and II molecular mechanics force
fields, used for chemical and biological applications, describe
electrostatic interactions in terms of fixed, in most cases
atom-centred, partial charges. However, polarization plays
a substantial role in shifting charges within real molecular
systems. The interaction energies of molecular systems are
considerably influenced by polarization due to molecular
rearrangements that cause charges to move in the region of
interaction. The neglect of polarizations is one of the most
severe drawbacks of force fields using fixed atomic charges;
and many attempts have been made to develop polarizable

force fields (for a review see, e.g., Cieplak et al. [1] and ref-
erences therein).

Partial atomic charges inmolecules are not directlymeas-
urable and they are not observable in the context of quantum
theory. They give a quantified description of the electron
distribution in molecules in a simplified view. Atomic char-
ges can only be determined indirectly by measuring strongly
charge dependent observables, for example, the dipole
moment, the electric field gradient, or themagnetic shielding.
Charges induce correct tendencies and magnitudes of inter-
actions utilized for the calculation of electrostatic interactions
by applying Coulomb’s law. Therefore, the concept of partial
atomic charges is extremely helpful in many fields of biology,
chemistry, and physics.

Widely used force fields (and collections) like AMBER [2,
3], CHARMM [4–6], GROMACS [7–10], GROMOS [11–13],
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and MMX [14] use fixed atomic charges which result in
inadequate descriptions for some applications, especially in
case of highly charged molecules. Efforts were made to
improve existing force fields with applications tested by the
developers, for example, including fluctuating charges in
OPLS/PROSA [15], applying induced dipole models in
AMBER [16], and introducing multipole expansions as well
as additional potentials in AMOEBA [17] or utilizing Drude
oscillator models in CHARMM [18].

Methods, based on the combination of quantummechan-
ics (QM) and molecular mechanics (MM), received more
attention due to the development of increasingly powerful
computation options and fast data processing. Although
QM/MM methods always bear the problem of truncation
effects caused by the discontinuity at the borderline between
the QM and MM treated section within a molecular system,
QM/MM methods have been a valuable option to model
chemical reactions (breaking and forming of chemical bonds
as well as states far away from equilibrium) [19]. The results
allow valuable insights into, for example, proton transfer
reactions and transition states in biological interestingmolec-
ular systems due to the consideration of improved coupling
potentials and a critical data analysis. However, quantitative
comparisons to experimental and calculated data require
careful analysis; see [20]. An excellent article regarding the
capabilities and limitations to treat complex biomolecular
processes was published by Riccardi et al. [21]. Emphasis
was given to the prevention of misinterpretations when only
a minimum QM region was defined; moreover, consistent
treatment of the electrostatics and sufficient sampling are
crucial for the success of the method.

In our approach, partial atomic charges are calculated
using the Bond Polarization Theory (BPT) [22–25]. Two
parameters per bond type are required to calculate partial
charges from bond orbitals. These two parameters linearly
enter into the BPT formula and therefore can be determined
froma least square solution of a systemof equations, provided
partial charges are known from ab initio calculations. These
two parameters have a physical meaning: One parameter is
the bond partial charge of a nonpolarized bond and the other
parameter is the change of the charge due to polarization.
The polarization energy for each bond is calculatedwithin the
BPT framework. BPT charge calculations are easily integrated
into a force field by constructing a bond orbital for each
bond defined in a molecule. The capability to describe
polarization within a force field model potentially serves as
key to a better understanding of structural based function of
biological systems [23, 26]. The concept of polarization has
been also applied to fast calculation of chemical shift tensors,
for nuclear magnetic resonance spectroscopic investigations,
and for direct structure elucidation using them [25, 27–33].

The semiempirical treatment of charge distributions inte-
grated into a force field improves the description of short-
and long-range electrostatics within a large molecular system
and this should bridge the gap between QM/MM methods
and force field calculations with fixed charges. Previously, we
developed a force field (COSMOS-NMR) [34] with polar-
isable BPT-derived charges to describe intermolecular inter-
actions formost organic compounds:Molecules consisting of

C, O, N, and H atoms [26]. Although the BPT is not able
to describe chemical reactions, the COSMOS-NMR force
field provides a novel approach to treat biomolecular systems
inclusive polarization effects with consistent electrostatics
and allows sufficient sampling due to the low computational
effort; for benchmark simulations see Schneider et al. [35].

The interaction of Valinomycin with potassium ions was
studied earlier [26] and offers an explanation regarding the
selectivity of the ion transporter protein for K+ versus Na+.
The calculations yielded interaction energies of the cyclic
depsipeptide complex that are in the order of the hydration
energy; that is, Valinomycin is able to strip off the hydration
sphere of a K+ ion by forming an interaction complex lower
in energy compared to the ion in its hydration shell. The
K+ selectivity of Valinomycin in nature provides qualitative
proof of our quantitative model. The calculations pointed to
polarization effects that are mainly attributed to carbonyls of
the backbone of Valinomycin, which matches experimental
results in related systems [36].

In this work, one of our objectives is the extension of
our semiempirical charge calculation method to F, Si, P, S,
and Cl containing compounds by a reparameterization. Also,
some criticism of the BPT charge calculation was voiced due
to the choice of a minimum basis set (STO-3G) and popu-
lation analysis (Mulliken) to obtain reference atomic charges
for the parameterization.Thus, several alternative parameter-
izations of the BPT charge calculation were tested for best
performance based on ab initio calculations using different
definitions of partial charges and different sized basis sets as
reference data.

The new method was applied to the molecular model of
a proton conducting ion channel where charges and polar-
izations are of concern for the function of the gating mech-
anism. The influenza A virus contains a tetrameric bundle
of proteins in its envelope that form a membrane spanning
proton channel, the M2 channel. The channel conducts pro-
tons essential for viral replication [37–40]. After the virus
enters a cell and becomes embedded in an acidic compart-
ment (pH 5-6), protons are imported into the virion balanc-
ing the pH-gradient across the membrane between lumen
and cytoplasm. The resulting change in protein-protein and
protein-lipid interaction triggers the uncoating of the virus.
The channel formation can be inhibited by the antiviral drugs
Amantadine [41] and Rimantadine [42]. Nevertheless, the
virus becomes increasingly drug resistant [43] due to muta-
tions. Therefore there exists a priority to clearly understand
the structural basis for the opening and closing mechanism
of the channel in order to find new drugs against the virus
and at the same time addressing drug resistant viral strains
[44].

A wealth of information is available on the structure and
structural details concerning the function of the M2 channel:
structures from experiments have been discussed [44–58];
several solid state NMR structures of the M2 transmembrane
domain (TMD) [44, 50, 52–54, 59, 60] and solution state
NMR structures of M2 in micelles [46, 61, 62] as well as X-
ray crystal structures of M2 TMD in octyl-glucoside [47, 63]
have been published, and there are also a broad variety of
calculated structural models available [49, 57, 58]. These
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proteins highlight different features in structure and function
which seem to be strongly dependent on themembrane envi-
ronment, pH adjustment, and temperature [56]. Also, a het-
erogeneous model was reported showing a helix-kink angle
distribution [50].

One feature these structures have in common is the
core of the channel: It comprises four Trp-41 (indole rings)
and four His-37 (imidazoles) amino acids. The latter groups
are either protonated or deprotonated at physiologic range
between pH 5 and pH 8 [64] which is essential for the channel
function/gating mechanism. His-37 initiates the opening of
the channel [65, 66] when it becomes positively charged
through protonation. His-37 residues appear to be physically
involved in proton conducting, while Trp-41 groupsmechan-
ically open and close the channel [67].

The time-limiting step of the channel opening is the pro-
tonation/deprotonation of His-37 (imidazole side chain)
proceeding on a ms-to-sec time-scale [68, 69]. Khurana et al.
[49] performed MD simulations on four structures/channel
models in different protonation states to show the relaxation
of the His-37 groups.The authors propose the channel action
as a peristaltic water pump with a “sphincter” formed by
the Val-27 residues. There was no explanation how the pro-
tonation state of His-37 is “recognized” by hydrophobic Val-
27 residues.

Interestingly, the M2 channel has a surprising low con-
ductivity. Two different mechanisms of proton conduction
through the channel have been suggested: (1) A continuous
“water-wire” enabling proton “hopping” [70] which is very
fast [57, 71] or (2) a shuttling/sphincter mechanism that
directly involves the protonation/deprotonation of His-37.
The lattermechanism ismore consistentwith the relative slow
conductance rate of 104 ions per second [49, 69, 72].

There is evidence for a gating function of tryptophan rings
[32, 73] from NMR investigations on membrane oriented
channels with 15N and 19F labeled Trp-41 groups. The NMR
investigations provided fluor-fluor distances for the opened
and closed state. Cation-𝜋 interactions exist between the pro-
tonated imidazole ring ofHis-37 and the indole ring of Trp-41

[66]. Fluorescence investigations on M2 also demonstrated a
pH dependence of the Trp-41 and His-37 interactions [74].

A two-site Trp-41 exchange model has been introduced
to explain the dynamics of the system. The 3𝐽NC𝛾 coupling of
Trp-41 has been measured to be 2.6Hz. However, Pérez et al.
reported an error on theKarplus relation for calculating 3𝐽NC𝛾
of 0.8Hz [75], which renders any conclusion concerning
the conformational state uncertain. The relative large error
could be an indication for the simultaneous occurrence of
mixed protonation states within a sample, causing different
conformational states of the side chain residues His-37 and
Trp-41 at the active site, the “inner” gate. Therefore, the
precise conformational states of the channel core are a key
to understand the functional mechanics of the M2 channel.

In this paper, we provide evidence for a plausible opening
mechanism for the M2 channel: The tryptophan gate of the
channel is pushed open by the histidines as consequence
of their conformational change triggered by protonation.
A conformational search of the gating model at different
states offers the energetic rationale for a detailed opening
mechanism by including all mutual polarizations in the
calculation of the electrostatic energy.

2. Materials and Methods

2.1. Bond PolarizationTheory for Partial Atomic Charges. The
BPT (Bond Polarization Theory) is the starting point for the
calculation of atomic charges, describing the dependence of
expectation values from polarization [76]. The definition of a
local charge operator 𝑞

𝐴
(site 𝐴) is a prerequisite to calculate

atomic charges 𝑞
𝐴
:
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The general atomic charge operator is defined by the differ-
ence between the nuclear charge and the electron population.
The latter depends strongly on the kind of atomic orbitals, |𝑗⟩,
associated with atom 𝐴. The molecular wave function Ψ is
build up as a configuration interaction (CI) series of Slater
determinants of bond orbitals (BOs). The BOs are linear
combinations of hybrid atomic orbitals (AOs) 𝜒𝑖

𝐴
and 𝜒𝑖
𝐵
.The

first sum in (1b) counts all bonds 𝐴-𝐵 of atom 𝐴 denoted
by 𝑖. The variable 𝑛

𝑖
refers to the occupation number of 𝑖th

bonds; and 𝑞
𝑖
is the corresponding bond partial charge. The

parameter𝐴
𝑖
quantifies the change of the charge due to bond

polarization. The outer sum adds the contribution of each
bond of 𝐴 to the total charge, consisting of the bond partial
charge and the correction due to polarization caused by the
surrounding atoms.Therefore, the inner sum, accounting for
all polarizing atoms (denoted as system C), has to exclude
atom 𝐴 itself. The bond partial charges 𝑞

𝑖
and their variation

caused by bond polarization 𝐴
𝑖
are the parameters that have

to be determined by a parametrization procedure. This is
achieved with known charges 𝑞

𝐴
. Two parameters need to be

determined for each type of bond/respective combination of
elements 𝐴-𝐵. A sufficient large set of charges is necessary to
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Table 1: Correlation coefficients (𝑅) and standard deviations (SD) of the parameterization of the BPT charge calculation based on
selected different charge models MPA (Mulliken population analysis), ESP (charges derived from electrostatic potentials), and NPA (natural
population analysis) of the best and worst performing basis sets for each model. The overall best performance, NPA/6-31G(d,p), is marked in
bold. (Δ𝑄 is the total range of the charge distribution.)

Charge calculation model Basis set Correlation coefficient
𝑅

Standard deviation
SD [e]

Relative standard deviation
SD/Δ𝑄 [%]

MPA STO-6G 0.9944 0.0244 10.50
6-311++G(d,p) 0.8182 0.1463 47.05

ESP 3-21G 0.9768 0.0818 20.90
6-31+G(d,p) 0.9414 0.1155 31.75

NPA 6-31G(d,p) 0.9967 0.0437 8.10
6-311+G(d,p) 0.9795 0.0959 19.69

obtain an overdetermined system of equations (see (1b)).The
least square solution of this set of equations will provide the
parameters 𝑞

𝑖
and 𝐴

𝑖
.

The occupation number of bonds 𝑛
𝑖
is introduced to treat

molecular systemswith conjugated bonds between two atoms
𝐴 and 𝐵. An empirical relationship between the contraction
of an ideal single bond 𝑅

𝐴𝐵
and the valence of the bond 𝑛

𝑖
=

𝑛
𝑖(𝐴-𝐵) was applied to estimate the bond occupation numbers
𝑛
𝑖
(see (1b)) between two atoms𝐴 and𝐵 via the corrected/real

bond length (𝑟
𝐴-𝐵):

𝑟
𝐴-𝐵 = 𝑅𝐴-𝐵 − 0.37 ln 𝑛𝑖(𝐴-𝐵). (2)

The ideal single bond lengths are obtained from a parameter-
ization of O’Keeffe and Brese [77].

BPT charges 𝑞
𝐴
are calculated from all other atomic char-

ges 𝑞
𝑋
of themolecular system (see (1b)).The resulting system

of equations has the dimension of the number of atoms in the
molecular system.

2.2. Parameterization. A set of 163molecules consisting of H,
C, N, O, F, Si, P, S, and Cl atoms (with 25 bond types: H-C, H-
N, H-O, C-F, C-N, C=N, C-C, C=C, C-O, C=O, Cl-C, P-O,
P=O, Si-H, Si-C, Si-O, Si-Cl, S-H, S-C, S=C, S-O, S=O, S-S,
Zn-O, and Zn-N) was selected to calibrate the BPT charge
parameters 𝑞

𝑖
(22 numbers) and 𝐴

𝑖
(25 parameters) with

25 valences 𝑛
𝑖
and global scaling factor for the electrostatic

energy.
Based on experimentally available structural data [78],

the initial molecular geometries were optimized with GAUS-
SIAN 98 [79] using hybrid functional option (DFT/B3LYP)
for a 6-31G(d,p) basis set. The distances were checked against
the original experimental data from literature [79, 80]. No
major deviations in bond distances (≥0.02 Å) and bond
angles (≥2∘) were observed.

The BPTmethod was parameterized using three different
atomic charge models: Mulliken population analysis (MPA),
charges derived from electrostatic potentials (ESP), and
charges from a natural population analysis (NPA). The ESP
method does not fit into the context of methods for popu-
lation analysis since these charges are fitted to represent the
electrostatic potential at the molecular surface. It is possible
to derive the partial charge as expectation value of an operator
(see (1a)) mathematically correct only for the MPA and NPA
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Figure 1: Correlation of NPA atomic charges calculated with BPT
and DFT employing a 6-31G(d,p) basis set. The calibration set
included 175 compounds containing the elements H, C, N, O, F, Si,
P, S, Cl, and Zn. The correlation coefficient is 𝑅 = 0.9961 and the
standard deviation SD = 0.05 e.

method.The basis set dependence of the charges was investi-
gated using 11 different basis sets for each chargemodel (MPA,
ESP, and NPA) (see Supplementary Material available online
at http://dx.doi.org/10.1155/2015/908204). Table 1 shows the
correlation coefficients of the parameterization of the BPT
charge calculation of six selected charge calculation models;
only results of the best and worst performing basis sets are
listed. The overall best performance has been obtained with
NPA/6-31G(d,p).

For a special application, zinc was introduced as new
element to prove the general applicability, the quality of
the correlation, and the stability of the results. The new
training set for the parameterization consisted of the same
163 molecules that was used earlier plus 12 additional zinc
compounds. Again, the NPA/6-31G(d,p) basis set yielded the
highest correlation coefficient compared to different charge
models (MPA/STO-6G and ESP/3-21G) that showed also
high correlation coefficients (see Table 1) for the 175 com-
pounds. Figure 1 depicts the correlation of the BPT charge
calculation against NPA charges from DFT calculations with
the 6-31G(d,p) basis set for 175 compounds of the calibration
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Figure 2: Correlation of BPT/NPA parameters using different compact basis sets. (a) Correlation of 𝐴
𝑖
/3-21G and 𝐴

𝑖
/6-31G(d,p) with 𝑅 =

0.9969 and SD = 0.26 e/H. (b) Correlation of 𝑞
𝑖
/3-21G and 𝑞

𝑖
/6-31G(d,p) with 𝑅 = 0.9973 and SD = 0.03 e.

set. The ESP method did not perform such well as the initial
parameterization.

A correlation coefficient of 0.9961 was obtained between
BPT/NPA and DFT/NPA, and the standard deviation was
0.05 e. The inclusion of rather exotic zinc compounds did
not drastically change correlation coefficient and kept the
BPT parameters nearly unchanged. This demonstrates that
(1) the BPT is able to reproduce atomic charges from ab
initio calculations in a very satisfactory manner and (2) the
interpretation of the BPT parameters regarding the polar-
ization is physically correct.

One major point to be addressed is the basis set depen-
dence of the calculated atomic charges. The correlations of
BPT/NPA parameters for different compact basis sets (3-21G
and 6-31G(d,p)) are shown in Figure 2. The correlation of
the bond partial charges 𝑞

𝑖
yields a correlation coefficient of

𝑅 = 0.9973 (SD = 0.03 e), while the polarization parameters
𝐴
𝑖
show a 𝑅-value of 0.9969 and a standard deviation of

0.26 e/H. This indicates that sufficient parameter stability is
maintained regarding the usage of different compact basis
sets (no polarization functions are used); no basis set depen-
dence of the calculated atomic charges was found in our tests.

In a next step, the BPT/NPA method was compared with
DFT/NPA results of a pseudopeptide zinc complex that was
not included in the training set, consisting of 64 atoms (H,
C, N, O, and Zn). The correlation of the calculated atomic
charges for the zinc complex (correlation coefficient 𝑅 =

0.9882, standard deviation SD = 0.07 e) is shown in Figure 3.
A detailed comparison of all correlation coefficients

regarding different charge models, basis set sizes, and num-
bers of the corresponding BPT parameters is given in Supple-
mentary Material.
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Figure 3: Correlation between BPT atomic charges and DFT char-
ges calculated employing theNPAmethod and a 6-31G(d,p) basis set
for a pseudopeptide zinc complex not included in the training set.
The correlation coefficient is 𝑅 = 0.9882 and the standard deviation
SD = 0.07 e.

Onemajor focus of this work was to improve the descrip-
tion of intermolecular interactions for biomolecular appli-
cations. Intermolecular interactions are mainly described by
the sum of Coulomb and Van der Waals energy terms within
the COSMOS-NMR force field with fluctuating charges (for
details see [26]). Since interacting electron distributions are
replaced by potential functions, this simple approachwill lead
to a systematic bias in interaction energies.

A scaling factor was introduced into the potential energy
term in order to fine-tune the interaction energies. This
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Table 2: Comparison of hydrogen-bonded dimer geometries and interaction energies to HF/6-31G∗ data (this table is an extension of a
web-based force field evaluation suite by Halgren [81–83] and compares the COSMOS-NMR force field with data provided by the web page
http://server.ccl.net/cca/data/ff evaluation suite/).

Force field Interaction energy [kcal/mol] 𝑋 ⋅ ⋅ ⋅ 𝑍 distance [Å] 𝑋-𝐻 ⋅ ⋅ ⋅ 𝑍 [∘]
Mean deviations

COSMOS-NMR 0.41 −0.04 10.6
MMFF94 −0.25 0.02 14.6
MMFF94s −0.24 0.03 18.1
CFF95 1.10 0.21 27.0
CVFF∗ 2.24 0.23 26.1
MSI CHARMM 0.60 0.08 34.0
CHARMM 22∗ 0.00 0.05 15.0
OPLS −0.49 0.02 22.9
AMBER 0.08 0.04 26.9
MM2 1.92 0.06 39.5
MM3∗ 2.12 0.22 34.0
∗Each of the force fields handles all 66 hydrogen-bonded dimers except for (i) CVFF, for which the Cerius2 implementation could not perform the atom
typing for imidazole, (ii) MM3, which lacks parameters for 12 of the dimers, and (iii) CHARMM 22, which lacked parameters for about half the systems even
with extensions made locally. Some problems occurred with the interaction energies of two cyclic dimers that were not included in the comparison (oxalic
acid/water, cyclic ammonia dimer) and three charged dimers (formamidinium/water, formaldehyde iminium/water, and bidentate/water) that show larger
deviations of the interaction energies (≥2 kcal/mol).

scaling factor was determined iteratively by comparing inter-
action energies calculated with the COSMOS-NMR force
field with interaction energies from the web service based
force field evaluation suite by Halgren [81–83]. Among other
types of data, this data base contains ab initio calculated
intermolecular interaction energies of small dimeric mol-
ecules. 66 hydrogen-bonded dimers were optimized with the
COSMOS-NMR force field [25]. The intermolecular inter-
action energies were calculated as the difference between the
energy of the dimer and the sum of the energies of the
two monomers. The optimized structures were compared
to the quantum mechanically optimized geometries from
Halgren [81–83] by calculating the RMS deviations for the
whole structures as well as for the hydrogen bond structures
(distances and angles). A scaling factor was calculated as
arithmetic mean of the scaling factors of each interaction
pair.Thewhole procedure was repeated until the difference of
the scaling factor per iteration was smaller than 10−5, which is
103 times below the error limit of the calculated BPT charges.
The calculated scaling factor for the Coulomb energy of the
COSMOS-NMR force field is 0.87245. A comparison of the
mean deviations for the interaction energies and hydrogen
bonding geometries from several force fields calculations
including our own developed COSMOS force field is given
in Table 2.

The COSMOS-NMR force field shows slight overestima-
tion of the interaction energies compared to the quantum
mechanical data, whereas the hydrogen bond geometries
show relative small deviations from the quantummechanical
calculated geometries; the 𝑋 ⋅ ⋅ ⋅ 𝑍 distances are too short
(0.04 Å) and the𝑋-𝐻 ⋅ ⋅ ⋅ 𝑍 angles are larger (10.6∘) on average
than the HF/6-31G∗ calculated data.

2.3. Program Implementation. The routines for the BPT
charge calculations were integrated into the COSMOS-NMR

force field to enable the recalculation of the charges at
every step of a molecular mechanics calculation. A graphical
user interface for Windows (Win32) was implemented that
integrates COSMOS-NMR into the general modelling and
graphics program COSMOS [34].

All calculations can be performed using the COSMOS-
backend program (C++) that was compiled for several oper-
ating systems as, for instance, UNIX, LINUX, AIX, and
Win32. The COSMOS-backend is controlled by command
line parameters and a project file (∗.cos). The project file
(ACII) can be edited or alternatively generated using the GUI
program COSMOS. A MPI parallelized version is available
[35] for MD calculations.

The most time consuming part of the charge calculation
is the evaluation of the integrals over bond orbitals describing
the bond polarization energies (see (1a) and (1b)).The expres-
sions for the integrals that are needed as coefficients of the
system of equations are given in the supporting material.
These integrals are used to build up amatrix of the dimension
equal to the number of atoms 𝑁. The computational time
for setting up all 𝑁 charge equations is proportional to
the number of bonds multiplied by 𝑁2. Charge calculation
within the BPT framework means solving this set of linear
equations for which the number of floating point operations
is proportional to 𝑁3. A time profile for the routines was
generated and showed that the solution of the equation is
about ten times faster than the calculation of all integrals.
Highly optimized standard packages (LAPACK, see, e.g.,
[35]) are used to speed up the matrix inversion.

3. Application and Results

Themembrane proteinM2 of influenza A virus consists of 97
residues including a 24-residue N-terminal and a 54-residue
C-terminal segment. The transmembrane domain (TMD)
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(a) (b)

Figure 4: Transmembrane part of the M2 proton channel; illustrated are the His-37 (green) and Trp-41 (blue) interactions that control the
gating mechanism of the four helices in a bundle. The conformations of the Nishimura model at pH 8 of His-37 (𝜒

1
, 𝜒
2
) = (−177∘, +172∘) and

Trp-41 (𝜒
1
, 𝜒
2
) = (−177∘, −105∘) are used (PDB-code: 1NYJ). The His-37 and Trp-41 conformations in this model cause strong Van der Waals

contacts. (a) Bottom view. (b) Side view.

consists of 19 residues that form an 𝛼-helical secondary
structure. The 𝛼-helices associate with a tetrameric channel
forming a pore in a lipid bilayer as illustrated in Figures 4 and
6 [74, 84, 85].

Investigations under different conditions indicate that the
tilt angle of the helix backbone orientation varies between
15∘ and 45∘ [46, 47, 86–93]. Channels without Amantadine
show much less variation of the tilt angle. A tilt angle
between 32∘ and 38∘ was detected for the channel in lipid
DMPC. The tertiary structure seems not to change sig-
nificantly during the switch between an open and closed
state. Thus, we use the same backbone structure for our
calculations (DMPC/water box) at different pH. A 25-residue
peptide (SSDPLVVAASIIGILH37LILW41ILDRL) containing
the hydrophobic TMD (P25-L46) was investigated.This TMD
model and its equivalent mutants are widely used for struc-
tural investigations [52]. Here, we focused on the pH-
dependent conformational change of the His-37 and Trp-41
side chains inside the channel pore.

The COSMOS-NMR force field is especially suited for
calculations of charged systems since all mutual polarizations
are included into the electrostatic energy. The PDB structure
1NYJ [52] was used as initial model of M2 TMD. The
protonation states determined by Hu et al. [64] were applied
for the His-37-tetramer. The charged groups were modeled
according to the pH values for the opened and closed
channel configuration. Figure 5 illustrates Trp-41; the side
chain torsion angles of His-37 are named accordingly.

COSMOS-NMR force field energies were calculated for
different His-37 and Trp-41 side chain conformations at pH 5
and mapped onto the total force field energy of the channel.

Four His-37 have an average total charge of +1.3 at
pH 8.0 and +3.0 at pH 5.0. The charged tetrameric M2
TMD structure was placed into an equilibrated box with a
size of 603 >3, containing 128 DMPC lipid and 3000 water

𝜒1

𝜒2

Figure 5:The side chain torsion angles of TRP-41: 𝜒
1
(N,C

𝛼
,C
𝛽
,C
𝛾
)

and 𝜒
2
(C
𝛼
,C
𝛽
,C
𝛾
,C
𝛿1
).

molecules; see Figure 6(c). All charges and energies, includ-
ing the coordinate-dependent electrostatic interactions, were
calculated for conformations of the four His-37 and Trp-41
residues under these conditions.

Figures 7 and 8 show conformational energy maps at pH
8 (closed channel) and at pH 5 (open channel), respectively.
Panels (a), (d), and (g) picture the calculated total energies as
a function of theHis-37 (a) andTrp-41 ((d) and (g)) side chain
torsion angles 𝜒

1
(N,C
𝛼
,C
𝛽
,C
𝛾
) and 𝜒

2
(C
𝛼
,C
𝛽
,C
𝛾
,N
𝜋
), as

well as 𝜒
1
(N,C
𝛼
,C
𝛽
,C
𝛾
) and 𝜒

2
(C
𝛼
,C
𝛽
,C
𝛾
,C
𝛿1
) in different
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(a) (b) (c)

Figure 6: (a) The initial structure of M2 TMD from the Protein Data Base (1NYJ). Trp-41 are shown in blue, His-37 in green, hydro-
philic/charged amino acid side chains in light blue, all other side chains in yellow. (b) View along the channel with a network colored by
the electrostatic potential (from blue to red corresponding to negative to positive). (c) Equilibrated box with a size of 603 >3, containing 128
DMPC lipid, 3000 water molecules, and the M2 TMD structure in the centre.
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Figure 7: Torsion angle: energy maps of His-37 with fixed Trp-41 at (𝜒
1
, 𝜒
2
) = (−100∘, +110∘) in (a), (b), and (c) and maps of Trp-41 with fixed

His-37 at (𝜒
1
, 𝜒
2
) = (+120∘, +110∘) in (d), (e), and (f) and (−180∘, −180∘) in (g), (h), and (i) for pH 8.0/closed state. Panels (a), (d), and (g)

represent total energies, (b), (e), and (h) Van der Waals energies, and (c), (f), and (i) electrostatic energies. All energy maps are shown within
a 5MJ/mol range from minimum (black) to higher energies (dark grey, grey, light grey, and white).
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Figure 8: Torsion angle: energy maps of His-37 with fixed Trp-41 (𝜒
1
, 𝜒
2
) = (−50∘, +115∘) in (a), (b), and (c) and maps of Trp-41 with fixed

His-37 (𝜒
1
, 𝜒
2
) = (+95∘, +130∘) in (d), (e), and (f) and (+100∘, −50∘) in (g), (h), and (i) at pH 5.0/open state. Panels (a), (d), and (g) represent

total energies, (b), (e), and (h) Van derWaals energies, and (c), (f), and (i) electrostatic energies. All energymaps are shownwithin a 5MJ/mol
range from minimum (black) to higher energies (dark grey, grey, light grey, and white).

configurations. The dark areas represent allowed rotamers
within the channel in a DMPC/water bilayer environment.
Figures 7(b), 7(e), 7(h), 8(b), 8(e) and 8(h) depict the cal-
culated Van der Waals and (c), (f), and (i) the electrostatic
energy contour plots for the different combinations of side
chain torsion angles, 𝜒

1
and 𝜒

2
.

The calculations allow only an estimate of forbidden
conformational areas for the side chains of the gating residues
His-37 and Trp-41 and provide reasons for the conforma-
tional restrictions that are concluded from the energy decom-
position analysis, since the structures are not geometry
optimized.

An analysis of the calculations for the inactivated/closed
state at pH 8 yields the following results: (1) Dihedral angels of
Trp-41 were fixed according to experimental results (𝜒

1
, 𝜒
2
) =

(−100± 10∘, +110± 10∘) byWitter et al. [32]: (i)There is a broad
forbidden area (between −110∘ and 60∘) for the 𝜒

1
angles

of His-37 due to Coulomb interaction (see Figure 7(c)). (ii)
Van der Waals interactions cause two main allowed con-
formational areas (see Figure 7(b)). (iii) From these two
conformational areas each can be split into two rough torsion
angles combinations of His-37: (𝜒

1
, 𝜒
2
) = (−175∘, +50∘)/

(+120∘, +110∘) and (−175∘, −150∘)/(+110∘, −65∘) which can
be considered as rough energetically allowed/preferred con-
formations. The angle distribution around these values is
between 20∘ and 50∘. Transitions between these two regions
possibly take place by 180∘ flips of 𝜒

2
which correspond to

flipping mechanism [72]. (2) Two representing angles: (𝜒
1
,

𝜒
2
) = (+120∘, +110∘) and (−180∘, −180∘) of His-37 were used

for the analysis of the torsion angles of the mechanically
gating Trp-41 side chains. The resulting angle distributions
for Trp-41 are shown in Figures 7(d)–7(i). (i) No major
restrictions of the allowed conformational areas are attributed
to the Coulomb interactions of Trp-41 (see widespread dark
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(a) (b)

Figure 9: Side chain conformations of Trp-41 and His-37 in the transmembrane channel structure of the homotetrameric M2 protein.
Representatives of (a) closed state at pH 8 for Trp-41: (𝜒

1
, 𝜒
2
) = (−115∘± 50∘, +130∘± 30∘), His-37: (𝜒

1
, 𝜒
2
) = (−180∘± 20∘, −140∘± 20∘) and

(b) open state at pH 5 for Trp-41: (𝜒
1
, 𝜒
2
) = (−60∘± 20∘, +110∘± 20∘) and His-37: (𝜒

1
, 𝜒
2
) = (+95∘± 20∘, +130∘± 20∘) are shown.

patches, Figures 7(f) and 7(i)). (ii) Van derWaals interactions
cause major forbidden areas in the conformational space
due to the bulky side chains of Trp-41 residues. (iii) Torsion
angles of (𝜒

1
, 𝜒
2
) = (−115∘± 50∘, +130∘± 30∘) are identified

as energetically lowest conformations, which are close to
the initial experimental values for the Trp-41 torsion angle
calculation; see above: (𝜒

1
, 𝜒
2
) = (−100∘± 10∘, +110∘± 10∘)

[32]. Nevertheless view values with higher energies might
be possible, for example, (−100∘, −100∘), depending on His-
37 conformation. The resulting structure of a closed channel
configuration is pictured in Figure 9.

A similar analysis of the calculations for the activated/
open state at pH 5 yields the following results: The panels
in Figure 8 show similar energy maps as panels in Figure 7
that lead to corresponding conclusions regarding forbidden
conformational areas for the side chains of the gating residues
His-37 and Trp-41. 1. His-37 was analyzed for fixed dihedral
angels of Trp-41 according to experimental results (𝜒

1
, 𝜒
2
) =

(−50∘± 10∘, +115∘± 10∘) [32]; see Figures 8(a), 8(b), and 8(c).
(i) Again, the Coulomb interactions cause a large forbidden
conformational area for the 𝜒

1
angles of His-37 (panel (c)).

(ii) There are mostly only two areas for the torsion angles
of His-37, (𝜒

1
, 𝜒
2
) = (+95∘, +130∘) and (+100∘, −50∘), that

keep the side chain locked in the open position of the
channel due to Van der Waals interaction of the protonated
His-37 side chains. The angle distribution is roughly 20∘. The
conformational difference is just about a 180∘ flip. These two
dihedral angles of His-37, (+95∘, +130∘) and (+100∘, −50∘),
were used for the conformational analysis of the side chain
angles of Trp-41; see Figures 8(d)–8(i). (i) Again, restrictions
of the conformational space are mainly caused by the bulky
side chains of Trp-41 due to Van der Waals interaction that
lock the side chain. The position with the lowest energy can
be found around the initial experimental open state position
(𝜒
1
, 𝜒
2
) = (−70∘± 20, +110∘± 20). Still other conformations

at higher energies are valid. During proton gating molecules

of water (not considered in these calculations) interacting
with His-37 side chains will restrict Trp-41 to such open con-
figuration, presented in Figure 9.

Figures 7(a), 7(d), 7(g), 8(a), 8(d), and 8(g) show the sum
of the electrostatic and Van der Waals energies. The total
energy is dominated by Van der Waals interactions that are
altered by the electrostatic contributions.

Four Trp-41 and four His-37 residues participate actively
in the gating of the channel structure. The function of the
Trp-41 residues is a mechanical closing and opening mecha-
nism of the channel. A change in pH causes the protona-
tion/deprotonation ofHis-37 and causes a structural response
of His-37 and Trp-41 driven by electrostatic and Van der
Waals interactions between these residues.We conclude from
our calculations that the bulky Trp-41 side chains enhance the
steric effect of the His-37 residues that are directly involved in
the H+ gating. In the open state the conformational space of
His-37 is more restricted such that they are locked for gating.
It also implies the possibility of a two-side jumpmodel which
supports the function of the imidazole rings flipping around
𝜒
2
by almost 180∘, thereby able to perform the “turning step”

of passing the protons through the channel. At the closed state
theHis-37 side chains are locked due to hydrogen bridges and
are not accessible for H+ gating. When the channel opens,
the Trp-41 (folded back into the sides of the channel) are
exposing the His side chains that only now are able to bind
the hydrogen ions for passing through the open channel.That
is in accordance with the flipping mechanism [72].

4. Discussion

BPTprocedures for atomic charge calculationwere integrated
into traditionalmolecularmechanic force fields.Thus, amore
detailed description of Coulomb interactions becomes feasi-
ble within the COSMOS-NMR force field without defining
special QM regions. A careful parameterization of the BPT
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procedure allows the calculation of atomic charges virtually
on ab initio level for very large molecular systems. The char-
ges depend on all mutual polarizations and provide with a
correlation coefficient of 0.9967 improved accesses to elec-
trostatic interaction energies.

The COSMOS-NMR force field was applied to the proton
channel of the influenza A virus. A detailed structure-func-
tion relation of the channel and its gating residues was
obtained and attributed to Van der Waals and Coulomb
interactions of the gating residues His-37 and Trp-41. Exper-
imentally derived torsion angles of Trp-41 at pH 8 and pH
5 were theoretically approved. The presented states of the
virus channel are not single valued or very fixed but repre-
sent preferred conformational distributions. His-37 exists in
mainly two different conformational distributions which can
be transformed by 180∘ flips around 𝜒

2
. His-37 are pointed to

the centre of the channel at the open state. At the closed state
they are locked via hydrogen bridges to the channel’s side. To
change Trp-41 from the inactivated into the activated state,
only moderate changes of torsion angle are necessary. With
our analysis we confirm former results obtained with 15N-,
19F-NMR [32, 73] and the gating function ofHis-37 for proton
conduction related to a His-37 flipping [72].
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