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1 Introduction

Neutrino oscillation experiments have now established beyond doubt that neutrinos are

massive and there is leptonic flavor violation in their propagation [1, 2], see ref. [3] for an

overview. It has also been clear for more than a decade that a consistent description of the

global data on neutrino oscillations is possible by assuming that the three known neutrinos

(νe, νµ, ντ ) are linear quantum superposition of three massive states νi (i = 1, 2, 3) with

masses mi. Consequently, a leptonic mixing matrix is present in the weak charged current

interactions [4, 5] of the mass eigenstates, which can be parametrized as [6]:

U =

 c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s13s23e
iδCP c12c23 − s12s13s23e

iδCP c13s23

s12s23 − c12s13c23e
iδCP −c12s23 − s12s13c23e

iδCP c13c23

 , (1.1)

where cij ≡ cos θij and sij ≡ sin θij . If one chooses the convention where the angles θij
are taken to lie in the first quadrant, θij ∈ [0, π/2], and the CP phase δCP ∈ [0, 2π], then

∆m2
21 = m2

2−m2
1 > 0 by convention, and ∆m2

31 can be positive or negative. It is customary

to refer to the first option as Normal Ordering (NO), and to the second one as Inverted

Ordering (IO). In the following we adopt the (arbitrary) convention of reporting results for

∆m2
31 for NO and ∆m2

32 for IO, i.e., we always use the one which has the larger absolute

value. Sometimes we will generically denote such quantity as ∆m2
3`, with ` = 1 for NO

and ` = 2 for IO.
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Several global analyses exist in the literature [7–9], which, by fitting the results from

the bulk of oscillation experiments, obtain best estimates and allowed ranges for these six

oscillation parameters. Generically they obtain their results within a frequentist framework,

using a χ2 statistics.

Alternatively, a consistent approach to obtaining the probability that a certain param-

eter within a given model takes certain values is provided by Bayesian inference. Further-

more, Bayesian analysis is particularly suited for comparing how much better one model

describes the data compared to another model. So one may question to what degree the

current determination of the oscillation parameters is dependent on the assumed statistical

approach, and whether Bayesian statistics can shed some light on the presently open issues

related to the mass ordering, the octant of θ23, and the presence of CP-violation.

In this article we address these questions by performing a Bayesian analysis of the

current neutrino oscillation data. In section 2 we briefly describe the elements of Bayesian

statistics required for this analysis. In section 3 we present the global results of the analysis

and compare them with those of the χ2 analysis of the same data samples of NuFIT-

2.0 [10]. We discuss in detail the main results related to the determination of sin2 θ23

and δCP in sections 4 and 5, where we also discuss the additional subtleties caused by the

circular nature of the CP-violating phase, and study how it is possible to define correlation

coefficients with s2
23 in section 6. Finally in section 7 we summarize our conclusions.

2 Statistical framework

In this work, we will be using Bayesian probability theory, where each proposition is associ-

ated with a probability or plausibility, defined to lie between 0 and 1. In order to calculate

the probabilities of different assumptions, hypotheses, or models, the laws of probability

are used when conditioned on some known (or assumed) information. Of particular interest

is Bayes’ theorem, which can be used to compare a set of hypotheses Mj , using some set

of collected data, D, through calculation of the posterior odds,

Pr(Mi|D)

Pr(Mj |D)
=

Pr(D|Mi)

Pr(D|Mj)

Pr(Mi)

Pr(Mj)
. (2.1)

The prior odds Pr(Mi)/Pr(Mj) quantifies how much more plausible one model is than the

other a priori. The evidence, Zi = Pr(D|Mi), is the likelihood for the model quantifying

how well the model describes the data. The Bayes factor,

B = Zi/Zj (2.2)

which is the ratio of the evidences, quantifies how much better the model Mi describes the

data than Mj .

Given that the model M contains the free parameters Θ, the evidence is given by

Z = Pr(D|M) =

∫
L(Θ)π(Θ)dNΘ, (2.3)

where L(Θ) ≡ Pr(D|Θ,M) is the likelihood function. The prior probability density of

the parameters is given by π(Θ) ≡ Pr(Θ|M), and should always be normalized, i.e., it
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| log(odds)| odds Pr(M1|D) Strength of evidence

< 1.0 . 3 : 1 . 0.75 Inconclusive

1.0 ' 3 : 1 ' 0.75 Weak evidence

2.5 ' 12 : 1 ' 0.92 Moderate evidence

5.0 ' 150 : 1 ' 0.993 Strong evidence

Table 1. The Jeffreys scale, used for interpretation of Bayes factors, odds, and model probabili-

ties. The posterior model probabilities for the preferred model are calculated assuming only two

competing hypotheses and equal prior probabilities. Note that log denotes the natural logarithm.

should integrate to unity. The assignment of priors are probably the most discussed and

controversial part of Bayesian inference. This is often far from trivial, but nevertheless this

assignment is an important, even essential, part of any Bayesian analysis.

The Bayes factors, or rather the posterior odds, are interpreted or “translated” into

ordinary language using the so-called Jeffreys scale, given in table 1 as used in, e.g., refs. [11,

12] (“log” denotes the natural logarithm). Even though the Bayes factor in general will

favor the correct model once “enough” data have been obtained, the evidence is often

highly dependent on the choice of prior on the parameters.

In principle, the evidence defined above is really the only consistent quantity to judge

the (relative) merit of a model. However, there are also some so-called information criteria

which have been used to compare different models (see, e.g., [13, 14]). These do not

explicitly depend on any prior, but typically are derived using quite restrictive assumptions.

This makes their use less reliable, since conclusions based on them could differ much from a

full Bayesian analysis. We will also consider the Akaike Information Criterion (AIC) (which

is neither a Bayesian nor a frequentist measure), motivated by minimizing the expected

“distance” between the true data distribution, and the data distribution given by the fitted

model. It yields a fixed penalty to each model as1

AIC = −2 logLmax + 2Npar = χ2
min + 2Npar, (2.4)

dropping an irrelevant constant, and with Npar the number of free parameters. Hence,

we see that each additional parameter needs to improve the χ2 by 2 units to make up

for the additional complexity. Although great caution should be exercised, typically

Z̃ ∝ e−AIC/2 = Lmaxe
−Npar would be used as a proxy for the model likelihood, and hence

−∆AIC/2 between two models as log of the Bayes factor, and interpreted using table 1.

However, unlike the Bayesian evidence, it punishes complex models with additional param-

eters regardless of whether these are constrained by the data, and for parameters which

are constrained, the punishment is typically smaller than in the full Bayesian analysis.

Under the assumption that a model M is true, complete inference of its parameters is

given by the posterior distribution,

Pr(Θ|D,M) =
Pr(D|Θ,M) Pr(Θ|M)

Pr(D|M)
=
L(Θ)π(Θ)

Z
. (2.5)

1The factor of 2 is just for historical reasons. There is also a modified criterion for small sample sizes,

which we do not consider here since the number of samples is rather large.
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In this case, the evidence is only a normalization factor, since it is independent of the

values of the parameters Θ and it is therefore often disregarded in parameter estimation.

Thus the main result of Bayesian parameter inference is the posterior and its marginalized

versions (usually in one or two dimensions). In this respect, one must distinguish between

the marginal posterior distributions and the marginal likelihood, which is the likelihood

integrated over all other parameters (after multiplication by the prior of these parameters).

The former is a probability distribution, while the latter is not [15]. However, if the

parameters of interest have a uniform prior, the marginal posterior distribution and the

marginal likelihood are proportional to each other. For the present analysis, it is only for

the derived parameter JCP that the prior is sufficiently non-uniform to have a noticeable

impact on the posterior, as we will show in section 5.

Generically in parameter inference, point estimates such as the posterior mean or

median are given together with credible intervals (regions) for the parameters. A common

way to define Bayesian credible intervals for a given parameter is by including all values

with a posterior above a certain value, which however makes them non-invariant under non-

linear reparametrizations. Invariance can be restored by defining them to be iso-marginal

likelihood intervals instead.2 Then, one calls the “credible level” of a value η = η0 of a

subset of parameters simply the posterior volume within the likelihood of that value,

CL(η0) =

∫
L(η)>L(η0)

Pr(η|D)dη. (2.6)

This function is converted to the “number of σ’s” in the usual manner as

S =
√

2erfc−1(1− CL). (2.7)

In this work we use MultiNest [16–18], a Bayesian inference tool which, given the

prior and the likelihood, calculates the evidence with an uncertainty estimate, and generates

posterior samples from distributions that may contain multiple modes and pronounced

(curving) degeneracies in high dimensions.

2.1 Priors on oscillation parameters

In a Bayesian analysis one has to choose a prior on model parameters, in our case the

mixing parameters and mass-squared differences. Before considering any data, this prior

should preferably not favor any basis or direction in flavor space, i.e., be invariant under

rotations, or group transformations [19]. This Haar measure of neutrino mixing matrices is,

after integrating out nonphysical and potential Majorana phases, the separable measure [20]

π(s2
12, c

4
13, s

2
23, δCP) = 1/360◦, (2.8)

in the standard parametrization. Although the prior is uniform in c4
13 and not, for example,

s2
13, this is of no practical consequence since s2

13 is well-measured and significantly non-zero

ref. [7]. Furthermore, using other, non-invariant, priors such as uniform in the angles will in

2Although this only makes sense, as is the case here, with a clear separation of data and prior information,

the latter being negligible.
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general not affect the results significantly. On the mass-square differences logarithmic priors

are used. Since these are also well-measured their prior is also of no practical significance.

In addition, the neutrino mass ordering can be considered as just another free pa-

rameter. In this way, the two orderings can be compared, and also the inference of other

quantities can be performed not assuming a mass ordering to be correct, but averaging

over the two orderings. In this last case we take π(NO) = π(IO) = 0.5, and we denote this

by mixed ordering (MO).

Regarding the experimental nuisance parameters, they are all minimized over as in a

χ2 analysis. Since the uncertainties of these are rather small and Gaussian, including them

in the Monte Carlo and integrating over them instead of minimizing over them – as would

be the correct procedure in a fully Bayesian analysis – would make a negligible difference.

3 Posterior distributions

First, under the assumption that three-neutrino mixing is the true model, we perform

parameter estimation and calculate the posterior distributions of the six free parameters.

In doing so we include the data from solar [21–30], atmospheric [31], reactor [32–46], and

long baseline accelerator experiments [47–50], in the same data samples listed in appendix

of ref. [7] and used in NuFIT-2.0 [10].

The results are shown in figure 1 for NO, figure 2 for IO, and figure 3 for MO. The

posterior distribution for MO is simply the average of the NO and IO posteriors, weighted

by the posterior probabilities of the orderings,

Pr(Θ|D,MO) =
∑

O=NO,IO

Pr(Θ|D, O) Pr(O|D). (3.1)

From these figures, we conclude that the absolute values of the two mass-square differences,

as well as the mixing angles, s2
12, and s2

13, are well-measured and the posteriors of these

parameters are Gaussian to a very good approximation.

We list in table 2 different point estimates for each of these parameters: the global

maximum likelihood (which is the best fit point, bfp, of the χ2 analysis), the point at

which the marginal likelihood is maximal, and the posterior mean and median. The table

also contains measures of the uncertainty of each parameter in the form of the 1σ and 3σ

Bayesian credible intervals as well as the corresponding χ2 allowed regions at the same

CL (which we also call χ2 intervals for simplicity) which are identical to those given in

ref. [7]. As seen in the table, for these four parameters their Bayesian point estimates

and uncertainties are practically indistinguishable from their χ2 counterparts. Thus we

conclude that the present determination of these four parameters is very robust under

variations of the statistical analysis and prior assumptions.

Considering the comparison between mass orderings, we find that, assuming the same

prior probability for both, their posterior probabilities are also very similar, the posterior

probability of IO in this case given by

Pr(D|IO)

Pr(D|IO) + Pr(D|NO)
=

ZIO

ZIO + ZNO
= 0.55. (3.2)
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Figure 1. One-dimensional posterior distributions (black full lines) and two-dimensional 1σ, 2σ and

3σ Bayesian credible regions (black void contours). The figure also shows the one-dimensional profile

likelihoods (red dashed curves) and two-dimensional χ2 regions (colored filled regions) from ref. [7].

The Bayes factor (which is independent of the prior on the ordering) is:

logB = log
ZNO

ZIO
= log

(
0.45

0.55

)
= −0.2, (3.3)

i.e., there is a non-meaningful preference for inverted ordering. For comparison, the χ2

analysis finds ∆χ2 = χ2
min(NO) − χ2

min(IO) ' 0.97. Trivially, this gives ∆AIC/2 = 0.5 in

favor of IO, which is also what logB would be if the likelihoods would have identical shapes.

In summary, both ∆χ2 and the Bayesian model comparison agree that there is no evidence

for any of the mass ordering in the present data. However one must not forget that since
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Figure 2. Same as figure 1 but for IO.

the mass ordering is not a continuous parameter, ∆χ2 should not have a χ2 distribution,

and hence the quantification of the degree of favoring/disfavoring of a given ordering based

on the corresponding ∆χ2 is not fully justified (see ref. [51] for further discussion).

Finally we notice that figures 1–3 show some differences between the results of the

χ2 and Bayesian analyses where δCP or s2
23 are involved. For example, we see that the

marginalization over δCP pulls the bulk of the posterior of s2
23 more into the second octant.

Motivated by these differences we present a more detailed study of the results on s2
23, δCP,

and CP-violation in the following sections.
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Figure 3. Same as figure 1 but for MO.

4 Determination of s223

In this section we study the determination of s2
23 in more detail. To do so, in figure 4 we

plot the Bayesian marginal posterior distribution (which in this case is proportional to the

marginal likelihood) of s2
23 for all orderings together with the S of the credible intervals (see

eqs. (2.6) and (2.7)), as well as the profile likelihood and
√

∆χ2 (the nominal significance

under the assumption of a standard χ2 distribution).

We note that the Bayesian analysis generally prefers the second octant and it does so

more than the χ2 analysis, in particular for NO. Although the credible and confidence levels

differ in the vicinity of the two peaks, both peaks are within the 2σ region, and outside

of that region the difference between the two analyses is rather small. Typically, the low-
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Normal Ordering

Point Estimates χ2 Intervals Bayes Credible Intervals

bfp max of
Lmarg

mean median 1σ CI 3σ CI 1σ CI 3σ CI

sin2 θ12 0.304 0.304 0.305 0.305 [0.292, 0.317] [0.270, 0.344] [0.292, 0.317] [0.269, 0.344]

sin2 θ13 0.0218 0.0218 0.0218 0.0218 [0.0208, 0.0228] [0.0186, 0.0250] [0.0207, 0.0228] [0.0187, 0.0250]
∆m2

21

10−5 eV2 7.5 7.5 7.5 7.5 [7.33, 7.69] [7.02, 8.07] [7.33, 7.69] [7.03, 8.09]
∆m2

3`

10−3 eV2 2.457 2.460 2.459 2.459 [2.417, 2.504] [2.317, 2.607] [2.414, 2.506] [2.320, 2.601]

Inverted Ordering

sin2 θ12 0.304 0.305 0.305 0.305 [0.292, 0.317] [0.270, 0.344] [0.292, 0.317] [0.269, 0.344]

sin2 θ13 0.0219 0.0219 0.0220 0.0220 [0.0209, 0.0230] [0.0188, 0.0251] [0.0209, 0.0231] [0.0189, 0.0252]
∆m2

21

10−5 eV2 7.5 7.5 7.5 7.5 [7.33, 7.69] [7.02, 8.07] [7.33, 7.68] [7.02, 8.09]
∆m2

3`

10−3 eV2 -2.449 -2.445 -2.445 -2.445 [-2.496, -2.401] [-2.590, -2.307] [-2.492, -2.400] [-2.584, -2.308]

Table 2. Comparison of the results of χ2 and Bayesian analysis in the framework of three-flavor

oscillations. For comparison of the determination of θ23 and δCP see section 4 and 5.

Ordering Global max max of Lmarg mean median

NO 0.452 0.571 0.515 0.516

IO 0.579 0.576 0.541 0.555

MO 0.579 0.576 0.529 0.542

Table 3. Point estimates of s223.

Ordering Method st. dev. 1σ CI 2σ CI 3σ CI

NO
Bayes 0.0585 [0.433, 0.496], [0.530, 0.594] [0.415, 0.613] [0.389, 0.637]

χ2 – [0.424, 0.505], [0.554, 0.582] [0.402, 0.622] [0.381, 0.643]

IO
Bayes 0.0534 [0.514, 0.612] [0.429, 0.622] [0.400, 0.640]

χ2 – [0.541, 0.604] [0.416, 0.625] [0.388, 0.644]

MO
Bayes 0.0574 [0.449, 0.476], [0.516, 0.607] [0.422, 0.618] [0.393, 0.638]

χ2 – [0.448, 0.458], [0.541, 0.604] [0.407, 0.625] [0.385, 0.644]

Table 4. Standard deviations, credible intervals, and χ2 intervals for s223.

credibility Bayesian regions are larger than the small-χ2 regions, while the high-credibility

Bayesian regions are smaller than the large-χ2 ones. This is just what is expected if the

likelihood contains a relatively sharp peak on top of a broader plateau containing significant

posterior probability.

For completeness, in addition to being displayed in figure 4, we also give the point

estimates of s2
23 in table 3, namely, the global maximum likelihood, the maximum of the

marginal likelihood, and the posterior mean and median. In table 4 the measures of

uncertainty are given in the form of the posterior standard deviation, as well as credible

intervals corresponding to figure 4, and the regular χ2 intervals.
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Figure 4. Bayesian posterior/marginal likelihood (black solid) and profile likelihood (black dashed)

from ref. [7], both normalized to their maximal value. We also plot the number of σ′s (red dotted)

and
√

∆χ2 (red dash-dotted) functions. The blue vertical lines show the posterior mean (solid),

the median (dashed, which in this plot coincides with the posterior mean), and the maximum of

the marginal likelihood (dash-dotted). The different panels correspond to NO (top left), IO (top

right), MO (bottom).

4.1 Octants of θ23 and maximal mixing

A related question is that of which octant θ23 belongs to, i.e., whether s2
23 is larger or

smaller than 0.5. With some similarity to the comparison of mass orderings, this is also a

comparison of two non-nested models with the same number of parameters (although they

are “adjacent”), and so one cannot expect difference between the χ2 minima between the

two octants to have a χ2 distribution. In a Bayesian analysis, the comparison is however

straightforward, by simply integrating the likelihoods over each of the octants.

In addition, one can also consider maximal mixing, s2
23 = 0.5, as a realistic model,

either exactly or approximately. From a statistical viewpoint, a model with a fixed value of

a parameter can also be interpreted as a model where there is some non-zero, but negligible

(compared to any experimental sensitivity) deviation from the fixed value [52]. Using any

of these viewpoints, i.e., by either considering exact maximal mixing as a possible scenario,
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NO IO MO

2nd octant vs. 1st

logB 0.3 1.2 0.7

∆AIC/2 −0.5 1.0 0.5

∆χ2 −0.9 2.0 1.0

Non-maximal vs. maximal

logB −1.5 −1.2 −1.3

∆AIC/2 −0.5 0.0 0.0

∆χ2 0.9 2.0 2.0

Table 5. Model comparison for different assumptions on s223. Logarithms of Bayes factors, the

comparable differences in the AIC, and differences in χ2 minima. The sign is chosen such that

positive values correspond to preference for first mentioned assumptions in each case, i.e., the 2nd

octant and non-maximal mixing, respectively.

or alternatively as simply a very good approximation, one can make a comparison with

the octants.

As always, a model with additional parameters will be punished for this extra com-

plexity. In the present case, this punishment is uniquely fixed by the compactness of the

space of the allowed values of s2
23. The Bayes factors between the second and first octants,

as well as between non-maximal and maximal mixing, are given in table 5.3 The second

octant is weakly preferred over the first for the inverted ordering, but not in the normal

and the mixed orderings. Using the AIC, with the values also given in table 5, yields the

same conclusions, although we remind the reader that interpreting the AIC as a model

likelihood should be done with great care. Due to the relatively bad predictivity of the

assumption of non-maximal mixing, maximal mixing is weakly preferred over non-maximal

in all orderings. Note that ∆AIC/2 can never be smaller than −1 in this case, and these

numbers close to that limit are simply saying that for no ordering is there any preference

for non-maximal mixing.

If in the future the uncertainty on s2
23 keeps on being reduced while maximal mixing

continues to be allowed, at some point reducing the uncertainty further is pointless for

the purpose of determining whether maximal-mixing is the correct model. Bayesian model

comparison gives a quantification of at which point this is the case, which is when the

evidence in favor of non-maximal mixing becomes strong.

5 Exploring δCP and CP-violation

In this section we study the determination of δCP in more detail. In the left panels of figure 5

we plot the Bayesian marginal posterior distribution of δCP for all orderings together with

the S of the credible intervals, as well as the profile likelihood and
√

∆χ2. For NO, the

marginal and profile likelihoods have their maximum at about the same value of δCP, but

for IO and MO, the Bayesian analysis prefers larger δCP. Comparing S with
√

∆χ2, the

3Ref. [53] also compares the octants and finds logB = 0.6 for all orderings for T2K data, and logB =

1.0− 1.1 when also including reactor data.
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Figure 5. Left plots: same as figure 4 for δCP. Right plots: same as left plots, but with only

posterior and profile likelihood and plotted in polar coordinates. For clarity, half of the maximal

radius corresponds to zero function value.
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difference is not that large, apart from the shift just mentioned, and the fact that S diverges

near δCP ' 90◦, while
√

∆χ2 is bounded by about 2.5.

In the right panels of figure 5 the marginal and profile likelihoods are plotted again,

but in a polar coordinate system which better reflects its circular nature. We note that

in a frequentist analysis the fact that δCP is a phase and a circular, periodic variable will

affect distributions of test statistics [54, 55]. For the present data
√

∆χ2 is expected to be

a poor approximation of the frequentist significance, and typically the true significance will

be higher than the naive expectation. Hence, figure 5 does not give a direct comparison of

frequentist and Bayesian results.

In the Bayesian analysis, however, the circular nature of δCP does not affect the poste-

rior distributions or its interpretation. Nevertheless, it still needs to be taken into account

if one wants to make summaries of the posterior in terms of point estimates such as the

mean, median, or measures of dispersion such as the standard deviation. This is because

the normal, linear definitions of these quantities will depend on the arbitrary choice of

origin for δCP [56–58].

In this respect a useful summary of the distribution of δCP is given by the first moment,

m1 = 〈eiδCP〉, (5.1)

with 〈·〉 denoting the mean (indeed, it is eiδCP which enters the mixing matrix). The

appropriate analogues of the mean and median of δCP are the circular mean and circular

median. The first one is given by the argument of the first moment,

δCP = argm1 = arg〈eiδCP〉, (5.2)

while the second is defined as the endpoint closer to mean of the diameter of the circle that

has 0.5 probability on each of its sides. These point estimates are summarized in table 6

together with the likelihood maxima, and their values are plotted in figure 5.

In what respects characterization of the dispersion, besides the credible intervals, if one

wants to have a characterization similar to that provided by the linear standard deviation,

one can make use of the fact that R = |m1| gives a reasonable measure of dispersion,

with R = 0 for a uniform distribution and R = 1 for a degenerate one. However, it could

be preferable and more easily interpretable to have such a measure which is an expected

deviation in radians. Noting that the standard linear variance is the expectation of the

Euclidean distance squared from the mean, in general one could use

V = 〈d2(δCP, δCP)〉 (5.3)

to obtain a dispersion, where d is some metric on the circle. The usual linear metric

d(α, β) = |α− β| is not invariant with respect to choice of origin, but one can take instead

d as the minimum arc length between α and β, also called the great-circle distance. Hence,

one can simply take σ =
√
〈d2(δCP, δCP)〉 as the variance.

Another metric one can use is the one inherited from the Euclidean embedding,

d′(α, β)2 = |eiα − eiβ |2 = (sinα− sinβ)2 + (cosα− cosβ)2 = 2(1− cos(α− β)). (5.4)
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Ordering Global max [◦] Max of Lmarg [◦] mean [◦] median [◦]

NO 306 304 289 286

IO 254 273 262 262

MO 254 289 271 272

Table 6. Point estimates of δCP. The mean and median are the corresponding circular quantities.

Ordering Method σ/σ′[◦] 1σ CI [◦] 2σ CI [◦] 3σ CI [◦]

NO
Bayes 65/58 [223, 350] [42, 139]c [84, 94]c

χ2 – [234, 346] [33, 131]c –

IO
Bayes 56/51 [207, 319] [9, 146]c [70, 90]c

χ2 – [192, 317] [8, 142]c –

MO
Bayes 61/55 [211, 333] [28, 144]c [76, 90]c

χ2 – [192, 317] [16, 142]c –

Table 7. Measures of dispersion and credible intervals. Here, Ic is the complement of I, i.e., all

values of δCP not contained in I.

Then, the variance becomes

V = 〈d′(δCP, δCP)2〉 = 〈2(1− cos(δCP − δCP))〉 = 2(1−R), (5.5)

since R = 〈cos(δCP − δCP)〉. To get the equivalent deviation as an angle away from the

mean, we solve V = 2(1− cosσ′), giving simply

σ′ = arccosR, (5.6)

which is then the deviation from the mean which has the same distance squared as the

expectation over the distribution. These measures of dispersion, together with the corre-

sponding credible intervals, are show in table 7.

The presence of CP violation can also be studied in terms of the Jarlskog invariant,

JCP, which, in the standard parametrization, is given by

JCP = Jmax
CP sin δCP = c12s12c23s23c

2
13s13 sin δCP. (5.7)

We plot in figure 6 the Bayesian marginal posterior distribution of JCP and Jmax
CP for all

orderings together with the S of the credible intervals, as well as the profile likelihood and√
∆χ2. We note that these are derived parameters, and so their priors and posteriors are

determined by those of the free oscillation parameters. In particular, their priors are not

exactly uniform. For Jmax
CP (the left panels) the prior is very close to uniform, and from the

figure we see that it is so well constrained that it is perfectly Gaussian and agrees with the

profile likelihood.

For JCP (right panels of figure 6), we plot both the posterior and the marginal likeli-

hood, and we observe a difference, although it is not very large. A much larger difference

is observed between these and the profile likelihood, which translates into a difference in

the corresponding CL’s (S and
√

∆χ2). However, this difference is much smaller than one
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Figure 6. Jarlskog invariant and its maximal value for all orderings. NO (top), IO (middle),

MO (bottom).

could naively expect form the differences in posterior versus the profile likelihood, the rea-

son for this being that the Bayesian results are a function of the total probability contained

in a region, and the sharp peak in the posterior still contains relatively little probability.

That the posterior of JCP shows peaks towards the edges of the distribution is simply

because the density of | sin δCP| is larger for those values. This is not canceled out in the

marginal likelihood because Jmax
CP has a broad prior, which means that so has JCP. Of

course, the symmetry around JCP = 0 is broken by the information on δCP supplied by

the data, which then means that negative values of JCP are preferred, and more strongly
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so than in the χ2 analysis. Note that since we do not have any freedom left in choosing

our priors on the oscillation angles and phase, this is in some sense a robust consequence

of using consistent Bayesian inference.

5.1 CP-violation vs CP-conservation

In the same way as maximal mixing, one can consider either exact CP-conservation as a

possible scenario, or alternatively simply CP-conservation as a very good approximation,

and compare the models:

• M1
CPC: δ = 0

• M2
CPC: δ = 180◦

• MCPC : M1
CPC or M2

CPC (with equal priors)

• MCPV: δ ∈ [0◦, 360◦] \ {0◦, 180◦}, with prior π(δCP) = 1/360◦.

Note that these assumptions on CPC and CPV are unambiguously defined in the sense

that they do not depend on a parametrization, and that the prior on δCP in MCPV is

uniquely given by the Haar measure. Hence, there is essentially no flexibility remaining in

the choice of prior. Due to this fact and the compact nature of the parameter space, the

normal pitfalls of model comparison, i.e., the potentially large and prior dependent penalty

acquired for additional parametric complexity, are avoided, or at least heavily mitigated.

This unusually robust (fixed in size) and small penalty for the additional parameter

means that the Bayesian analysis is expected to be more powerful at detecting CPV than it

normally is at detecting a new physical effect. Hence, when comparing with a χ2 analysis,

a smaller significance or value of ∆χ2 than normally should be needed for robust, Bayesian,

detection of CPV. Equivalently, a certain value of ∆χ2 would lead to a stronger Bayesian

evidence of CPV than what the same ∆χ2 would yield in a different setting.

Interestingly, also the true frequentist significance of CP-violation is expected to be

stronger than the naive expectation [55], although the details depend significantly on the

(unknown) value of s2
23 assumed to be true.4 This does not happen in a Bayesian analysis,

which also does not depend on any distributions of test statistics under repeated experi-

ments, but only on likelihood of the data which was actually observed.

The likelihoods of the different assumptions on δCP, in the usual form of logarithms of

Bayes factors, log(Z/ZCPV) relative to MCPV are shown in table 8, together with the AIC

and difference in χ2. Although technically CP-violation is preferred in all cases, in none of

the cases is the evidence even weak. Notice also that since δCP is relatively unconstrained,

the preference for CPV is even smaller using the AIC than in the Bayesian analysis.

6 Correlation between s223 and δCP

In this section we discuss the possible quantification of the correlation between sin2 θ23

and δCP. The posterior in the s2
23 − δCP plane for all the orderings is plotted in figure 7,

4This is the case particularly in analysis of the current data, where sensitivity to δCP is poor. However

for more sensitive data the behavior is expected to become more Gaussian [51].
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NO IO MO

M1
CPC

logB −0.1 −0.8 −0.4

∆AIC/2 0.1 −0.7 −0.4

∆χ2 −1.8 −3.4 −2.8

M2
CPC

logB −0.4 −0.1 −0.2

∆AIC/2 0.1 0.3 0.3

∆χ2 −1.8 −1.5 −1.5

MCPC

logB −0.2 −0.4 −0.3

∆AIC/2 0.1 0.3 0.3

∆χ2 −1.8 −1.5 −1.5

Table 8. Model comparison for different assumptions on δCP. Logarithms of Bayes factors relative

to MCPV, the comparable differences in the AIC, and differences in χ2 as ∆χ2 = χ2(MCPV) −
χ2(Mi

CPC). For all variables, positive values would indicate preference of the corresponding M i
CPC

over MCPV.

together with the credible regions and χ2 contours. Although the difference between the

Bayesian and χ2 analysis does not appear to be extremely large, there are some things

which a Bayesian analysis makes possible which cannot be done in a χ2 analysis. In

particular, as seen in the figure, it is clear that s2
23 and δCP are not independent, and it will

be interesting to quantify if the degeneracy between them is something which persists in

future experiments. In a χ2 analysis, quantifying the “correlation” between two parameters

is typically limited to fitting a two dimensional Gaussian at the best-fit point. In a Bayesian

analysis, global measures of association such as the standard Pearson product-moment

correlation coefficient are available. However, this one only measures linear association,

and is hence less useful when there are non-linear trends involved, including multi-modality.

In particular it is possible for two highly dependent variables to have very small value of

the Pearson correlation. Furthermore, in the present case, it fails in an even worse manner

since the Pearson correlation is not circular invariant, i.e., its value depends on the arbitrary

choice of origin for δCP. In what respects θ23 one can treat θ23 as circular variable or use

instead the linear variable s2
23.

So let us focus on how to define a correlation coefficient which can overcome these lim-

itations. Typically a correlation coefficient will aim to quantify how much of the variation

in one variable can be explained by the variation in another one. For example, to what

extent the linear relation 〈Y |X = x〉 = ax+ b is responsible for the variation in Y (which

leads to the standard Pearson correlation coefficient). Similarly one can consider circular-

circular associations between two circular variables Θ and Φ (in this case δCP and θ23),

circular-linear association, predicting the expectation of Θ, given X = x , or linear-circular

association, predicting the expectation of X, given Θ = θ (in these cases X = sin2 θ23).

Many measures of correlation involving circular variables already exist in the literature

(see [56–59]). For two circular variables a simple one is

ρcc =
〈sin(Θ− Θ̄) sin(Φ− Φ̄)〉√
〈sin2(Θ− Θ̄)〉〈sin2(Φ− Φ̄)〉

, (6.1)
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Figure 7. Posterior in the s223 − δCP plane (blue shading), 1σ, 2σ, 3σ credible regions (black) χ2

contours (red dashed). NO (top left), IO (top right), MO (bottom).

where the bar denotes the circular mean. This has many properties in common with the

linear version, such as being confined to the interval [−1, 1], it is zero if the variables are in-

dependent, and it numerically agrees with the linear version for concentrated distributions.

An alternative, but slightly more complex, correlation coefficient for two circular vari-

ables is the T-linear one of ref. [60],

ρT =
〈sin(Θ1 −Θ2) sin(Φ1 − Φ2)〉√
〈sin2(Θ1 −Θ2)〉〈sin2(Φ1 − Φ2)〉

, (6.2)

where Θ1 and Θ2 are treated as two independent copies of Θ, and similarly for Φ.

Also for linear-circular association, one can split the circular variable into its sine and

cosine and consider the multiple correlation coefficient between X and (sin Θ, cos Θ), giving

ρ2
lc =

ρ2
xc + ρ2

xs − 2ρxsρxcρcs
1− ρ2

cs

, (6.3)

with ρxc = ρ(x, cos y), ρxs = ρ(x, sin y), ρcs = ρ(cos y, sin y) being standard linear coeffi-

cients. We notice that being defined by a square, only |ρlc| is known and hence gives no

information on the “sign” or “direction” of the association.

While the above measures of association overcome the problem of the circular invari-

ance they are still only sensitive to a limited kind of association, and it is possible for them

to be zero even when the variables are highly dependent on each other. It could hence be

of interest to have a measure which can quantify any type of dependence, and which will
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ρcc −0.20 −0.15 −0.21

ρT −0.14 −0.13 −0.16

|ρcl| 0.27 0.16 0.23

|ρI | 0.30 0.18 0.26

Table 9. Different correlation coefficients between s223 and δCP.

only be zero when the variables are independent. Such a measure, based on information

theory, is the mutual information [61–64]. This is information gained by knowing the full

distribution P (x, y) rather than only the marginal distributions P (x), and P (y), or equiv-

alently, the average information gained on X by knowing the value of Y (and vice versa).

This can be expressed as the so-called Kullback-Liebler divergence between PX,Y and the

product PXPY ,

I(X,Y ) =

∫
P (x, y) log

P (x, y)

P (x)P (y)
dxdy. (6.4)

Using the natural logarithm gives the result in nats, while one obtains the results in bits

by using base 2. It holds that I(X,Y ) ≥ 0 with equality if and only if X and Y are

independent. Next, in order to make the connection with the standard correlation coeffi-

cient, we note that for a two-dimensional Gaussian distribution (for which no correlation

is equivalent to independence), I = log(1/
√

1− ρ2), and so we define

ρ2
I = 1− e−2I . (6.5)

We now have constructed a correlation coefficient which is independent of any boundary

conditions on the variables and is invariant under arbitrary univariate redefinitions of x and

y (which the others are not). As the previous coefficients it also reduces to the standard

Pearson coefficient in the limit of a concentrated Gaussian distribution. However, like |ρcl|,
it only measures the degree of dependence, but not any “direction” of the association.

Our estimates of the different correlation coefficients are given in table 9.5 For all

measures, we find stronger correlation in NO than in IO, typically significantly so (with the

exception of ρT). Furthermore, the two signed circular-circular measures have significantly

smaller absolute values than the others, and for these we also find that in MO the correlation

is actually larger than both NO and IO, which is not the case for the others. We note that

all are smaller than or equal in size of |ρI |. This is somehow expected as |ρI |, in some

sense, measures “all” the dependence between δCP and s2
23.

7 Summary

We have presented the results of a Bayesian global analysis of solar, atmospheric, reactor

and accelerator neutrino data in the framework of three-neutrino oscillations and com-

pared them with those from the standard χ2 analysis in NuFIT-2.0 [10]. The results are

5We note that large biases in the estimation of the mutual information may occur [62, 63]. As before

we use kernel density estimate of the densities, similar to ref. [64], and our very large sample sizes ensures

an accurate estimate.
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summarized figure 1 for NO, figure 2 for IO, and figure 3 for MO where we compare the rele-

vant Bayesian quantities (the posterior distribution and two-dimensional Bayesian credible

regions) with the profile-likelihood and the two dimensional χ2 allowed regions.

We found that the four parameters ∆m2
3`, ∆m2

21, s2
12, and s2

13, are well-measured and

their posterior distributions are Gaussian to a very good approximation. The corresponding

Bayesian credibility intervals at a given CL are also very similar to the χ2 allowed regions

at the same CL, as seen in table 2.

We found some differences between the results of the χ2 and Bayesian analysis where

δCP or s2
23 are involved. In particular, the marginalization over δCP pulls the bulk of the pos-

terior of s2
23 more into the second octant which has some effect on the ranges of parameter

estimates and the quality of the description between octants. We study the determination

of θ23 in more detail in section 4 and we conclude that the Bayesian analysis generally

prefer the second octant more so than the χ2 analysis, in particular for NO. The credible

and confidence levels differ in the vicinity of the two peaks but both peaks are within the

2σ regions. Altogether the low-credibility Bayesian regions are larger than the small-χ2

regions, while the high-credibility Bayesian regions are smaller than the large-χ2 ones.

In what respects the present determination of δCP, presented in section 5, we found

that for NO, the marginal and profile likelihoods have their maximum at about the same

value of δCP, but for IO and MO, the Bayesian analysis prefers slightly larger values of δCP.

Also, unlike the χ2 interval, the 3σ Bayesian credible interval do not contain the full range

of δCP but some values near π/2 are not included. We have also introduced and quantified

two measures of the dispersion of δCP equivalent to the linear standard deviations but valid

for a circular variable.

In addition, we have studied the Jarlskog invariant, JCP, as well as its maximal value

over δCP and find that the posterior distribution of Jmax
CP is perfectly Gaussian and agrees

with the profile likelihood. For JCP large differences appear between the posterior dis-

tribution and the profile likelihood and lead to some difference in the corresponding CL

intervals. In particular we find that negative values of JCP are preferred in both analysis

but more strongly in the Bayesian than in the χ2 analysis.

The possible quantification of the correlation between θ23 and δCP taking into account

their circular nature has been discussed in section 6. In particular, we have introduced

a new correlation coefficient, ρI , defined in terms of the mutual information, which is

independent of any boundary conditions on the variables and is invariant under arbitrary

univariate redefinitions of them. Quantitatively we always find stronger correlation between

δCP and θ23 in NO than in IO.

Finally, we note that a Bayesian analysis is particularly suited for comparing how much

better one model describes the data compared to another model, a comparison which is

quantified in terms of the Bayes factor of the two models (assuming both models to be

equally probable a priori). We have applied this to the comparison between the mass order-

ings, the octant of θ23, and to the presence of CP violation with the following conclusions:

• In what regards the comparison between both orderings, we find that, assuming the

same prior probability for both, their posterior probabilities are also very similar:
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0.55 for IO and 0.45 for NO with a logarithm of Bayes factor of −0.2, which implies

that slight preference for inverted ordering is not statistically meaningful.

• Applied to the preference for the octant of θ23 we find that the second octant is

weakly preferred over the first for the inverted ordering, but not in the normal nor in

the case of no assumption or knowledge on the ordering. Also due to the relatively

bad predictivity of the assumption of non-maximal mixing, maximal mixing is weakly

preferred over non-maximal in all orderings.

• As for CP violation we find that although technically CP-violation is preferred over

CP conservation (either for δCP = 0 or δCP = π), the corresponding value of the

logarithm of the Bayes factor is always smaller than 1 in absolute value, i.e., the

corresponding evidence is not even weak.
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