KIT | KIT-Bibliothek | Impressum | Datenschutz
Open Access Logo
DOI: 10.5445/IR/110103710
Veröffentlicht am 05.11.2018
DOI: 10.3762/bjnano.6.2
Zitationen: 5
Web of Science
Zitationen: 6

The capillary adhesion technique: A versatile method for determining the liquid adhesion force and sample stiffness

Gandyra, D.; Walheim, S.; Gorb, S.; Barthlott, W.; Schimmel, T.

We report a novel, practical technique for the concerted, simultaneous determination of both the adhesion force of a small structure or structural unit (e.g., an individual filament, hair, micromechanical component or microsensor) to a liquid and its elastic properties. The method involves the creation and development of a liquid meniscus upon touching a liquid surface with the structure, and the subsequent disruption of this liquid meniscus upon removal. The evaluation of the meniscus shape immediately before snap-off of the meniscus allows the quantitative determination of the liquid adhesion force. Concurrently, by measuring and evaluating the deformation of the structure under investigation, its elastic properties can be determined. The sensitivity of the method is remarkably high, practically limited by the resolution of the camera capturing the process. Adhesion forces down to 10 μN and spring constants up to 2 N/m were measured. Three exemplary applications of this method are demonstrated: (1) determination of the water adhesion force and the elasticity of individual hairs (trichomes) of the floating fern Salvinia molesta. (2 ... mehr

Zugehörige Institution(en) am KIT Center for Functional Nanostructures (CFN)
Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Jahr 2015
Sprache Englisch
Identifikator ISSN: 2190-4286
URN: urn:nbn:de:swb:90-AAA1101037107
KITopen-ID: 110103710
HGF-Programm 43.22.01 (POF III, LK 01)
Erschienen in Beilstein journal of nanotechnology
Band 6
Heft 1
Seiten 11-18
Externe Relationen Abstract/Volltext
Schlagworte adhesion, AFM cantilever, air layer, capillary forces, hairs, measurement, micromechanical systems, microstructures, Salvinia effect, Salvinia molesta, sensors, stiffness, superhydrophobic surfaces
Nachgewiesen in Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page