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Abstract. Methanol is the second most abundant volatile

organic compound in the troposphere and plays a signifi-

cant role in atmospheric chemistry. While there is consen-

sus about the dominant role of living plants as the ma-

jor source and the reaction with OH as the major sink of

methanol, global methanol budgets diverge considerably in

terms of source/sink estimates, reflecting uncertainties in the

approaches used to model and the empirical data used to sep-

arately constrain these terms. Here we compiled micromete-

orological methanol flux data from eight different study sites

and reviewed the corresponding literature in order to provide

a first cross-site synthesis of the terrestrial ecosystem-scale

methanol exchange and present an independent data-driven

view of the land–atmosphere methanol exchange. Our study

shows that the controls of plant growth on production, and

thus the methanol emission magnitude, as well as stomatal

conductance on the hourly methanol emission variability, es-

tablished at the leaf level, hold across sites at the ecosys-

tem level. Unequivocal evidence for bi-directional methanol

exchange at the ecosystem scale is presented. Deposition,

which at some sites even exceeds methanol emissions, rep-

resents an emerging feature of ecosystem-scale measure-

ments and is likely related to environmental factors favour-

ing the formation of surface wetness. Methanol may adsorb

to or dissolve in this surface water and eventually be chem-

ically or biologically removed from it. Management activi-
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ties in agriculture and forestry are shown to increase local

methanol emission by orders of magnitude; however, they

are neglected at present in global budgets. While contempo-

rary net land methanol budgets are overall consistent with the

grand mean of the micrometeorological methanol flux mea-

surements, we caution that the present approach of simulat-

ing methanol emission and deposition separately is prone to

opposing systematic errors and does not allow for full advan-

tage to be taken of the rich information content of microme-

teorological flux measurements.

1 Introduction

Methanol (CH3OH) is, on average, the second most abundant

volatile organic compound (VOC) in the troposphere (e.g.

Jacob et al., 2005) and often the most abundant one region-

ally (e.g. Seco et al., 2011), with typical mole fractions in

the continental boundary layer of 1–10 nmol mol−1 (Heikes

et al., 2002). With an atmospheric lifetime of 5–12 days (Ja-

cob et al., 2005), methanol has been shown to play a role

in modulating the presence of oxidants in the upper tropo-

sphere (Tie et al., 2003). It affects atmospheric chemistry as

an atmospheric source of formaldehyde (Palmer et al., 2003)

and carbon monoxide (Duncan et al., 2007). Model calcula-

tions suggest methanol emissions constitute 10 % of the total

global biogenic non-methane VOC (BVOC) emissions, the

second highest single-compound contribution after isoprene

(Guenther et al., 2012).

The primary source of atmospheric methanol is emissions

from living plants, followed by smaller source contributions

from the decay of dead plant matter, biomass burning, and di-

rect emissions from anthropogenic activities, the ocean and

atmospheric production (Seco et al., 2007). On a regional

scale, dairy farming and industrial activities are important

sources as well (e.g. Gentner et al., 2014). The major sink

for methanol is oxidation by OH radicals, followed by dry

and wet deposition to land and ocean. Estimates of the global

land net flux, i.e. the balance between sources and sinks of

methanol on land, vary widely between 75 and 245 Tg yr−1

(Singh et al., 2000; Galbally and Kirstine, 2002; Heikes et al.,

2002; Tie et al., 2003; von Kuhlmann et al., 2003a, b; Millet

et al., 2008; Stavrakou et al., 2011), although more recent es-

timates converge to a more narrow range of 75–108 Tg yr−1

(Jacob et al., 2005; Millet et al., 2008; Stavrakou et al., 2011).

Much of the knowledge and data embedded into the pa-

rameterisation of plant methanol emissions derives from

work at the leaf level (Galbally and Kirstine, 2002; Guen-

ther et al., 2012). In living plants, methanol is produced as

a byproduct of pectin metabolism during cell wall synthesis

(Fall and Benson, 1996) and thus methanol production and

emission are positively correlated with plant growth (Custer

and Schade, 2007; Hüve et al., 2007) and pectin content (Gal-

bally and Kirstine, 2002). This circumstance led Galbally and

Kirstine (2002) to simulate global methanol emissions as a

function of net primary productivity (NPP) that consists of

pectin and the fraction thereof which is demethylated dur-

ing growth, an approach which has since been adopted by

others (Jacob et al., 2005; Millet et al., 2008). Most other

global budgets rely on the MEGAN model (Guenther et al.,

1995, 2012) to simulate methanol emissions using light- and

temperature-driven algorithms. While lacking a sound physi-

ological basis, the latter approach is successful in simulating

observed variations in methanol emissions due to the fact that

methanol emissions are strongly controlled by stomatal con-

ductance, reflecting its low Henry constant (Niinemets and

Reichstein, 2003; Harley et al., 2007). Stomatal conductance,

in the absence of soil water limitations, tracks diurnal vari-

ations in light and temperature, which in turn correlate with

diurnal methanol emissions (e.g. Hörtnagl et al., 2011).

The deposition of methanol in global models is typically

represented in a very simplistic fashion using fixed deposi-

tion velocities. These vary by up to a factor of 4 between

different studies (e.g. Galbally and Kirstine, 2002; Millet et

al., 2008) and are often, constrained by observed atmospheric

concentrations, tuned to close the atmospheric budget. Re-

cently, several studies have reported significant methanol de-

position to terrestrial ecosystems and/or clear evidence of

bidirectional exchange (Misztal et al., 2011; Schade et al.,

2011; Laffineur et al., 2012). The observed deposition has

been related to high ambient methanol mole fractions down-

wind of industrial methanol sources (Laffineur et al., 2012),

the presence of water films in the plant canopy or soil within

which methanol may adsorb/dissolve and can be removed

by chemical transformations (Laffineur et al., 2012) and/or

methylotrophic bacteria (Fall and Benson, 1996; Abanda-

Nkpwatt et al., 2006).

In summary, while there is consensus about the dominant

role of living plants as the major source and the reaction with

OH radicals as the major sink of methanol, global methanol

budgets diverge considerably in terms of source/sink esti-

mates (Jacob et al., 2005), reflecting uncertainties in the ap-

proaches used in models and the empirical data used to sep-

arately constrain the source/sink terms.

Micrometeorological methods allow measurements of the

net exchange of mass, energy and momentum between the

underlying surface and the atmosphere over the spatial scale

of typically hundreds of metres (Baldocchi et al., 1988).

Thanks to advances in proton-transfer-reaction mass spec-

trometry, a fast and sensitive analytical method to determine

methanol mole fractions in ambient air in real time during

the past decade (Karl et al., 2001, 2002; Müller et al., 2010),

ecosystem-scale methanol flux measurements have been re-

ported from multiple sites and in a few cases over multi-

ple seasons (Tables 1 and 2). Because micrometeorologi-

cal flux measurements allow quantification of the net flux

of methanol between ecosystems and the atmosphere quasi-

continuously and over extended periods of time, they are

ideal for assessing the performance of models at the ecosys-
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Table 1. General characterisation of the study sites (see Table S1 for further details on experimental setup).

Blodgett Forest

(BF)

Missouri Ozark

(MO)

Harvard Forest

(HF)

Vielsalm

(VA)

Oensingen-

INT (OS-INT)

Oensingen-

EXT (OS-

EXT)

Neustift

(NS)

Stordalen

Mire (SD)

Country USA USA USA Belgium Switzerland Switzerland Austria Sweden

Latitude 38.89◦ N 38.76◦ N 42.54◦ N 50.30◦ N 47.28◦ N 47.28◦ N 47.12◦ N 68.33◦ N

Longitude 120.63◦W 92.16◦W 72.17◦W 5.98◦ E 7.73◦ E 7.73◦ E 11.32◦ E 19.05◦ E

Elevation (m) 1315 216 340 450 450 450 970 351

MAP (mm) 1290 1110 1066 1000 1100 1100 852 304

MAT (◦C) 9.0 13.6 7.8 7.5 9.0 9.0 6.5 −0.7

Climate Mediterranean Temperate

continental

Temperate Temperate

maritime

Temperate

continental

Temperate

continental

Temperate

alpine

Boreal

Plant functional

type

Coniferous ev-

ergreen forest

Deciduous

broadleaf forest

Mixed forest Mixed forest Grassland Grassland Grassland Wetland

Management Understory cut – – – Harvest Harvest Harvest –

LAI (m2 m−2) 1–1.7 1.3–4.0 4.8–5.4 2.6–3.8 0.4–3.5 0.2–5.1 0.2–7.8 up to 3.5

Measurement/avg.

canopy height

(m)

11/5 32/22 30/23 52/30 1.2/0.15 1.2/0.2 2.5/< 1.0 2.95/ < 0.5

Data coverage,

days of year

(year)

142–170

(1999)

125–296

(2012)

149–248

(2007)

182–304

(2009)

60–273 (2010)

91–334 (2011)

176–213

(2004)

158–175

(2004)

214–249

(2004)

143–325

(2008)

78–305 (2009)

77–346 (2011)

87–330 (2012)

121–273

(2006)

121–260

(2007)

Flux method REA vDEC vDEC vDEC vDEC vDEC vDEC vDEC

Key reference Schade and

Goldstein

(2001)

Seco et

al. (2015)

McKinney et

al. (2011)

Laffineur et al.

(2012)

Brunner et al.

(2007)

Brunner et al.

(2007)

Hörtnagl et al.

(2011)

Holst et al.

(2010)

Abbreviations: MAP, mean annual precipitation; MAT, mean annual temperature; LAI, leaf area index.

tem scale. Up to now, however, few (if any) studies have

made use of this rich data source in a more holistic fashion.

The main objective of this study is thus (i) to compile

the available ecosystem-scale methanol exchange data from

micrometeorological flux measurements, (ii) to conduct a

first cross-site synthesis of the magnitude of and controls on

the terrestrial net ecosystem methanol exchange and (iii) to

provide an independent constraint on the land methanol ex-

change against which models can be compared.

2 Methods

In total, growing season data from eight sites in the North-

ern Hemisphere were available for the present synthesis (Ta-

ble 1). Key metrics of micrometeorological methanol flux

measurements from additional sites were obtained from a

literature survey (Table 2). The climate space covered the

Mediterranean to the boreal climate zone, with mean annual

temperatures ranging from −0.7 to +9.0 ◦C; however, most

of the sites (six) were located in the temperate climate zone.

The study sites comprised four forests, three managed grass-

lands and one wetland.

The net ecosystem methanol exchange was determined

by means of the virtual disjunct eddy covariance (vDEC)

method (Karl et al., 2002) at seven sites and by the re-

laxed eddy accumulation (REA) method at one site. With

the vDEC method, as with the “true” eddy covariance

method (Baldocchi et al., 1988), measurements of the three-

dimensional wind vector by means of sonic anemometers

are made at high temporal resolution (50–100 ms). Methanol

mole fractions are measured at disjunct time intervals sepa-

rated typically by 1–3 s with integration times of 100–500 ms

(Table S1 in the Supplement). As shown by Hörtnagl et

al. (2010), the vDEC method increases random variability

compared to the true eddy covariance method but does not re-

sult in a systematic bias. This was confirmed by a direct com-

parison between vDEC and true eddy covariance methanol

flux measurements by Müller et al. (2010). Methanol mole

fractions were measured with proton-transfer-reaction mass

spectrometers (PTR-MS) on mass-to-charge ratio (m/z) 33

(see Hansel et al., 1995; Lindinger et al., 1998; and Graus

et al., 2010, for more details on the PTR-Q-MS and PTR-

TOF-MS technology). The PTR-MS instruments were typi-

cally housed in a sheltered location some distance away from

or at the bottom of the instrument tower supporting the sonic

anemometer. Air was pumped from an inlet close to the sonic

anemometer to the PTR-MS through an inlet line, which was

designed to minimise interactions between the tubing ma-

terial and methanol (i.e. through use of inert materials and

heating). Further details on the study sites, instrumentation

and experimental protocols are given in Tables 1 and S1

and the references cited therein. In contrast to the eddy co-

variance CO2 flux community (Baldocchi, 2003), which has

made considerable progress in standardising flux measure-

ment protocols (Mauder and Foken, 2006), little effort has

been made in the (much smaller) VOC flux community to

www.atmos-chem-phys.net/15/7413/2015/ Atmos. Chem. Phys., 15, 7413–7427, 2015
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Table 2. Literature survey of micrometeorological methanol flux studies and the net land methanol flux derived from global budget studies

compared to the results of the present study.

Methanol flux (nmol m−2 s−1) V a
d

Vegetation type Method Average SD Median Maximum Minimum (cm s−1)

Ecosystem-scale studies

Schade and Custer (2004) Bare agricultural soil EC 4.6 0.0 0.1–0.4

Custer and Schade (2007) Rye grass EC 0.22 0.22 0.1 1.5 −0.6 ∼ 0.1

Warneke et al. (2002) Alfalfa crop DEC 4.7 34.7 0.0

Schade et al. (2011) Deciduous forest REA 5.0 −3.6 1.1

Karl et al. (2003) Mixed deciduous forest vDEC 6.1 19.9 −1.7

Spirig et al. (2005) Mixed deciduous forest vDEC 4.0 −1.1

Baker et al. (2001) Coniferous forest REA 56.0 −12.0

Karl et al. (2005) Coniferous forest vDEC 2.8 0.9 1.0

Rinne et al. (2007) Coniferous forest vDEC 1.4 3.7 0.1

Park et al. (2014) Pine forest vDEC 4.2

Karl et al. (2004) Tropical rainforest vDEC 4.8 −0.9 0.3

Langford et al. (2010a) Tropical rainforest vDEC −0.3 2.6 −0.6

Davison et al. (2009) Mediterranean macchia vDEC 3.7

Park et al. (2013) Orange orchard EC 1.7

Fares et al. (2012) Citrus orchard vDEC 0.26-2.74 10.0 −5.0

Brilli et al. (2014) SRC poplar plantation EC 1.4 1.0

Misztal et al. (2011) Oil palm plantation vDEC −0.4 0.9 −0.2 3.0 −3.1

Velasco et al. (2005) Urban vDEC 9.0

Langford et al. (2009) Urban (v)DEC 4.7 6.2 4.3

Velasco et al. (2009) Urban vDEC 12.8 6.3

Langford et al. (2010b) Urban vDEC 8.3 8.1 8.2

Global average net land fluxb

Heikes et al. (2002) 1.8 0.4

Galbally and Kirstine (2002) 0.7 0.1

Tie et al. (2003) 1.3

Jacob et al. (2005) 0.8 0.2

Millet et al. (2008) 0.6 0.4

Stavrakou et al. (2011) 0.6

This study

Blodgett Forest Coniferous forest REA 23.9 36.9 11.3 228.7 −23.1 1.8

Missouri Ozark Deciduous forest vDEC 0.9 2.1 0.5 16.2 −9.0 0.3

Harvard Forest Mixed deciduous forest vDEC 0.7 1.5 0.3 9.5 −2.5 1.0

Vielsalm Mixed deciduous forest vDEC −0.1 2.2 −0.1 19.3 −20.7 1.9

Oensingen-INTc Grassland vDEC 1.7(1.9) 2.0(2.6) 1.0(1.1) 12.4(29.8) −1.5(−1.5) 0.1

Oensingen-EXTc Grassland vDEC 2.8(4.4) 3.1(9.0) 1.7(2.0) 18.4(110.9) −2.9(−6.3) 0.2

Neustiftc Grassland vDEC 1.5(1.8) 2.1(4.2) 0.8(0.8) 22.1(155.1) −9.7(−9.7) 0.5

Stordalen Wetland vDEC 0.2 0.6 0.2 4.2 −1.5 0.7

a Average night-time deposition velocity. b The net land flux was derived by summing emissions from plants, decay of plant matter, biomass burning, anthropogenic activities and

subtracting dry and wet deposition to land, dividing by the land area (133.8× 1012 m2) and converting from mass to molar basis using 32 g mol−1. c Values in parentheses include data

influenced by site management events.

standardise measurement protocols. In the present study we

have decided to use the data from the different sites as they

are, with measurements, processing and quality control as de-

scribed in the key references in Table 1. We acknowledge that

this approach potentially introduces systematic bias among

sites. As shown in Table S1 in the Supplement, there are nec-

essarily large differences in the air sampling systems due to

different canopy and tower heights, but the PTR-MS setups

were remarkably similar.

At the Blodgett Forest study site, methanol exchange

was determined with the relaxed eddy accumulation (REA)

method by sampling up- and downdraughts of air into sep-

arate reservoirs (cooled activated carbon microtraps), which

were analysed immediately after collection using a gas chro-

matography flame ionisation detector technique (Schade and

Goldstein, 2001). Even though the REA method is a less di-

rect method than the vDEC (Hewitt et al., 2011), the data

from Blodgett Forest were included in the present analysis

because several studies demonstrated good correspondence

between VOC fluxes measured concurrently by the REA and

the eddy covariance method (e.g. Westberg et al., 2001; Lee

et al., 2005).

Atmos. Chem. Phys., 15, 7413–7427, 2015 www.atmos-chem-phys.net/15/7413/2015/
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Additional auxiliary data included concurrent measure-

ments of the major environmental drivers, including air

temperature and humidity, horizontal wind speed, incident

photosynthetically active radiation and precipitation above

the canopy and soil temperature and water content in the

near-surface soil. In addition we collected above-canopy net

ecosystem carbon dioxide exchange (NEE), which was mea-

sured at each site within the framework of the FLUXNET

project (Baldocchi et al., 2001; Baldocchi, 2003), and de-

rived therefrom gross photosynthesis (GPP) and ecosystem

respiration (Reichstein et al., 2005).

Data were combined into a common format and analysed

with SPSS version 19. Statistical analysis was performed, un-

less stated otherwise, on the quality-filtered half-hourly data.

3 Results and discussion

3.1 Magnitude of methanol exchange

The eight investigated study sites, as shown in Figs. 1 and

2 and Table 2, showed quite contrasting methanol exchange

rates; however, they also exhibited common features: all

study sites showed both net emission and net deposition of

methanol (Fig. 2) and methanol fluxes exhibited a more or

less pronounced average diurnal pattern (Fig. 1), in phase

with the diurnal course of incident radiation and air temper-

ature (Fig. S1 in the Supplement). Flux magnitudes were,

however, quite different: by far the largest net emissions

were observed at Blodgett Forest, whose average methanol

emissions (23.9 nmol m−2 s−1) exceeded those of the other

sites by a factor of 10 and more (Table 2). The three grass-

lands, excluding periods following management activities,

were characterised by average net emission rates of 1.5–

2.8 nmol m−2 s−1. Management, harvesting and the applica-

tion of organic fertiliser caused methanol emissions from

the grasslands to increase by an order of magnitude dur-

ing the day of the management intervention and remain el-

evated a few days thereafter, before fluxes returned back to

previous values (Fig. 3). These were followed by the Mis-

souri Ozark and Harvard Forest mixed forest sites (0.7–

0.9 nmol m−2 s−1). The lowest average methanol fluxes were

measured at the wetland site of Stordalen (0.2 nmol m−2 s−1)

and the mixed forest of Vielsalm. The latter was in fact char-

acterised by a negative average flux (−0.1 nmol m−2 s−1) –

i.e. methanol deposition exceeded emissions at this site.

From a comparison with the other seven study sites (Fig. 2)

and the literature (Table 2) it becomes clear that the emis-

sions observed at Blodgett Forest are exceptionally high,

even compared to elevated emissions observed over agricul-

tural crops and grasslands after harvesting or the application

of organic fertiliser (e.g. Brunner et al., 2007; Davison et al.,

2008; Hörtnagl et al., 2011; Ruuskanen et al., 2011; Brilli et

al., 2012). Schade and Goldstein (2001) attributed these high

emissions to the cutting of shrubs in the understory, such as

manzanita, of the site prior to the measurements, as part of

a regular forest plantation management intervention. The cut

plant material was left at the site and may have caused the

elevated methanol emissions, similar to what was observed

at the grassland sites after harvesting (Fig. 3). In contrast to

the grassland sites, where these emissions were confined to

less than 3 days after harvesting (Fig. 3) and cuttings were

removed later, elevated emissions at Blodgett Forest were

sustained. Bouvier-Brown et al. (2012) noted that measure-

ments in subsequent years showed lower fluxes by a factor

of 2–3. Park et al. (2014), who measured BVOC fluxes at

Blodgett Forest 10 years later with the vDEC method, re-

ported an average methanol flux of 4.2 nmol m−2 s−1, which

is comparable in magnitude with the results from the other

sites of this study and non-urban sites in the literature (Ta-

ble 2). Park et al. (2014) also measured vDEC 2-methyl-

3-butene-2-ol (MBO) fluxes, which agreed with the corre-

sponding REA flux estimates measured in 1999 concurrently

with the methanol fluxes by Schade and Goldstein (2001).

We are thus confident that the observed large emissions at

Blodgett forest likely reflected the recent disturbance of the

site.

Large net deposition fluxes of methanol, and even sites that

represent net methanol sinks over extended periods of time,

have not been reported in the literature until very recently

(Langford et al., 2010a; Misztal et al., 2011; Schade et al.,

2011; Laffineur et al., 2012). The present study confirms that

net deposition of methanol is a common phenomenon (Ta-

ble 2), and it is observed at half of the study sites for more

than 25 % of the time (Fig. 2). Laffineur et al. (2012) de-

veloped a theoretical framework to simulate methanol ex-

change at Vielsalm and showed that the bi-directional na-

ture of methanol exchange can be explained by adsorp-

tion/desorption of methanol in water films within the ecosys-

tem (aided by the low Henry constant of methanol) and a

postulated sink process. While the latter had to be invoked

in order to make the model match the sustained deposition

fluxes, it is well established that methylotrophic bacteria in-

habit plant surfaces and soils (Conrad, 1996; Fall and Ben-

son, 1996; Conrad and Claus, 2005; Kolb, 2009; Stacheter et

al., 2013) and may significantly reduce net leaf and ecosys-

tem methanol emissions (Abanda-Nkpwatt et al., 2006).

After excluding data from Blodgett Forest and the grass-

land data influenced by management activities, we calcu-

late a “grand mean” of 1 nmol m−2 s−1 as the average of

the methanol fluxes of all sites in this study. Assuming the

Earth’s ice-free land area (133.8×1012 m2) to emit methanol

at this average rate year-round, which is an overestimation

due to off-season fluxes being typically much lower than the

growing season data compiled in this study (Bamberger et

al., 2014), a global net land methanol flux of 135 Tg yr−1 can

be extrapolated. This value falls into the middle of the range

of available global budget studies (75–245 Tg yr−1; Table 2)

and is quite close to the 75–108 Tg yr−1 range of budgets

published after 2005 (Jacob et al., 2005; Millet et al., 2008;

www.atmos-chem-phys.net/15/7413/2015/ Atmos. Chem. Phys., 15, 7413–7427, 2015



7418 G. Wohlfahrt et al.: An ecosystem-scale perspective of the net land methanol flux

Figure 1. Hourly bin-averaged diurnal variation of methanol fluxes (circles; left y axis) and mole fractions (squares; right y axis) at the eight

study sites (error bars represent ±1 standard deviation). Note the differing scaling on the y axis. Data from Oensingen-INT, Oensingen-EXT

and Neustift are exclusive of periods influenced by management practices.

Figure 2. Box plots of methanol fluxes at the eight study sites.

The left y axis refers to sites/measurements not influenced by site

management events, while the right y axis (note differing scaling)

shows data for Blodgett Forest and the grassland sites inclusive

of measurements during/after management (MO: Missouri Ozark;

HF: Harvard Forest; VA: Vielsalm; OS-INT: Oensingen – intensive;

OS-EXT: Oensingen – extensive; NS: Neustift; SD: Stordalen; BF:

Blodgett Forest). Box plots show minima/maxima (circles), 5 and

95 % quartiles (whiskers), the interquartile range (box) and the me-

dian (horizontal line).

Stavrakou et al., 2011). In addition to a likely warm-season

bias, globally important ecosystems, such as tropical forests,

are under-represented in our study, and included sites are

likely not representative of pectin contents elsewhere (Custer

Figure 3. Effect of management (harvest and manure applica-

tion) on methanol fluxes of grassland study sites Neustift (NS),

Oensingen-INT (OS-INT) and Oensingen-EXT (OS-EXT) within

indication of study year and, where applicable, number of harvest.

and Schade, 2007). We thus stress the large uncertainties as-

sociated with this simplistic upscaling.

Observed night-time net deposition velocities (medians)

ranged between 0.02 and 1.0 cm s−1, with five of the eight

sites bracketing the range of 0.1–0.45 cm s−1 (Fig. 4). In-

cluding daytime deposition flux measurements did not sub-

stantially change these ranges (compare Fig. 4 with Fig. S2).

These values are consistent with night-time deposition veloc-

ities reported in the literature (Table 2) and overlap with the
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Figure 4. Box plots of night-time methanol deposition velocities at

the eight study sites. Horizontal dashed lines indicate the range of

deposition velocities (0.1–0.4 cm s−1) used in global budgets (see

also Table 2). Box plots show minima/maxima (circles), 5 and 95 %

quartiles (whiskers), the interquartile range (box) and the median

(horizontal line).

range of fixed deposition velocities of 0.1–0.4 cm s−1 used

in global methanol budgets (Singh et al., 2000; Galbally and

Kirstine, 2002; Heikes et al., 2002; von Kuhlmann et al.,

2003a, b; Jacob et al., 2005; Millet et al., 2008). Due to the

concurrent emission and deposition of methanol, these ob-

served deposition velocities represent “net” deposition veloc-

ities, while values used in global budget studies are “gross”

deposition velocities. Because the former are lower than the

latter if there is any concurrent emission of methanol, this

suggests that global models may be underestimating land de-

position velocities and thus, provided that models correctly

reproduce atmospheric concentrations, may be underestimat-

ing methanol sources to a similar degree.

Methanol mole fractions at the height of the flux measure-

ments (Table 1) exhibited relatively little diurnal variability,

with a tendency towards minima during daylight periods and

the afternoon (Fig. 1). The highest (median) mole fractions

were found at Blodgett Forest (11.6 nmol mol−1), whereas

the lowest were found at Stordalen (1.4 nmol mol−1), consis-

tent with the range of 1–10 nmol mol−1 reported by Heikes et

al. (2002) for the continental boundary layer. Overall, mole

fractions correlated positively with methanol fluxes across

sites (r2
= 0.69, p = 0.011), i.e. higher ambient mole frac-

tions were associated with larger net emissions.

3.2 Controls on methanol exchange

In order to investigate the controls on methanol exchange, a

multiple linear regression analysis was conducted for each

site, separating the flux data by their sign, i.e. into net depo-

sition and net emission (Table 3).

Methanol emission scaled positively with incident pho-

tosynthetically active radiation and evapotranspiration, and

these two independent variables explained the highest frac-

tion of the variance (0.17< r2 < 0.62; p < 0.001) at most

sites. We interpret this to indicate the strong stomatal con-

trol of methanol exchange, owing to the low Henry constant

which favours leaf-internal partitioning of methanol to the

liquid phase (Niinemets and Reichstein, 2003), rather than

a light effect, since Oikawa et al. (2011b) have shown that

methanol emissions are not directly affected by light.

GPP and air temperature, which explained 7 to 43 % (p <

0.001) of the variability at the individual sites (Table 3),

were positively related to methanol emissions, which we in-

terpret to indicate a general relationship of these two vari-

ables with plant growth and thus methanol production. GPP

provides assimilates for growth, and temperature tightly con-

trols cell division and enzyme reaction rates. While this re-

sults in correlations between methanol emission and these

factors, actual methanol production has been shown to be

more complex (Harley et al., 2007; Oikawa et al., 2011a),

and these relationships should thus be viewed as phenomeno-

logical. Galbally and Kirstine (2002) were the first to link

plant growth and methanol emissions in a global budget

by assuming proportionality with NPP. Here we use GPP,

which equals NPP plus autotrophic respiration, as an al-

ternative proxy for plant growth that was generally avail-

able in the present data set, and the corresponding rela-

tionships with net methanol fluxes are shown in Fig. 5

(Fig. S3 in the Supplement shows the relationships with the

net ecosystem CO2 exchange). Slopes of linear regressions

(forced through the origin, excluding Blodgett Forest and

grassland data affected by management activities) ranged

between 3.5× 10−5 g C-CH3OH g C-GPP−1 (Vielsalm) and

2.5× 10−4 g C-CH3OH g C-GPP−1 (Oesingen-EXT), with

an average of 1.25× 10−4 g C-CH3OH g C-GPP−1.

Taking the most recent global GPP value (123 Pg C yr−1)

from Beer et al. (2010), this yields a net land methanol flux of

41 Tg yr−1, which is about half of the lowest estimates avail-

able from global budgets (Millet et al., 2008; Stavrakou et

al., 2011). Accounting for the positive y offset (i.e. not forc-

ing the regression through the origin) observed at most sites

(Fig. 5) or filtering data for positive methanol fluxes increases

the above number by only 20 % (data not shown). Making the

assumption that NPP amounts to around 50 % of GPP (War-

ing et al., 1998; Zhang et al., 2009) approximately doubles

the average number quoted above. Compared to the range

of 3.5–5.3× 10−4 g C-CH3OH g C-NPP−1 deduced from the

literature (Galbally and Kirstine, 2002; Millet et al., 2008;

Stavrakou et al., 2011), our values of NPP lost as net land

methanol flux are thus lower by about a factor of 2. As shown

in Fig. 6, an inverse relationship between the fraction of GPP

that was lost as net methanol emission and the median night-

time deposition velocities was observed, with an exponential

fit explaining 77 % of the variability between sites (excluding

data from Blodgett Forest). In contrast, no significant correla-

tion between the ratio of net methanol flux to GPP was found

with GPP itself (data not shown), suggesting no relationship

between site productivity and the fraction of GPP that is lost
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Table 3. Pearson correlation coefficients of multiple linear regressions of half-hourly methanol emission and deposition fluxes as a function

of several independent variables (PAR: photosynthetic photon flux density; RH: relative air humidity; TA: air temperature; SWC soil water

content; u∗: friction velocity; ET: evapotranspiration; GPP: gross primary productivity; TSEOP: time since end of precipitation; n: number

of measurements).

Emission

BF MO HF VA OS-INTa OS-EXTa NSa SD

PAR 0.43*** 0.6*** 0.65*** 0.51*** 0.79*** 0.78*** 0.69*** 0.54***

RH −0.17*** −0.39*** −0.55*** −0.45*** −0.5*** −0.23*** −0.44*** −0.45***

TA 0.28*** 0.45*** 0.65*** 0.36*** 0.45*** 0.31*** 0.59*** 0.31***

SWC −0.24*** −0.11*** 0.17* 0.14*** −0.09* 0.02 ns −0.29*** NA

u∗ 0.48*** 0.5*** 0.51*** 0.45*** 0.48*** 0.27*** 0.34*** 0.09***

ET 0.42*** 0.44*** 0.62*** 0.5*** 0.79*** 0.74*** 0.7*** 0.54***

GPP 0.46*** 0.27*** 0.48*** 0.38*** 0.55*** 0.62*** 0.6*** 0.29***

TSEOP −0.14*** 0.1*** −0.03 ns 0.15*** −0.03 ns 0.04 ns −0.05*** 0.1***

n 396 1519 156 3767 418 447 15 697 1179

Deposition

BF MO HF VA OS-INTa OS-EXTa NSa SD

PAR −0.15 ns −0.29*** −0.09 ns −0.11*** −0.54*** −0.02 ns −0.17*** −0.02 ns

RH 0.33*** −0.11*** 0.28* −0.22*** 0.18 ns −0.19 ns 0.27*** −0.07*

TA −0.03 ns −0.02 ns −0.11 ns −0.16*** −0.22* 0.14 ns −0.32*** −0.17***

SWC 0.17 ns −0.03 ns −0.12 ns −0.13*** 0.09 ns −0.03 ns 0.19*** NA

u∗ −0.3*** −0.46*** 0.02 ns −0.44*** −0.28*** −0.06 ns −0.39*** −0.28***

ET −0.12 ns −0.29*** −0.1 ns −0.16*** −0.46*** 0.05 ns −0.17*** −0.11***

GPP −0.17 ns −0.23*** −0.15 ns −0.14*** −0.51*** −0.1 ns −0.18*** −0.08 *

TSEOP −0.18 ns 0.1*** −0.01 ns 0.22*** −0.09 ns −0.06 ns −0.03 ns 0.03 ns

n 65 978 64 4917 72 45 1930 673

a Excluding data influenced by site management; * p < 0.05; ** p < 0.01; *** p < 0.001; ns: not significant; NA: not available.

as net methanol emission. The magnitude of methanol depo-

sition thus clearly influences the observed fraction of GPP

that is lost as methanol emission and limits the usefulness of

GPP for upscaling the net methanol exchange. In addition,

it should be stressed that, on short timescales, GPP may be

poorly correlated with NPP and even less with growth and

the associated demethylation of pectin (Galbally and Kirs-

tine, 2002).

Friction velocity and relative humidity explained slightly

lower fractions of the variance compared to air temperature

and GPP (Table 3). The positive relationship between friction

velocity and methanol emission likely reflects the high de-

gree of covariation between friction velocity and air tempera-

ture and photosynthetically active radiation (data not shown).

Relative humidity was inversely related to methanol emis-

sion at all sites (Table 3), which may result from canopy

water films developing during periods of high relative hu-

midity (Burkhardt et al., 2009) within which methanol may

adsorb/dissolve, effectively resulting in a reduction of the net

emission. Alternatively, this may reflect the inverse relation-

ship of relative humidity with temperature and photosynthet-

ically active radiation and their relationship with methanol

exchange discussed above. The time since the end of the last

precipitation event (TSEOP), which was introduced as a sur-

rogate for the presence of canopy water films (Laffineur et

al., 2012), and soil water content explained less than 8 %

of the variability in methanol emissions (Table 3). In the

case of TSEOP, this likely indicates that a more process-

based approach would be required to properly capture the ef-

fect of wetting and subsequent drying on methanol exchange

(Warneke et al., 1999; Laffineur et al., 2012).

The investigated independent variables generally ex-

plained a smaller fraction of the variability in observed de-

position compared to emission fluxes and half of the rela-

tionships were statistically not significant (Table 3). Relative

humidity and friction velocity were the independent variables

explaining the highest fraction (up to 21 %) of the variance

at most sites. Except for one site, friction velocity was nega-

tively correlated with methanol deposition, suggesting more

efficient downward transport of methanol as mechanical tur-

bulence increases. In contrast to methanol emissions, which

were inversely related to relative humidity, a positive correla-

tion with methanol deposition was found at half of the sites,

indicating that relative humidity plays a more variable role

among sites in modulating deposition than emission. The re-

maining variables explained less than 10 % of the variability

in observed methanol deposition fluxes (except for the inten-

sive grassland of Oensingen).
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Figure 5. Relationship between gross photosynthesis (GPP) and methanol flux. Small grey symbols represent half-hourly flux measurements;

black symbols represent 10 bin averages with equal numbers of data. Error bars refer to 1 standard deviation. Note different x and y scales

in different panels.

Figure 6. Methanol flux to GPP ratio as a function of the median

night-time deposition velocity. The solid line represents an expo-

nential fit (r2
= 0.77).

In an attempt to investigate the common and site-specific

controls on methanol emission and deposition, all data (ex-

cept for Blodgett forest and those from the grassland sites in-

fluenced by management activities) were subjected to a uni-

variate analysis of variance (Table 4). For methanol emis-

sions, site identity and photosynthetically active radiation

were the most important main effects. The largest fraction

of variance was, however, explained by the interaction terms

of site with relative humidity (η2
= 1.45 %) and GPP (η2

=

0.98 %), and to a lesser degree with photosynthetically ac-

tive radiation and air temperature (Table 4). For methanol

deposition, site identity was the only significant main factor

(η2
= 2.96 %) and also contributed the largest fraction of ex-

plained variance, followed by the interaction terms between

site and relative humidity and air temperature (Table 4).

Overall this suggests that controls on methanol exchange

are strongly site-specific and/or that factors not accounted

for, such as soil type and microbial activity, play a substan-

tial, possibly interactive, role in governing the ecosystem–

atmosphere methanol exchange.

4 Conclusions

By compiling micrometeorological methanol flux data from

eight different sites and by reviewing the corresponding lit-

erature, this study provides a first cross-site synthesis of the

terrestrial ecosystem-scale methanol exchange and presents

an independent, data-driven view of the land–atmosphere

methanol exchange. Below we summarise the major find-

ings, draw conclusions and make recommendations for fu-

ture work.

It is now unequivocal that, at the ecosystem scale,

methanol exchange is bi-directional (Figs. 1 and 2, Table 2)

and, at some sites, deposition can even prevail over emis-

sion during extended periods of time (Langford et al., 2010a;

Misztal et al., 2011; Laffineur et al., 2012). This finding is not

new from the perspective of global methanol budgets, which
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Table 4. Variance explained (partial eta-squared, η2) in methanol

emission and deposition based on univariate analysis of variance

(UNIANOVA) using all data exclusive of Blodgett Forest and the

grassland site data influenced by management activities. See Table 3

for abbreviations.

η2 (%)

Emission Deposition

Corrected model 57.0*** 38.0***

Offset 0.09*** 0.01 ns

PAR 0.69*** 0.00 ns

TA 0.24*** 0.02 ns

RH 0.06*** 0.02 ns

u∗ 0.16*** 0.03 ns

GPP 0.17*** 0.00 ns

TSEOP 0.00 ns 0.00 ns

ET 0.11*** 0.00 ns

Site 0.76*** 2.96***

Site×PAR 0.58*** 0.07 ns

Site×TA 0.79*** 1.49***

Site×RH 1.45*** 2.71***

Site× u∗ 0.29*** 0.71***

Site×GPP 0.98*** 0.01 ns

Site×TSEOP 0.38*** 0.10 ns

Site×ET 0.22*** 0.21**

n 23 453 9092

do account for deposition to land and the oceans in addition

to the OH sink, but emission and deposition are treated sep-

arately, which likely results in inconsistencies (Singh et al.,

2000; Galbally and Kirstine, 2002; Heikes et al., 2002; Tie et

al., 2003; von Kuhlmann et al., 2003a, b; Jacob et al., 2005;

Millet et al., 2008; Stavrakou et al., 2011). The prominent

role of deposition is an emerging feature of ecosystem-scale

measurements and is in contrast to leaf-level work that has al-

most exclusively reported methanol emissions and focussed

on describing the corresponding controls (e.g. Niinemets and

Reichstein, 2003; Harley et al., 2007; Hüve et al., 2007).

The bi-directional nature of the terrestrial methanol flux

makes it difficult for the present generation of models, which

simulate emission and deposition separately, to fully capi-

talise on the rich information of micrometeorological mea-

surements for calibration/validation. Guenther et al. (2012)

proposed adding an estimate of the deposition flux to the net

flux measured by micrometeorological methods to be used

for calibrating the primary emission in MEGAN. While cor-

rect in principle, the emerging picture of methanol deposition

being more difficult to predict than emission (Tables 3 and

4) makes it difficult in practice to “estimate” the magnitude

of the deposition flux with confidence. We argue that these

difficulties should be addressed by a new generation of mod-

els which reflect the available process knowledge about the

controls on both emission and deposition of methanol and

merge it into a unified modelling framework. For the strong

stomatal control on methanol emissions (Niinemets and Re-

ichstein, 2003; Harley et al., 2007) and the role of water in

adsorption/desorption of methanol (Laffineur et al., 2012),

the corresponding theory is available. Land surface models

which include a description of the ecosystem water budget,

i.e. stomatal conductance, leaf energy balance, interception

of precipitation (e.g. Berry et al., 1997), would provide most

of the interfaces to this end. Further work is required in or-

der to better understand the controls on leaf methanol pro-

duction (Harley et al., 2007; Oikawa et al., 2011a), the role

of chemical and/or biological (in particular microbial) re-

moval of methanol on (wet) surfaces (Fall and Benson, 1996;

Abanda-Nkpwatt et al., 2006; Laffineur et al., 2012) and the

importance of soils as sources/sinks of methanol (Asensio

et al., 2008; Greenberg et al., 2012; Stacheter et al., 2013;

Peñuelas et al., 2014). Doing so is likely to require a combi-

nation of laboratory experiments under controlled conditions

in order to better understand processes and in situ studies in

order to confirm the relevance of these processes under real-

world field conditions. Assessing the role of surface moisture

for methanol exchange would clearly profit from direct mea-

surements, distributed vertically within the plant canopy, of

surface wetness in order to better quantify dew formation, in-

terception of precipitation and the associated drying dynam-

ics (e.g. Bregaglio et al., 2011).

Earlier work (Karl et al., 2001; Brunner et al., 2007; Davi-

son et al., 2008; Hörtnagl et al., 2011; Ruuskanen et al.,

2011; Brilli et al., 2012) and Fig. 3 conclusively show that

management of agricultural ecosystems (biomass harvesting,

grazing or application of organic fertiliser) results in short-

term increases of methanol emissions by an order of mag-

nitude. Despite being relatively short-lived, these bursts of

BVOC emissions make a substantial contribution to the to-

tal BVOC budget of these agricultural ecosystems (Hörtnagl

et al., 2011; Bamberger et al., 2014). Much less informa-

tion is available for the effects of various forest management

activities (pruning, thinning, clear cutting, residue manage-

ment, etc.) on BVOC and methanol fluxes. Data from Blod-

gett Forest (Figs. 1 and 2) and the studies by Haapanala et

al. (2012) and Schade and Goldstein (2003) suggest that for-

est management activities may cause longer-term perturba-

tions of BVOC emissions compared to agricultural ecosys-

tems. Given that the human appropriation of NPP has in-

creased from 13 % of the NPP of potential vegetation in 1910

to 25 % in 2005 (Krausmann et al., 2013), we suggest that

the effects of management on methanol emissions should

be quantified for a larger range of ecosystems (in particular

for managed forests) and be included in global budgets. As

shown by Brilli et al. (2012) for grasslands, the magnitude of

post-harvesting BVOC emissions scales with the amount of

harvested biomass, suggesting that these emissions could be

modelled based on agricultural/forestry census data (Schade

and Goldstein, 2003), possibly in combination with remote

sensing (for hindcast applications).
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This study relied on data from eight study sites and re-

viewed an additional 21 published studies; thus it repre-

sents only a first step towards a data-driven assessment of

the global land methanol flux. Data from additional sites in

under-represented ecosystem types and climates are required

to better constrain differences between different ecosystem

types which are embedded in model parameters of differ-

ent plant functional types (PFTs); for example, at present

10 of the 11 woody PFTs in MEGAN have one common

methanol emission factor and the remaining 5 PFTs another

one (Guenther et al., 2012). In a next step, methanol flux

measurements need to be conducted over multiple years (in-

cluding off-season periods; Bamberger et al., 2014) in or-

der to be able to quantify and explain interannual variability

in atmospheric methanol mole fractions. Doing so will also

increase the likelihood of observing extremes in methanol

exchange caused by weather extremes and/or biotic inter-

ference. For example, laboratory leaf-scale work has shown

that herbivory by insects may elicit large methanol emissions

(Von Dahl et al., 2006). However, at present we largely lack

the data necessary for devising and testing models simulating

herbivory-related perturbations of the methanol exchange at

ecosystem scale (Arneth and Niinemets, 2010).

Building upon the experiences gathered in the FLUXNET

project (Baldocchi et al., 2001), the BVOC flux community

also should make a concerted effort towards standardising

flux data acquisition and processing so that data are more

readily comparable and models can be calibrated and val-

idated based on harmonised data sets. Finally, we empha-

sise that micrometeorological methanol flux measurements

are important, but not sufficient, for a better understanding

and quantification of the global land methanol exchange. To

this end, a multi-disciplinary and multi-scale approach which

bridges detailed process studies at the molecular level (e.g.

Abanda-Nkpwatt et al., 2006; Oikawa et al., 2011a; Oikawa

et al., 2011b) and remote sensing at the global scale (e.g.

Stavrakou et al., 2011) is required.

The Supplement related to this article is available online

at doi:10.5194/acp-15-7413-2015-supplement.
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