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Abstract

Recent experiments by Ralph and Buhrman on zero-bias anomalies in

quenched Cu nanoconstrictions (reviewed in the preceding paper, I), are in

accord with the assumption that the interaction between electrons and nearly

degenerate two-level systems in the constriction can be described, for su�-

ciently small voltages and temperatures (V; T < TK), by the 2-channel Kondo

(2CK) model. Motivated by these experiments, we introduce a generaliza-

tion of the 2CK model, which we call the nanoconstriction 2-channel Kondo

model (NTKM), that takes into account the complications arising from the

non-equilibrium electron distribution in the nanoconstriction. We calculate

the conductance G(V; T ) of the constriction in the weakly non-equilibrium

regime of V; T � TK by combining concepts from Hersh�eld's Y -operator

formulation of non-equilibrium problems and A�eck and Ludwig's exact con-

formal �eld theory (CFT) solution of the 2CK problem (CFT technicalities are

discussed in a subsequent paper, III). Finally, we extract from the conductance

a universal scaling curve �(v) and compare it with experiment. Combining

our results with those of Hettler, Kroha and Hersh�eld, we conclude that the

NTKM achieves quantitative agreement with the experimental data.
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I. INTRODUCTION

This is the second in a series of three papers (I,II,III)1{3 devoted to the 2-channel Kondo

model (2CK). In the preceding paper (I), we gave a detailed review of a possible experimental

realization of this model, namely the experiments by Ralph and Buhrman (RB)4{7 on non-

magnetic zero-bias anomalies (ZBAs) in Cu nanoconstrictions. The experimental facts were

summarized in the form of nine important properties of the data, (P1) to (P9) (see section IV

of I). The main conclusion of paper I was that all experimental facts are in accord with the

assumption that the ZBA is caused by the scattering of electrons o� nearly degenerate two-

level systems (TLS), with whom they interact according to the non-magnetic Kondo model

of Zawadowski8;9, which renormalizes to the 2CK model at su�ciently low temperatures.

(See Appendices B and C for background on Zawadowski's model.)

In the present paper (II), we focus on property (P6): in the so-called weakly non-

equilibrium regime of su�ciently small voltages and temperatures (V < VK and T < TK,

where VK and TK are experimentally determined cross-over scales, but arbitrary ratio

v = eV=kBT ) the conductance G(V; T ) was found to satisfy the following scaling relation6:

G(V; T )�G(0; T )

T �
= F (v) ; (1)

with scaling exponent � = 1
2
. This was interpreted as strong evidence that the samples

fall in the low-temperature regime of the 2CK model, because its conformal �eld theory
(CFT) solution by A�eck and Ludwig (AL)10;11 suggests precisely such a scaling form near
its T = 0 �xed point, and correctly predicts that � = 1

2
, as observed.

If this interpretation is correct, it would imply that RB had directly observed non-Fermi-
liquid behavior, because in the 2CK model, the exponent � = 1

2
is one of the signatures of

non-Fermi-liquid physics (for a Fermi liquid, � = 2). Thus RB's experiments attracted a
lot of interest, because non-Fermi-liquid behavior, so treasured by theorists, has been very
di�cult to demonstrate experimentally.

However, it is of course quite conceivable that the scaling behavior can also be accounted
for by some other theory. Indeed, Wingreen, Altshuler and Meir12;(a) have pointed out that
an exponent of � = 1

2
also arises within an alternative interpretation of the experiment, based

not on 2CK physics but the physics of disorder (which we believe, though, to contradict other
important experimental facts, see section VA of I).

It is therefore desirable to develop additional quantitative criteria for comparing the

experiment to various theories. Now, in paper I it was shown that a sample-independent
scaling function �(v) could be extracted from the sample-dependent scaling function F (v)
of Eq. (1). According to the 2CK interpretation, this �(v) should be a universal scaling

function, a �ngerprint of the 2CK �xed point, independent of sample-speci�c details. A

very stringent quantitative test of any theory for the RB experiment would therefore be to

calculate �(v), and compare it to experiment.

The present paper is devoted to this task. �(v) is calculated analytically within the
framework of the 2CK model and its exact CFT solution by AL, and the results are compared

to the RB experiment. When combined with recent numerical results of Hettler, Kroha and
Hersh�eld et al.13, agreement with the experimental scaling curve is obtained, thus lending

further quantitative support to the 2CK interpretation for the Cu constrictions.
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In order to describe the scattering of electrons o� two-level systems in a nanoconstriction

geometry, we introduce a generalization of the 2CK model, which we call the nanoconstric-

tion two-channel Kondo model (NTKM), that takes into account the complications arising

from the non-equilibrium electron distribution in the nanoconstriction. The generalization

consists of labelling the electrons by an additional species index � = (L;R), which denotes

their direction of incidence (toward the left or right for electrons injected from the right or

left lead).

In equilibrium (V = 0), our NTKM reduces to the 2CK. Therefore, for T � TK, it

displays the same non-Fermi-liquid behavior as the latter. When the voltage is turned

on, by continuity there must exist a regime in which the voltage is still su�ciently small

(namely V � TK) that non-Fermi-liquid behavior persists despite V 6= 0. We shall call this

T; V � TK regime the non-Fermi-liquid regime, and associate it with the scaling regime

of (P6) identi�ed in the experiment. At higher voltates (V >
� TK), the non-Fermi-liquid

behavior is destroyed. Therefore, we shall focus exclusively on the case V � TK in this

paper, and accordingly the acronym NTKM will henceforth be understood to stand for \the

nanconstriction 2-channel Kondo model in the non-Fermi-liquid regime".

The non-Fermi-liquid regime has to be treated by non-perturbative methods. The

method we use combines ideas from CFT with concepts from Hersh�eld's Y -operator for-
mulation of non-equilibrium problems14. We show that all one needs to calculate the
current using Hersh�eld's formalism are certain scattering amplitudes, to be denoted by
~U��0("

0). We assume that in the non-Fermi-liquid regime, the scattering amplitudes are

essentially independent of V (since V -dependent corrections are of order V=TK � 1 and
hence negligible (they are discussed in Appendix I). We then show that the V = 0 val-
ues of the scattering amplitudes can be extracted from an equilibrium Green's function
G��0(�; ix; �

0; ix0) = �hT �(�; ix) y�0(x0)i that is known exactly from CFT.
Once they are known, it is straightforward to calculate the non-linear current I(V; T )

through the constriction, and extract from it the scaling function �(v).

The present paper can be read without knowledge of CFT, because the only step for
which CFT is really needed, namely the calculation of G��0, is carried out in paper III, and
here we only cite the needed results.

The outline of this paper is as follows: In section II we introduce the NTKM, and
in section III outline our strategy for solving it by a combination of CFT methods with

Hersh�eld's Y -operator approach. This strategy is implemented in section IV, where the
scattering states are calculated. The current and scaling function are calculated in section V.
Our results for �(v) are compared to experiment and the NCA results of Hettler, Kroha and

Hersh�eld in section VI, and our conclusions summarized in section VII.
More than half of the paper is taken up by appendices. The lengthier ones (A,B,C,D,F,H)

summarize, for the sake of convenience, background material that is assumed known in the
main text; the others (E,V,I) contain original work related to the main text. In appendix A,

we recall some standard results from the semi-classical theory of non-equilibrium transport
through a ballistic nanoconstriction. Appendices B and C provide a brief review of the recent

series of papers by Zar�and and Zawadowski on the (bulk) non-magnetic Kondo model and

its renormalization toward the 2CK model at low temperatures. Recent criticism of their

conclusions are discussed in Appendix D. In Appendix E we compare our CFT results with

those from the poor man's scaling approach in the limit of large number (k !1), in which
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the latter approach becomes exact. Hersh�eld's Y -operator formalism is brie
y reviewed in

appendix F. Appendix G illustrates the general formalism developed in sections IV and V

with an simple example. In appendix H we give some background on the NCA calculations

of Hettler, Kroha and Hersh�eld. Finally, in appendix I we discuss V=TK-correction to our

results.

II. THE NANOCONSTRICTION NON-MAGNETIC KONDO MODEL

In this section we introduce a new model, to be called the nanoconstriction two-channel

Kondo model (NTKM), to describe the interaction of conduction with a TLS in the nanocon-

striction. We shall take as guideline the results of Zawadowski and coworkers, who introduced

the non-magnetic Kondo Hamiltonian to describe the TLS-electron interaction (summarized

in Appendix B) and showed that under renormalization it 
ows towards the non-Fermi-liquid

�xed point of the 2CK model (in a way summarized in Appendix C).1 However, we shall not

be interested in the details of the renormalization process from some bare to some e�ective

model. Instead our attitude, stated in section XB2 of I, is that of phenomenologists: since

the detailed microscopic nature of the presumed TLSs is unknown, so too is the \correct"
microscopic, bare Hamiltonian. The best one can hope for is to �nd a phenomenological
Hamiltonian that satisfactorily accounts for the observed phenomena. As argued at length
in paper I, the 2CK model with energy splitting � ' 0 passes this test on a qualitative
level. We regard this as su�cient justi�cation to use 2CK ideas as a basis for quantita-

tive calculations, in order to test whether quantitiative agreement with experiment can be
achieved.

The NTKM that we shall write down is the simplest model we can think of that contains
the non-Fermi-liquid physics of the 2CK model, but also accounts for the complications
brought about by a nanoconstriction geometry relative to the bulk situation. We introduce

it as a phenomenological Ansatz, without attempting to provide a detailed microscopic
derivation. Since our aim is to calculate a universal curve, characteristic of the 2CK model
but experimentally found to be sample-independent, we believe that such lack of attention
to microscopic details has experimental justi�cation.

The main complications arising in a nanoconstriction geometry relative to the bulk case

are, �rstly, that one has to distinguish between electrons leaving and entering the L and
R leads, and secondly, that the application of a voltage induces a non-equilibrium electron
distribution in the nanoconstriction.

We thus have to deal with a non-equilibrium problem with non-trivial interactions. The

standard procedure (due to Kadano� and Baym18) for de�ning such a problem requires

1It should be pointed out that the question as to whether a realistic TLS-electron system will

reach the 2CK non-Fermi-liquid regime under renormalization is currently controversial15;12;16;17

(see appendix D). In the present paper, though, we do not attempt to clarify any of the controversial

issues. We simply take the view that it would be useful to know what the scaling curve looked like

if the system indeed does reach the 2CK non-Fermi-liquid regime, and hence do the calculation,

assuming it does.
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conceptual care and may for clarity be organized into six steps:

First the problem is de�ned in the absence of interactions, by de�ning

(S1) a free Hamiltonian Ho with eigenstates fj"�iog,
(S2) a free density matrix �o governing their non-equilibrium occupation,

(S3) and the physical quantities of interest, in our case the current I (with expectation value

hIi = Tr�oI=Tr�o in the absence of interactions).

Then the interactions are switched on, by de�ning

(S4) an interaction Hamiltonian Hint,

(S5) and the full density matrix �, which governs their non-equilibrium occupation of states

for the fully interacting system. (Typically, this is done by adiabatically switching on

Hint, and keeping track of how the initial �o develops into a �nal �.)

(S6) Expectation values are calculated according to hIi = Tr�I=Tr� :

In this section, we address steps (S1) to (S4). [(S5) and (S6) are discussed in sections IV

V, respectively]. We also explain, within the poor man's scaling approach, why the 
ow

towards the non-Fermi-liquid regime is not disrupted by V 6= 0 as long as V � TK.

A. Free Hamiltonian Ho

We consider a single TLS at the center of the nanoconstriction (see Fig. 1 of paper I
for a scetch of the nanoconstrictions used in the RB experiment). We consider only those
modes of electrons that contribute to the ZBA, i.e. that interact with this TLS when passing
through the nanoconstricion.

To describe these electrons, we imagine that the \free nanoconstriction Schr�odinger equa-

tion" for free electrons and some random static impurities but no TLS-electron interaction,
with boundary conditions that all electron wave-functions vanish on the metal-insulator
boundary, has already been solved (impossible in practice, but not in principle). This pro-
vides us [step (S1)] with a complete set of single-particle eigenstates fj"; �io = cyo"�j0ig
(where j0i = vacuum), in terms of which Ho is diagonal:

Ho =
X
�

Z D

�D
d" " cyo"�co"� : (2)

Here the continuous energy label " is taken to lie in a band of width 2D, symmetric about

the equilibrium Fermi energy (at " = 0), with constant2 density of states3 No. The latter

2Very recent work by Zar�and and Udvardi19 has shown that using a constant density of states is

probably less realistic in a nanoconstriction than in the bulk (where it is standard), because the

local density of states 
uctuates strongly as a function of r and ". This is the kind of complication

that our phenomenological approach has to ignore.

3Since the density of states diverges for in�nite systems, the expectation values of some operators,

e.g. the current [e.g. see footnote 5 and Eq. (39)], have to be evaluated in a �nite system with a

discrete energy spectrum. In such cases, we use the replacement rules:
R
d" �! N�1

o

P
" ; and

�("� "0) �! No�""0 :
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has been absorbed into the normalization of the cyo"�'s, which we take as

fco"�; cyo"�g = ���0�("� "0) : (3)

The label � collectively denotes a set of discrete quantum numbers, � � (�; �; i) =

(species,pseudo-spin,channel)-index, which have the following meaning: i ="; # is the elec-

tron's Pauli spin, which will be seen below to play the role of channel-index in the NTKM.

� = 1; 2 is a discrete pseudo-spin index, the nanoconstriction analogue of Vlad�ar and Za-

wadowksi's \angular" index � [see e.g. Eq.(2.36) of the �rst paper of9; in13, � was called

a \parity" index]. It labels those two sets of free states fj"; �; 1; iig and fj"; �; 2; iig that

in the non-Fermi-liquid regime will couple most strongly to the TLS. For example, if the

free wave-functions were expanded in terms of angular harmonics, � = 1; 2 would label two

complicated linear combinations of Yl;m(�; �) functions. Strictly speaking � can take on a

large number of discrete values, but we ignore all but two, in the spirit of Zawadowski's bulk

result9 that the others decouple when the temperature is lowered and the system 
ows to-

ward a non-Fermi-liquid �xed point with an e�ective electron pseudo-spin of 1
2
. (The modes

we ignore contribute to the background conductance, but not to the ZBA.)

Finally, � = (+;�) = (L;R), the species index, denotes the direction of propagation of

the incident electron: � = L = + for left-moving electrons, incident toward the left from
z = +1 in the right lead; � = R = � for right-moving electrons, incident toward the right
from z = �1 in the left lead. (For example, in spherical coordinates the asymptotic behavior
of the incident (or transmitted) parts of the wave-function of both L- and R-movers will be
proportional to e�ikr=r (or eikr=r) as r !1.) The nanoconstriction geometry necessitates

this distinction between L- and R-movers (not needed in the bulk case), �rstly because L-
and R-movers originate from di�erent leads, which are at di�erent chemical potentials if
V 6= 0, and secondly because they contribute with di�erent sign to the current.

B. The free density matrix �o

We now turn to step (S2), the de�nition of �o, the free density matrix for Hint = 0
but arbitrary voltage. The right and left leads have chemical potentials (measured relative
to the equilibrium chemical potential �) of +eV=2 and �eV=2, respectively.4 As input,
we use a standard result from the semi-classical theory of non-equilibrium transport of

electrons through a ballistic nanoconstriction20 (summarized in appendix A): At the center
of the constriction, the distribution of occupied electron states in momentum space is highly

anisotropic (see Fig. 2 of Appendix A). It consists of two sectors, to be denoted by L or

R, that contain the momenta of all electrons that are incident as L or R-movers, i.e. are
injected from the R or L leads. Consequently, the Fermi energies of the L=R sectors are

equal to those of the R=L leads, namely �� = �1
2
eV .

4Our �gures and arguments are given for the case eV > 0. We take e = �jej and hence V = �jV j.

With �� = �eV=2 for R=L leads, there then is a net 
ow of electrons from right to left, and the

current to the right is positive.
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We formalize these standard results by associating the L=R sectors with the species

quantum number � = L=R = � introduced above (correspondingly �� will stand for ��),
and adopting the following form for the free density matrix �o:

�o � e��[Ho�Yo ] ; hOio �
Tr�oO

Tr�o
; (4)

where the Yo-operator is de�ned by

Yo � 1
2
eV (NL �NR) =

X
�

��

Z
d" cyo"�co"� : (5)

Here NL and NR denote the total number of L- and R-moving electrons.5 It follows that

hcyo"�(� )co"0�0(� 0)i = e"(���
0)f("; �)���0�("� "0) ; where f("; �) � 1

e�("���) + 1
: (6)

C. The free current through the nanoconstriction

The ZBA arises from backscattering by the TLS of electrons that would otherwise have
passed through the constriction. Thus, we assume that they would contribute one unit e2=h
of conductance if the interaction were turned o�. (More generally, one could use T�e2=h,
where T� is a transmission coe�cient, but this only a�ects the (non-universal) amplitude

of the ZBA.) Thus, we may de�ne [step (S3)] our current operator simply as the di�erence
between the number of electrons transmitted as L- or R-movers:

Î =
jej
Noh

X
�

Z
d"� cyo"�co"� : (7)

Our signs are chosen such that hÎio > 0 if the net 
ow of electrons is from right to left,
while the prefactor jej=hNo is needed, because of our choice of normalization, to obtain 5 a

conductance of e2=h per channel.

D. The nanoconstriction 2CK interaction

We now come to step (S4), the speci�cation of the electron-TLS interaction, for which

we make the following phenomenological Ansatz:

Hint =
Z
d"

Z
d"0
X
��0

cyo"� V��0 co"0�0; V��0 � vKv��0�ii0
�
1
2
~���0 � ~S

�
; (8)

5To evaluate hcyo"�co"�i we have to give meaning to �(" � ") of Eq. (6), which seems to diverge

because we took the thermodynamic limit of an in�nitely large system. We do this by replacing

it by the corresponding �nite-system expression of No�""0 [see footnote 3], i.e. we use hc
y
o"�co"�i =

f("; �)No :
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Here ~S is the TLS pseudo-spin operator acting in the two-dimensional Hilbert space of the

TLS. Following the assumption (A2) of section VID of I, we henceforth assume that �, the

TLS excitation energy, is the smallest energy scale in the problem, and set � = 0.

As far as the pseudospin and channel indices � and i are concerned, Hint is simply the

isotropic 2CK Hamiltonian to which, according to Zawadowski's analysis for a bulk system,

a realistic TLS coupled to electrons will 
ow at su�ciently low temperatures. However, we

introduced an extra Hermitian 2�2 matrix v��0, which enables an incident electron, say a

L-mover, to be scattered into either a L- or a R-mover, independent of whether its pseudo-

spin index � and that of the TLS do or do not 
ip.6 In general, v��0 can be any Hermitian

matrix, but, for reasons given below, it is actually su�cient to consider only the very simple

case

v��0 =
1
2

�
1
1

1
1

�
��0

: (9)

Note that with this choice, our model is equivalent (after a Schrie�er-Wolf transformation)

to a model recently studied by Hettler et. al. using numerical NCA techniques, with whose

results we shall compare our own (see section VIB).

The Hamiltonian introduced above is strictly speaking not a 2CK Hamiltonian, since
� = � and i ="; # give four di�erent combinations of indices that do not Kondo-couple to
the impurity. However, the it can be mapped onto a 2-channel model by making a unitary
transformation,

�co"�� = N���co"� ; N��� � N���������ii ; (10)

chosen such that it diagonalizes v��0. For our present choice (9) for v��0 , N��� is given by

N��� =
1p
2

�
1
1

1
�1

�
���

;
�
NvN�1

�
����0

=
�

1
0

0
0

�
����0

: (11)

We shall refer to the operators co"� as L=R operators and the �co"�� as even/odd operators,

and always put a bar over all indices and matrices refering to the even/odd basis. In the
even-odd basis, the interaction becomes

Hint =
Z
d"

Z
d"0
X
��;��0

�cyo"���co"0��0 V ����0; V ����0 = vK�ii0

 
1
2
~�����0 � ~S 0
0 0

!
����0

: (12)

Thus, in the even/odd basis, one set of channels, the odd channels (�� = o), completely

decouples from the impurity. The other set of channels, the even channels (�� = e), constitute

a true 2CK problem, which will eventually be responsible for the non-Fermi liquid behavior
of the NTKM.

6 Note that the interaction of Eqs. (8) and (9) is reminiscent of the tunneling Hamiltonian Htun

in the standard problem of electrons tunneling through an insulating barrier that separates two

electronic baths: the o�-diagonal components of v��0 transfers an electron from one bath to the

other, with the implicit assumption that this does not disturb the thermal distribution of electrons

signi�cantly.
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If one chooses a more general v��0 than Eq. (9), the odd channel will not completely

decouple, but (barring some accidental degeneracies) the even and odd channels will always

couple to the TLS with di�erent strenghts. At low enough temperatures, the one coupled

more weakly can be assumed to decouple completely (�a la Zawadowski9, see section C3 of

Appendix B), leaving again a 2CK problem for the even channel. This is the reason why it

is su�cient to take v��0 as in (9).

E. Poor Man's Scaling Equations una�ected by V

The model we wrote down assumes that the NFL regime of the TLS-electron system has

already been reached. However, one may wonder whether having V 6= 0 would not prevent

the TLS-electron system from reaching the non-Fermi-liquid regime at all. That this is not

the case for V su�ciently small (� TK) can be seen by the following poor man's scaling

argument: Since the poor man's scaling equations are derived by adjusting the cut-o� from

D to D0, which are both � V; T , they are independent of V for the same reason as that

they are independent of T (namely the change in coupling constants needed to compensate

D ! D0 does not depend on energies V and T that are much smaller than D). In other
words, the scaling equations for V 6= 0 are the same as those for V = 0, meaning that the
initial RG 
ow is una�ected by V 6= 0. Eventually, the RG 
ow is cut o� by either V or
T , whichever is larger; however, if both are � TK, the RG 
ow will terminate in the close
vicinity of the non-Fermi-liquid �xed point, even if V 6= 0. This is the basis of our key

assumption, stated in the introduction and implicit in the Ansatz (8), that for V=TK � 1
the non-Fermi-liquid regime is governed by essentially the same e�ective Hamiltonian as for
V = 0.

III. OUTLINE OF GENERAL STRATEGY

We now have to address step (S5) of the process of de�ning a fully interacting, non-
equilibrium problem, namely the de�nition of the full density matrix � for V 6= 0 and
Hint 6= 0. In this section, the heart of this paper, we propose a strategy for doint this

which combines ideas from CFT with Hersh�eld's Y -operator formulation of non-equilibrium
problems. The section is conceptual in nature; technical details follow in sections IV and V,
and in paper III.

A. Hersh�eld's Y -operator approach to Non-Equilibrium Problems

Typically, the full � is de�ned by adiabatically turning onHint and following the evolution
of the initial density matrix �o to a �nal � (see appendix F). Expanding the time-evolution

operator in powers of Hint, one then generates a perturbation expansion that can be handled
using the Keldysh technique.

However, for the Kondo problem, perturbation theory breaks down for T < TK, where
many-body e�ects become important. Therefore we shall adopt Hersh�eld's so-called Y -

operator formulation of non-equilibrium problems14, which is in principle non-perturbative.
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The main idea of Hersh�eld's approach (brie
y summarized in appendix IIIA), is as

follows. As the interaction Hint is adiabatically turned on, the density operator adiabatically

evolves from its initial form �o = e��(Ho�Yo) into a �nal form that Hersh�eld writes as

� � e��(H�Y ). This de�nes the operator Y , which is the adiabatically evolved version of

Yo and is conserved ([Y;H] = 0). The formal similarity between � and �o implies that in

terms of the non-equilibrium scattering states, the non-equilibrium problem has been cast

in a form that is formally equivalent to an equilibrium problem.

This becomes particularly evident if one considers the set of simultaneous eigenstates of

H and Y , which we shall call the scattering states and denote by fj"�i = cy"�j0ig. Loosely
speaking, they can be viewed as the states into which the free basis states fj"�iog develop

as Hint is turned on (in the sense that cy"� is some function of the fcyo"0�0g, which reduces

to cyo"� for Hint = 0). For scattering problems like the NTKM, in which a free electron is

incident upon a scatterer and scatters into something complicated, there evidently must be

a one-to-one correspondence between the states j"�io and j"�i: the incident parts of their
wave-functions h~xj"�io and h~xj"�i must be identical. (The outgoing parts, which contain

scattering information, will of course be di�erent { this will be made explicit in Eq. (34)

below.) This is why the free and scattering states can be labelled by the same indices, and

also have the same density of states.7

Furthermore, for such scattering problems, H and Y will have the following form:8

H =
X
�

Z
d" "cy"�c"� ; (13)

Y �
X
�

Z
d" ��c

y
"�c"� (6= Yo) : (14)

The form used here for Y here follows because Y evolves from Yo as Hint is turned on, imply-
ing that Y can be obtained from Yo by replacing the co"� in Eq. (5) by the scattering-state
operators c"� into which the latter evolve14. Eq. (13) and (13) imply that non-equilibrium
thermal expectation values of the c"�'s have the standard form:

hcy"�(� )c"0�0(� 0)i = e"(���
0)f("; �)���0�("� "0) where f("; �) � 1

e�("���) + 1
: (15)

This is precisely the same form as that satis�ed by the non-interacting co"�'s in the absence
of interactions [see Eq. (6)]. The intuitive reason for this remarkably simple result is clear:
the Boltzman weight of a scattering state must be the same as that of the corresponding free

state, since the thermal equilibration that leads to the Boltzmann factors happens deep inside

7One might ask whether the very notion of scattering states make sense for a dynamical impurity

problem, since the scatterer is constantly 
ipping its pseudo-spin. However, in the CFT solution

of Kondo problems, the impurity completely disappears from the scene (being absorbed in the

de�nition of a new spin current, see Eq. (14) of paper III). Thus the theory contains only electron

degrees of freedom, for which one can meaningfully introduce scattering states.

8For problems other than scattering problems, Eq. (14) does not necessarily hold.
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the leads, before the electrons are injected and scattered by Hint (this of course remains true

when L- and R leads have di�erent chemical potentials { all that happens for V 6= 0 is that

the occupation probabilities pick up a V -dependence re
ecting from which lead the electron

was injected).

This result provides us with a very clear picture of how the current through a nanocon-

striction should be calculated: when injecting electrons from the leads into the constriction,

the thermal weighting is done precisely as for free particles, i.e. an electron incident in the

state j"0�0io is injected with weight f("0; �0). For each such electron, one has to determine

the scattering amplitude ~U��0("
0), i.e. the amplitude with which it emerges from the scat-

tering process in the state j"0; �io (where we assumed elastic scattering). These amplitudes

(de�ned more explicitly below, see section IVC) are the non-trivial ingredients of the scat-

tering states, which contain all relevant information about the scattering process.9 Once

they are known, it is straightforward to calculate the current as a thermally weighted sum

over transmission probabilities.

Since expectation values expressed in terms of scattering states are so simple, it is useful

to reexpress all physical operators in terms of them. To this end, we de�ne U�0�("
0; ") �

oh"0�0j"�i to be the unitary transformation that relates the scattering states to the free basis

states:

j"�i =
X
�0

Z
d"0 j"0�0ioU�0�("

0; ") ; (16)

c"� =
X
�0

Z
d"0 Uy

��0(""
0)co"0�0 ; (17)

���0�("� "0) =
X
~�

Z
d~" Uy

�~�("; ~")U~��0(~"; "
0) : (18)

For example, the current of Eq. (7) takes the form:

I =
jej
Noh

X
��0�00

Z
d"

Z
d"0
Z
d"00Re

h
�Uy

�0�("
0; ")U��00("; "

00) hcy"0�0c"00�00i
i
: (19)

9 For a many-body problem such as the Kondo problem, complicated combinations of particle-hole

excitations are created upon scattering, which can not simply be written as a linear combinationP
� c

y
o"0�

~U��0("
0) of single-particle excitations. However, it was shown by Maldacena and Ludwig22

that the scattering matrix for free electrons incident on a Kondo impurity is unitary if the single-

particle Hilbert space of free-electron states fj"�iog is appropriately enlarged to include \Kondo

excitations" (see section III and appendix III of paper III). This means that the outgoing states can

be written as linear combinations of free-electron states fj"�iog and a new set of Kondo excitation

states fj"�i~og. The corresponding set of creation operators f~cyo"�g are complicated functions (not

mere linear combinations) of the fcyo"0�g and will be constructed explicitly in paper III. Thus, in

the formalism developed below, the unitary transformation in Eq. (16) is implicitly understood

to act in the enlarged Hilbert space of fj"�io; j"�i~og states, and the collective index � implicitly

includes another index a = (f; k) to distinguish free from Kondo states. However, this will only be

made explicit in paper III.
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The reality of I is of course automatically ensured by the hermiticity of the current operator,

and the reminder Re[ ] has been inserted merely for future convenience.

We shall show below that the U��0("; "
0), and hence also the current, are completely

determined by the ~U��0("
0). Unfortunately, Hersh�eld's formalism gives no recipe for �nding

these explicitly for a given problem. Thus, the crucial question now becomes: how does one

calculate the scattering amplitudes?

B. Equating CFT- and scattering-state Green's Functions

In general, �nding the scattering amplitudes is just as di�cult as solving the problem by

other (e.g. Keldysh) methods. However, for V = 0 the even sector of the NTKM is equivalent

to the 2CK model, which AL solved exactly using CFT23{26;10;27;11. (This equivalence is

shown explicitly below, when we rewrite the model in �eld theoretical language, see Eq. (27)

and (28) below.) Therefore, we propose that the scattering states of the NTKM can be

extracted from AL's results. We now explain how this can be done.

One of AL's central results is an explicit and exact expression for the equilibriumGreen's

G��0 = �h � y�0i [de�ned explicitly in Eq. (29)], which gives the amplitude that an incident
�0-electron will emerge from the scattering process as outgoing �-electron. Evidently, it
must contain information about the scattering amplitudes. Indeed, we shall show that when
the same equilibrium Green's function is calculated explicitly using the scattering state
formalism, it is completely determined by ~U��0("

0). Therefore, by equating the scattering-

states form for G��0 to the corresponding CFT result, ~U��0("
0) can be extracted from the

latter.
Of course, this procedure only yields the V = 0 value of ~U��0, whereas to calculate the

nonequilibrium current, we actually need its V 6= 0 values too. Moreover, it is clear that in
general ~U��0 must depend on V , since if V is su�ciently large, it is known to non-trivially

a�ect the many-body physics of the Kondo problem. For example, for V 6= 0, the di�erence
in Fermi energies of the L- and R leads causes the Kondo peak in the density of states to
split69;68 into two separate peaks (at energies � � 1

2
eV , see Fig. 9 of Appendix H, taken

from30). Moreover, the e�ective Hamiltonian in poor-man's scaling approaches depends on
V if it is the largest low-energy cut-o� in the problem (see section II E), and if V is too

large, it will cut of the renormalization group 
ow towards the non-Fermi-liquid �xed point
before non-Fermi-liquid regime is reached.

However, such V -induced e�ects should be negligible for su�ciently small V . For ex-
ample, when V � TK, the splitting of the Kondo peak by eV is negligible compared to its

width, which is / TK. Said in poor-man's scaling language, if (T <)V � TK, then V 6= 0

cuts o� the renormalization group 
ow at a point su�ciently close to the non-Fermi-liquid
�xed point that the physics should still governed by the latter. Hence, we propose that in

the non-Fermi-liquid regime of V � TK, the V -dependence of the scattering amplitudes is
negligible, and hence shall always use their V = 0 values below. (In a sense, the condi-

tion that this procedure be valid can be regarded as our de�nition of the \non-Fermi-liquid

regime".) More formally, we assume that ~U��0 can be expanded in powers of V=TK , and

use only the zeroth term. (In Appendix I, we show that the leading V=TK correction only
produces a subleading correction to the desired scaling function.)

12



The intuitive motivation for neglecting the V -dependence of the scattering amplitudes is

based on the assumption that the e�ect of V 6= 0 can be characterized as follows if V � TK:

although the leads inject electrons into the non-Fermi-liquid state that, since "F , are able

to probe its nature at energies di�erent from "F , they only probe gently, i.e. they inject

su�ciently few that the non-Fermi-liquid state itself is not disrupted. Since the \output" of

this probing, namely the scattering amplitudes, depend non-linearly on ", the current will

depend non-linearly on V , too, even if ~U��0("
0) itself is V -independent.

Another underlying assumption of our proposed strategy is that the strong-coupling or

�xed-point �elds  �(�; ix) occuring in the CFT treatment can be expanded in terms of a set

of fermionic excitations, else it would not make sense to equate a CFT Green's function to

one constructed from scattering states. That this is indeed the case will be shown in paper

III.

IV. EXTRACTING SCATTERING STATES FROM CFT RESULTS

To implement our strategy for �nding ~U��0, the �rst step is to rewrite the NTKM of

section II in �eld theory language by introducing a set of �elds  �(ix). Then we de�ne

the Green's function G��0 = �hT � y�0i, and show that it is completely determined by
~U��0 (which turns out to be its spectral function). Finally, we equate this G��0 to the
corresponding exact CFT result of AL, which allows us to obtain the corresponding exact
expression for ~U��0 explicitly.

A. Transcription to Field Theory

To rewrite the \bare" NTKM introduced in section II in �eld theory language, we intro-
duce for each channel � a 1-dimensional, second-quantized �eld  �(�; ix) (with x 2 [�l; l],
l!1) as a Fourier-integral over all ":10

 �(ix) � 1p
�hvF

Z 1

�1
d" e�i"x=�hvF co"� ; (20)

co"� =
1p
�hvF

lim
l!1

Z l=2

�l=2
dx
2�
ei"x=�hvF �(ix) ; (21)

f �(ix);  y�0(ix)g = 2����0�(x� x0) : (22)

The factors of �h and vF , inserted for dimensional reasons, are henceforth set = 1.

Note that  �(ix) is not the usual electron �eld 	(~x), which is constructed from the actual
(unknown) wave-functions h~xj"�io through 	(~x) � P

�

R
d"h~xj"�ioco"�. Instead,  �(ix) is best

thought of simply as the Fourier transform of co"�, this being a convenient way of rewriting

10Strictly speaking, the
R
d" integrals have to be cut o�,

RD
�Dd", at a bandwidth D satisfy-

ing T; V � D. However, we take D ! 1 (since the errors thus introduced are of order

T=D; V=D � 1 and hence negligible even for �nite D). This allows us to invert relations such

as (20) straightforwardly.
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the problem in �eld-theoretical language. Nevertheless, the role of x is strongly analogous

to that of the \radial" coordinate of the actual wave-function 	"�(~x), and  y�(x) can be

interpreted as the operator that creates an electron with quantum numbers � at \position"

x.

Using Eq. (21), Ho and Hint of Eqs. (2) and (8) can be written as

Ho =
X
��0

Z 1

�1
dx
2�
 y�(ix)i@x �(ix) ; (23)

Hint �
X
��0

 y�(0)V��0 �0(0) : (24)

By simple Fourier transformation, we have hence arrived at a 1+1-dimensional �eld

theory, de�ned by Eqs. (23) and (24). The reason why this (and not a 3+1 dimensional

theory) resulted, is essentially that there is only one continuous quantum number, namely

", in the problem, with respect to which we can Fourier transform. This in turn is a result

of the constriction geometry, which de�nes a de�nite and unique origin, and consequently a

notion of a single \radial" coordinate (in spherical coordinates it is the radius r), to which

our x roughly corresponds. Moreover, the fact that we assumed a constant density of states
and hence a linear dispersion implies that the free �elds are conformally invariant, which is
the key property required for the subsequent application of AL's CFT methods.

The Heisenberg equation of motion,

�@� �(�; ix) = [ �(�; ix);Ho +Hint] = (���0i@x + 2��(x)V��0) �0(ix) : (25)

shows that for all x 6= 0, the �elds depend only on � + ix. [This is the reason for writing
the argument of  � as (ix) in Eq. (20), since the � dependence of  � can then simply be

obtained by analytic continuation (ix! � + ix).] Consequently, by construction, all �elds
are \mathematical left-movers", incident from x = 1 and traveling toward x = �1. The
e�ect of the scattering term Hint is to mix the di�erent incident channels with each other
at x = 0, so that  �(�; ix) will di�er from a free �eld only for x < 0. Thus, we have turned
our problem into a one-dimensional scattering problem, with all free �elds incident from the
right, and all scattered ones outgoing to the left.This is in exact analogy to AL's treatment of

the Kondo problem, which in fact was the motivation for introducing both physical L- and
R-movers as \mathematical left-movers" in Eq. (20). Of course, the distinction between
physical L- and R-movers is carried by the index � = L;R, and L-R backscattering is

described by the � 6= �0 terms in V��0.

B. Transformation to even-odd basis

As mentioned in section IID, the relation between the NTKM and the standard 2CK

model is best understood in the even-odd basis (denoted by bars) of operators �co"�� = N���co"�
[see Eq. (10)]. Therefore, we de�ne even-odd �elds

 ��(ix) = N��� �(ix) ; (26)

normalized according to Eq. (22). In terms of these, Ho and Hint of Eqs. (23) and (24) are:
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Ho =
X
��

Z 1

�1
dx
2�
 
y
��(ix)i@x ��(ix) ; (27)

Hint =
X
������0�i

 
y
�����i(0)

�
vK���e

1
2
~�����0 � ~S

�
 ����0�i(0) : (28)

The odd channel (�� = o) decouples from Hint. In the even channel (�� = e), Ho +Hint is

precisely the \bare" Hamiltonian of the equilibrium 2CK model solved exactly by AL [see

e.g.11, Eq. (2.17)]. Therefore, the even channels will display non-Fermi-liquid behavior for

T; V � TK.

C. De�nition of scattering amplitude ~U��0("
0)

Having rewritten the model in �eld theory language, we can de�ne the equilibrium

Green's function that is to be the link to AL's CFT results:11

G��0(�;�ir; � 0; ir0) � �hT �(�;�ir) y�0(� 0; ir0)i ; with r; r0 > 0 : (29)

Since its arguments correspond to taking x = �r < 0 and x0 = r0 > 0, it gives the amplitude
that an incident �0-electron will emerge from the scattering process as outgoing �-electron.

In order to calculate G��0 in terms of scattering states, we rewrite the �elds  �(�; ix) (in
the original L-R basis) in terms of the c"�'s. Inserting the inverse of Eq. (17) into Eq. (20)
and de�ning

�"0�0(ix; �) �
Z
d"e�i"xU��0("; "

0) ; (30)

we �nd

 �(�; ix) =
X
�0

Z
d"0�"0�0(ix; �)c"0�0(� ) ; (31)

which implies that �"0�0(ix; �) = h �(�; ix)cy"0�0(� )i. Since by its de�nition (20)  y�(�; ix) has
the interpretation of creating an electron with quantum numbers � at x, this shows that
�"0�0(ix; �) may be thought of as the \wave-function" for the scattering states j"0�0i:12 it

gives the amplitude for an electron in state j"0�0i to be found at x with quantum number �.
The orthonormality and completeness of these wave-functions is guaranteed by the unitarity
(18) of U��0("; "

0):

X
~�

Z
d~x
2�
��"�(i~x; ~�)�"0�0(i~x; ~�) = ���0�("� "0) ; (32)

X
~�

Z
d~" ��~"~�(ix; �)�~"~�(ix

0; �0) = 2� ���0�(x� x0) : (33)

11In paper III, this Green's function is denoted by GRL

��0(z
�; z0), following the notation used AL.

12This interpretation of �"0�0(ix; �) as a wave-function is meant as a mnemonic and should not be

taken literally; as mentioned in section II A, the actual wave-functions are intractably complicated.
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Now, because scattering takes place only at x = 0, for x > 0 (i.e. before the scatterer is

encountered) the wave-function �"0�0(ix; �) must correspond to the free wave-function e�i"
0x

of the state j"0�0io. Thus, we make the following Ansatz:13

�"0�0(ix; �) � e�i"
0x
h
~U��0("

0)�(�x) + ���0�(x)
i
: (34)

This relation de�nes the matrix ~U��0("
0), which clearly can be interpreted as a scattering

amplitude, since it speci�es the amplitude for an electron incident with quantum numbers

("0�0) to emerge with quantum numbers ("0�).
The relation between the scattering amplitude ~U��0("

0) and the matrix U��0("; "
0) can be

found by inserting Eq. (34) into the inverse of Eq. (30):

U��0("; "
0) =

Z
dx
2�
ei"x�"0�0(ix; �) (35)

=
1

2�i

"
~U��0("

0)

"� "0 � i�
� ���0

"� "0 + i�

#
(36)

(� > 0 is in�nitessimally small). This shows that U��0("; "
0) is completely known once ~U��0("

0)
is known. The unitarity condition Eq. (18) on U��0("; "

0) then immediately implies unitarity
for ~U��0("

0) (the
R
d~" integral can trivially be done by contour methods):

X
~�

~U�~�("
0) ~Uy

~��0("
0) � ���0 : (37)

The unitarity of ~U�~�("
0) could of course also have been anticipated from Eq. (34): it ensures

that scattering conserves probability, i.e. that
P

� j�"0�0(ix; �)j2 is the same for x > 0 and
x < 0.

The current can be rewritten as follows by inserting Eq. (36) into Eq. (19):

I =
jej
Noh

X
��0�00

Z
d"0
Z
d"00Re

2
4 �

2�i

0
@ ~Uy

�0�("
0) ~U��00("

00)

"0 � "00 � 2i�
� ��0����00

"0 � "00 + 2i�

1
A hcy"0�0c"00�00i

3
5 (38)

=
jej
Noh

X
��0�00

Z
d~"0
Z
d~"00� 1

2

h
~Uy
�0�("

0) ~U��00("
00) + ��0����00

i
�("� "00) hcy"0�0c"00�00i (39)

= jej
h

X
�0�

Z
d"0� 1

2

h
~Uy
�0�("

0) ~U��0("
0) + ��0�

i
f("0; �0) : (40)

To obtain Eq. (38), the
R
d" integral in Eq. (19) was done using contour methods. Eq. (39)

follows since the diagonal nature of hcyo"0�0co"00�00i ensures that Uy
�0�("

0)U��00("
00) is real, so that

we may use Re [(2�i)("0 � "00 � 2i�)]
�1

= �1
2
�("0 � "00). Finally, to obtain Eq. (40), we used

footnote 5. The problem of calculating the current has thus been reduced to that of �nding

the scattering amplitude ~U��0(").

13In writing Eq. (34), we have assumed elastic scattering ("in = "out). For a 2CK model, this

holds only if the impurity energy splitting � = 0, as assumed in this paper, so that electrons

cannot exchange energy with the impurity.
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D. Extracting ~U��0 from the Green's Function G��

Using Eqs. (31), (34) and (15) (with �0 = 0), G��0 of Eq. (29) can be reduced to the form

G��0(�;�ir; � 0; ir0) = �
X
~�~�0

Z
d~" d~"0 ~U�~�(~")�~�0�0 hc~"~�(� )cy~"0~�0(� 0)i e�i(�~"r�~"0r0) (41)

= �
Z
d~" ~U��0(~")

e�~"(��ir�� 0�ir0)

e��~" + 1
: (42)

Its Matsubara-transform is readily found to be

G��0(i!n; r; r
0) =

Z
d"

~U��0(")e
i"(r+r0)

i!n � "
; (43)

This is the central result of this section: G��0 is completely determined by U��0("), which

is proportional to its spectral function. Conversely, by equating G��0 to the corresponding

exact CFT result, ~U��0(") can be extracted from the latter using

~U��0(") =
i
2�
e�i"(r+r

0)
h
G��0("� ��0 + i0+; r; r0)�G��0("� ��0 � i0+; r; r0)

i
: (44)

In the next section section, we cite the CFT results for �G����0 and
~U ����0(") in the e/o basis,

from which G��0 and ~U��0(") can be obtained by

G��0 = Ny
���
�G����0N��0�0 ; ~U��0(") = Ny

���
~U ����0(")N��0�0 : (45)

In appendix G the above formalism is illustrated by a simple example, namely potential
scattering of two species of fermions (i.e. � = 1; 2).

E. Result of CFT calculation for �G����0 and
~U ����0(")

The CFT calculation of �G����0 and
~U ����0(") in the e/o basis, which follows closely the work

of AL, is outlined in section IID of III. For present purposes, it su�ces to consider CFT as

a \black box" that, starting from Eqs. (27) and (28), produces the following results.
~U ����0(") has the form

~U ����0(") = �����0��i�i0

 
U

(e)
0

0 U
(o)

!
����0

; (46)

U
(e)

and U
(o)

are the magnitudes of the scattering amplitudes in the even and odd channels,
respectively. Since the odd channels decouple, U

(o)
= 1, for the even channels, U

(e)
has the

following scaling form (see Eq. (24) in paper III):

U
(e)
("; T ) = �T 1=2~�("=T )ei�e : (47)
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Here ei�e is a trivial phase shift14 that can occur in the Kondo channel if particle-hole

symmetry is broken (see10;sectionIV ), and � is a non-universal constant (called �7 in paper III).
~�(x) is a universal scaling function, whose explicit form was calculated by AL10:

~�(x) =

(
3

2
p
2
(2�)1=22 sin(�=2)

Z 1

0
du

"
u(�ix)=(2�)u�1=2(1 � u)1=2F (u) (48)

� �(2)

�2(3=2)
u�1=2(1� u)�3=2

#)
:

F (u) � F (3=2; 3=2; 1;u) is a hypergeometric function. The
R
du integral can be done numer-

ically for any value of x, thus giving us an explicit expression for the scaling function ~�(x).

The real and imaginary parts of ~�(x) � ~�e(x) + i~�o(x) have the properties

~�e=o(x) = �~�e=o(�x) ; and ~�e(x) < 0 : (49)

V. CALCULATION OF THE CURRENT AND SCALING FUNCTION

We now have all the ingredients for step (S6), the actual calculation of the current, from
which we extract the desired scaling function �(x).

1. Calculation of the current

Using Eq. (45) to express the current I of Eq. (40) in terms of the e/o scattering amplitude
~U ����0(") of Eq. (46), we �nd:

I = jej
h

X
�0

Z
d"0 1

2
[P�0("

0) + �0T�0 ] f("
0; �0) ; (50)

P�0("
0) �

X
�

�
Ny ~U

y
N

�
�0�

�T�

�
Ny ~UN

�
��0

: (51)

Let us now analyze the matrix product of Eq. (51) index by index. All matrices are
diagonal in �; i, hence the sums

P
�i in P�0 are trivial. Next, consider matrix multiplication

in the index �. Using Eq. (11) for N���, we �nd

P�0("
0) = �0Re

�
U
y(o)

("0)U
(e)
("0)

�
: (52)

Note that in spite of the fact that the current operator is diagonal in � [see Eq. (7)], P� turns

out to have o=e cross terms, ~U
y(o)
U

(e)
. This is a direct consequence of the L-R scattering

14We shall assume that the phase shift �e is energy-independent. In general, it can have an

energy-dependence, �e = �
(0)
e + "

"F
�
(1)
e + : : :, but this will be very weak (since "="F ), and only give

rise to subleading corrections in the conductance, i.e. terms of the form (T 3=2="F )�(1)(V=T ).
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matrix v��0 introduced in Eq. (8): it necessitates the L=R-to-e=o basis transformation N���

which produces a current operator that is o�-diagonal in the e=o basis. The presence of o=e

cross terms in P�0("
0) is extremely important, since U

(e)
, describing Kondo scattering in the

even channel, has a T 1=2 contribution, but U
(o)
, describing no scattering at all in the odd

channel, does not. Thus we see that our model contains a T 1=2 contribution to the current,

as observed in experiment (compare property (P6) in paper I).

On the other hand, had we attempted to use a model without L-R scattering, i.e. with

v��0 = ���0 (such as the model studied by Schiller and Hersh�eld29), no L=R-to-e=o basis

transformation would have been needed; then P�0("
0) would be proportional to ~Uy ~U , i.e. to

(T 1=2)2, not T 1=2. Thus, the inclusion of L-R scattering into the model is absolutely essential

to obtain the T 1=2 dependence.

In the above presentation, we glossed over one important subtlety: the scattering matrix
~U��0 must be unitary [see Eq. (37)], but the form given in Eq. (47) manifestly is not (since,

e.g. U
(e)

= 0 for T = 0). This re
ects the so-called \unitarity paradox"10, according to which

the scattering matrix for free fermions o� a 2-channel Kondo impurity into free fermions

is not unitary, which seems to violate the conservation of probability during a scattering

process. The resolution of this paradox22 is that the \missing probability" is scattered into
a sector of Hilbert space that cannot be described in terms of linear combinations of single-
particle fermionic excitations (compare footnote 9) but has a simple representation when

the theory is bosonized. In paper III we shall discuss this issue in more detail, and show
how to incorporate the resulting complications into the present framework. The upshot is
that the expression (52) remains valid.

2. Calculation of scaling function �(v)

We now have gathered all the ingredients to derive the sought-after scaling form for the
current and conductance. Inserting Eq. (52) into Eq. (50) gives

I = jej
h
4
Z
d"0 1

2

n
Re
h
U

(e)
("0)

i
+ 1

o h
fo("

0�eV=2) � fo("
0+eV=2)

i
; (53)

where the factor 4 comes from
P

�0i0 and the sum
P

�0 , written out explicitly, gives the two

terms in the last factor. Now, the conductance can be written in the form15

G =

����� @I@V
����� = 2e2

h

Z
d"0

n
1
2
Re
h
U

(e)
("0)

i
+ 1

2
Re
h
U

(e)
(�"0)

i
+ 1

o
(�@"fo)("0 � eV=2) : (54)

Thus, using Eq. (49) and (47), G reduces to

G = 2 e
2

h

h
1� �
o cos �eT

1=2�(
1eV=T )
i
: (55)

Here we introduced the universal scaling function �(v), which is de�ned as follows in terms
of the even part ~�e of the exactly known function ~� of Eq. (48):

15To see this, use (@"0fo)("
0+ eV=2) = (@"0fo)(�"

0� eV=2) and then change integration variables,

"0 ! �"0 in the second term of Eq. (53). Also recall the sign conventions of footnote 4.
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o�(
1v) � �
Z
dx~�e (x+ v=2) [�@xfo(x)] ; (56)

where v � eV=T , x = "0=T , fo(x) = 1=(ex + 1). The positive constants 
o, 
1 are to be

chosen such that �(v) obeys the normalization conditions [compare Eq. (13) of paper I]:

�(0) � 1 ; �(v) vs. v
1
2 has slope = 1 as v

1
2 !1 ; (57)

and a minus sign has been included in the de�nition (56) of �, since ~� is negative de�nite

[see Eq. (49)].

Thus, we have shown that within the present model, the conductance obeys the scaling

relation16

G(V; T ) = Go +BT 1=2�(
1v) ; (58)

with the universal scaling function �(v), given by Eq. (56), known exactly. It is plotted as

curve 6 in Fig. 6.

Note that this function is the same as that found in Eq. (20) of I (for m = 1 there) by a

back-of-the-envelope calculation. The reason for this agreement is that ~�e(x) also turns out
to determine the bulk scattering rate ��1("; T ) through the relation

�T 1=2~�e("; T ) / 2Im
�
�R("; T )� Im�R("; 0)

�
= �

�
��1("; T )� ��1("; 0)

�
; (59)

where �R("; T ) is the retarded bulk electron self-energy calculated by AL10;eq:(3:50). This a
posteriori justi�es the assumption made in section VIIA 2 of I, namely that the nanocon-
striction conductance will be governed by ��1("; T ).

Note that according to the above calculation and Eq. (58), the slope of the scaling

curve [G(V; T )�G(0; T )]=BT 1=2 seems to be universal, whereas in experiment it is not [see
�gure 11(a) of paper I]. The reason is that in our calculation we assumed that the impurity
sits exactly at the center of the nanoconstriction, where the non-equilibrium between L- and
R-movers is strongest, and hence feels the full e�ect of the applied voltage. However, as
was explained in section III of paper I, an impurity not sitting exactly at the center of the

constriction experiences an e�ective voltage aiV , where the geometrical constant (of order
unity) ai depends on the position of the i-th impurity. When summing over all contributing
impurities, one thus �nds expression Eq. (22) of I, which is simply a sum of terms of the form
(58), evaluated at slightly di�erent voltages, corresponding to di�erent impurity positions

in the nanoconstriction. Our lack of knowledge about the ai's forces us to introduce another

non-universal scaling factor A, and use the scaling form

G(V; T ) = Go +BT 1=2�(Av) ; (60)

16Note that consistency with the sign of the experimental zero-bias anomaly requires that B =

�2e2=h�
o cos�e must be > 0, i.e. � cos�e < 0. This is in agreement with AL10;p: 7309, who

concluded (for the case �e = 0) that � < 0 in the regime where the Kondo coupling constant is

below its critical value, �K < ��K, i.e. if one 
ows towards �
�
K from the weak-coupling regime.
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when comparing theory with experiment below (see Eq. (14) of paper I). When checking in

the next section whether epxerimental (or numerical) data for G(V; T ) obeys this relation,

we shall plot it in maximally normalized form (see section VIIB 3 of paper I), i.e. we shall

plot

G(V; T )�G(0; T )

BT 1=2
vs. (Av)1=2 ; (61)

with A determined by the requirement that the asymptotic slope of the resulting function

be equal to 1 [compare Eq. (57)]. According to Eq. (60), curves with di�erent T should all

collapse onto each other when plotted in this way, and the resulting curve should be identical

to the universal curve �(v)� 1 vs. v1=2.

3. Deviations from Scaling

It should be emphasized that the scaling relation found above is only expected to hold

for T=TK � 1, because it is based on keeping just the leading term in an expansion of G��0

in T=TK. If T=TK is not � 1, subleading powers of (T=TK)
�n, that have been neglected

in the calculation of G��0 will become important. They will give contributions of the form
(T=TK)

�n�1�n(v), which will cause further deviations from scaling.
Though it is possible in principle to calculate the functions �n(v) within our CFT ap-

proach, this would not be meaningful, because each additional subleading term that is added
introduces a further non-universal, unknown constant �n. These constants would all have

to be treated as �tting parameters, leading to more freedom than one would want for a
meaningful comparison of theory and experiment.

VI. FINAL RESULT FOR SCALING CURVE

In this section we compare the CFT prediction of Eq. (56) for the universal scaling
curve �(v) to the experimental scaling curve of Fig. 11(b) of paper I. We also compare
it to the results of Hettler, Kroha and Hersh�eld (HKH)13;30, who used the non-crossing-
approximation (NCA) technique for dealing with the Kondo problem.

A. A Few Words on the NCA Method

In order to understand what HKH did, a few introductory remarks about the NCA

method and a summary of HKH's results are in order here. Some more details (including a

comparison between the CFT and NCA results for the electron self-energy) may be found
in appendix H.

HKH adopt an in�nite-U Anderson Hamiltonian that can be mapped by a Schrie�er-
Wol� transformation onto the NTKM [Eq. (8)] of Eqs. (27) and 28. The two models are

therefore in the same universality class and describe the same low-energy physics.
HKH treat their model with the NCA technique, a self-consistent summation of an in�-

nite set of selected diagrams, which they generalize to V 6= 0 using Keldysh techniques. The

21



NCA method is in a sense an uncontrolled approximation, since there is no small perturba-

tion parameter, but for the 2-channel Kondo problem it turns out31 to give leading critical

exponents for the impurity Green's function Ad(!) in agreement with those obtained from

conformal �eld theory. Hence the NCA method can be regarded as a useful interpolation be-

tween the high-T regime where any perturbative scheme works, and the low-T regime where

it gives the correct exact critical exponents. Moreover, when combined with the Keldysh

technique, it deals with the non-equilibrium aspects of the problem in a more direct way

than our CFT approach, and is able to go beyond the weakly non-equilibrium regime.

Therefore, it is certainly meaningful to compare the NCA results of HKH to ours. CFT

serves as a check on how well the NCA does at V = 0 and very low temperatures, where CFT

is exact and NCA only an uncontrolled approximation. Conversely, if this check con�rms

the reliability of the NCA method in the low-energy regime, the latter can be used as a check

on our use of CFT for V 6= 0 situations, where NCA presumably does the more reliable job.

HKH calculated the conductance G(V; T ) for a series of temperatures, measured in units

of TK, ranging from T=TK = 0:003 to 0.5.Fig. 4(a) shows their results for G(V; T ), plotted

according to Eq. (61) withA = 1 (i.e. without any adjustable parameters). The experimental

data for sample #1 (which has TK ' 8K) are shown for comparison in Fig. 4(b).

The lowest T=TK values in Fig. 4(a) show good scaling, in accord with the CFT predic-
tion. However, for larger T -values, marked deviations from scaling occur, just as seen in the
experimental curves of Fig. 4(b). It is one of the strengths of the NCA method that devi-
ations from scaling are automatically obtained, without the need for making a systematic

expansion in powers of T=TK and V=TK.
The striking qualitative similarity between the two sets of curves in Fig. 4 can be made

quantitative by using TK as a �tting parameter: the choice of TK determines which curves in
Fig. 4(a) and (b) are to be associated with each other. Choosing TK = 8K for sample 1, HKH
are able to get \quite good"13 simultaneous agreement between a signi�cant number of the
individual experimental data curves and their NCA curves of corresponding temperature.

This is illustrated in Fig. 530 for 3 curves from sample # 1. In other words, by using a single
�tting parameter, TK, HKH can obtain good quantitative agreement between the NCA and
experimental conductance curves for a whole set of curves.

B. Comparison of CFT and NCA Results with Experimental Scaling Curve

Let us denote the result of plotting a given NCA numerical G(V; T ) curve in the maxi-

mally normalized form of Eq. (61) by �(v; T )� 1. Fig. 4(a) shows that for su�ciently small
T , the �T (v; T )� 1 curves for di�erent T all overlap, i.e. the NCA results show good scaling

as T ! 0, in agreement with the CFT prediction. The �(v; T ) curve with the smallest T
calculated by HKH, namely T=TK = 0:003, is the most likely to agree with the CFT result

for �(v), since for this curve the T=TK deviations from perfect scaling, which are neglected
in the CFT calculation, are smallest.

In Fig. 6 we show the three experimental scaling curves of Fig. 11 of paper I (curves

1-3), the CFT prediction for �(v) � 1 from Eq. (56) (curve 4), and the NCA result for

�(v; T ) � 1, for T=TK = 0:003 (curve 5) and T=TK = 0:08 (curve 6). All these curves

have been rescaled into the \maximally normalized form" of Eq. (57). We see that there
is rather good agreement between the CFT curve and the T=TK = 0:003 NCA result. The

22



experimental scaling curves agree with neither of these, but agree remarkably well with the

T=TK = 0:08 NCA curve.

To make these statements quantitative, we compare the values for the universal constant

�1, de�ned as follows from the asymptotic large-v expansion of �(v)� 1 [compare Eq. (27)

of paper I]:

�(v)� 1 � v1=2 + �1 +O(v�1=2) : (62)

�1 is the y-intercept of the asymptotic slope of the curve �(v) � 1 vs. v1=2, extrapolated

back to v = 0. It measures \how soon the scaling curve bends up" towards linear behavior,

and is the single parameter that most strongly characterizes the scaling function (which is

otherwise rather featureless). We �nd the following values for �1:

�CFT

1 = �1:14� 0:10 ; �NCA

1 (T=TK = 0:003) = �1:12� 0:10 ;

�EXP

1 = �0:75� 0:16 ; �NCA

1 (T=TK = 0:08) = �0:74� 0:10 :
(63)

Hence, the CFT and NCA calculations for T=TK = 0:003 agree rather well, which inspires

con�dence in the general reliability of the NCA method at very low energies.

The agreement between the experimental curves and the T=TK = 0:08 NCA curve could
actually have been anticipated, for the following reason: HKH determined their (only)
�tting parameter TK by choosing the value (namely TK = 8 K) that produces the best

agreement between the few lowest -T curves in their set of calculated G(V; T ) curves and the
corresponding experimental ones. Thus, the very lowest T -curve in the experiment (with
T = 0:6K) is well-reproduced by the corresponding NCA curve (with T=TK = 0:08) because
TK was speci�cally chosen to produce this agreement.17

It is somewhat surprising, though, that the di�erence between the T=TK = 0:003 and

T=TK = 0:08 NCA curves is so large. Perfect scaling would require all the various �T (v)
curves for di�erent T to overlap, and the fact that they do not shows that the deviations
from perfect scaling which are expected to develop as T=TK grows are already signi�cant at
values as small as T=TK = 0:08.

Thus, as �rst pointed out by HKH, the NCA results imply that the T=TK corrections to

the universal scaling curve that were neglected in the CFT calculation (see section V 3) are
in fact not negligible in the present experiment: T is still large enough that they matter, and
the experimental scaling curve is not the truly universal one. This conclusion explains why
the CFT and experimental scaling curves don't agree; it also suggests that if the experiments
were repeated at lower temperatures, better agreement might be achievable.

One might ask whether our conclusion that deviations from scaling are important are not

in con
ict with the claims in paper I [property (P6)] that the experimental curves show good

scaling. The answer is that while the experimental curves do scale well, they do not scale
quite well enough to reproduce \perfect" scaling. Perfect scaling requires that the curves

overlap completely when plotted in maximally normalized form (as in �gure 6), a procedure
that involves rescaling the x-axis by a constant A to make the slope = 1. This procedure

17The NCA calculations achieved more, though, than merely �tting one curve with one parameter,

because they succeeded in reproducing quite well a whole set of curves (see end of section VIA).
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is clearly very sensitive: even curves that seem to collapse well onto the same scaling curve

when not maximally normalized [as those in Fig. 4(b), or Fig. 8(b) of paper I], can show

slight di�erences in slope in the regime of largish v when they begin to bend away from the

ideal scaling curve (note that some uncertainty is involved in determining this slope, since

the curves are not perfectly linear in this regime). When being brought into maximally

normalized form, these curves will have their x-axes rescaled by di�erent amounts to make

all the slopes equal to 1 (the exact amount of rescaling needed being subject to the same

uncertainty as the slope), and can by this rescaling be su�ciently deformed that they do

not collapse onto each other any more. This is vividly illustrated by the observation that

the T=TK = 0:003 and 0.08 NCA curves, that in fact seem to overlap rather well in the non-

maximally normalized form of �gure 4(a), di�er so markedly in the maximally normalized

form of �gure 6.

In short, maximal normalization is very e�cient in revealing small deviations from per-

fect scaling, which is why the experimental data, which scales well when not maximally

normalized, does not scale so well under maximal normalization.

One might be tempted to compare the CFT curve with experiment in non-maximally

normalized form, where deviations from scaling do not reveal themselves so glaringly. How-

ever, this would not be meaningful, because the slope of the CFT scaling �(v) curve is
universal, whereas those of the experimental scaling curves are not (see �gure 11(a) and the
last paragraph of section V 2). The only meaningful comparison between CFT and experi-
ment is in a form in which the non-universality of the experimental slopes has been rescaled

away, i.e. the maximally normalized form.
From a theorist's point of view, the conclusion that the experimental scaling curve is

not the universal one and that non-universal T=TK corrections play a role is somewhat
disappointing, since for a system about whose microscopic nature so little is known, the
quantities that allow the most compelling comparison between theory and experiment are
universal quantities, which are independent of the unknown details. However, disappointing

or not, this is the message of Fig. 6.
Nevertheless, the good agreement between the CFT and NCA scaling curves, which con-

�rms the reliability of the NCA method, combined with the good quantitative agreement
between the NCA and the experimental conductance curves when TK is used as �tting pa-
rameter, allows the main conclusion of this paper:

The 2-channel Kondo model is in quantitative agreement with the experimental scaling
G(V; T ) data.

VII. SUMMARY AND CONCLUSIONS

The calculation of this paper was inspired by experiments of Ralph and Buhrman on

ZBAs in quenched Cu nanoconstrictions (reviewed in paper I), which are qualitatively in
accord with the assumption that the anomalies are caused by two-level systems in the

constriction that interact with electrons according to Zawadowski's non-magnetic Kondo

model, which is believed to renormalize, at su�ciently low temperatures, to the 2CK model.

To obtain a quantitative test of this interpretation of the experiment, we performed a

calculation of the non-linear conductance G(V; T ) of a nanoconstriction containing 2-channel
Kondo impurities, in the weakly non-equilibrium regime (weakly non-equilibrium regime)
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of V; T � TK, and extracted from it a certain universal scaling function �(v), which we

compare with experimental scaling function.

To model the experimental situation, we introduced a generalization of the bulk 2CK

model, namely the naconstriction 2-channel Kondo model (NTKM), which keeps track of

which lead (left or right) an electron comes from and is scattered into.

The main conceptual challenge in the calculation of G(V; T ) was how to deal with the

non-equilibrium aspects of the problem. On the one hand, standard perturbative Keldysh

approaches do not work for T � TK, where perturbation theory breaks down for the Kondo

problem. On the other hand, A�eck and Ludwig's conformal �eld theory solution (CFT)

of the 2CK problem was worked out only for an equilibrium electron system.

Therefore we proposed a conceptually new strategy (outlined in section III, the heart of

this paper) which combines ideas from CFT with the Hersh�eld's Y -operator formalution

of non-equilibrium problems: Hersh�eld showed that the calculation of non-equilbirium

expectation values becomes simple when they are expressed in terms of the scattering states

of the problem. We expressed these in terms of certain scattering amplitudes ~U��0 , which we

extracted from an equilibrium two-point function G��0 = �hT � y�0i that is exactly known

from CFT. (This procedure only gives their V = 0 values, but we proposed that in the

non-Fermi-liquid regime the corrections of order V=TK are negligible.) Once the ~U��0 were

known, the calculation of the current was straightforward.
In the present paper, we implemented all parts of this strategy, except that which requires

a detailed knowledge of CFT, namely the calculation of G��0 . This is discussed in detail in
paper III.

Our result for the scaling curve �(v) does not agree with the experimentally measured
scaling function, because terms of order T=TK that are neglected in our calculation are

apparently not su�ciently small in the experiment; however, when our results are combined
with the numerical results of Hettler, Kroha and Hersh�eld13 (which implicitly do include
the neglected terms), quantitative agreement of the 2CK calculations with the experimental
results is achieved (see section VIB).

Thus we are able to conclude that the NTKM is in quantitative agreement with the

experimental scaling data. This lends further support to the 2CK interpretation of RB's
experiments, and the associated conclusion that they have indeed observed non-Fermi-liquid
behavior.

However, the theoretical justi�cation for assuming that the non-magnetic Kondo model
will under renormalization 
ow into su�ciently close proximity of the non-Fermi-liquid �xed

point of the 2CK model has recently been called into question. There are unresolved theoret-
ical concerns12;15, summarized in Appendix D, whether a realistic TLS-electron system will

ever 
ow su�ciently close to this �xed point to exhibit the associated non-Fermi-liquid be-

havior, because of the inevitable presence of various relevant perturbations that can prevent
the 
ow towards this �xed point.

Therefore, not all questions regarding the Ralph-Buhrman experiments have been re-
solved to everyone's satisfaction. In our opinion, the outstanding question that remains

is: why does the 2CK interpretation of this experiment seem to work so well despite the
concerns about the theoretical justi�cation for assuming proximity to the 2CK model's non-

Fermi-liquid �xed point? In view of the fact that at present no alternative explanation for
the experiment is known that is in agreement with all experimental facts, we believe that
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the question of the 
ow towards and stability of the non-Fermi-liquid �xed point of the

non-magnetic Kondo problem is worthy of further theoretical investigation.
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APPENDIX A: SEMICLASSICAL DESCRIPTION OF NON-EQUILIBRIUM

TRANSPORT

In order to motivate the form of the free density matrix �o introduced in section IIB, we

recall in is appendix some standard results from the semi-classical theory of non-equilibrium

transport through a ballistic nanoconstriction. Usually, this is described using a semi-

classical Boltzmann formalism to calculate the semi-classical electron distribution function

f~k(~r) and the electrostatic potential energy e�(~r). This was �rst worked out in32;33; a very

careful treatment may be found in34, which is well-reviewed in20. A more up-to-date review
is35.

In the semi-classical strategy, one �rst calculates f
(0)
~k
(~r) and e�(0)(~r), the distribution

function and electrostatic potential in the absence of any electron scattering mechanism,
and thereupon uses these functions to calculate the backscattering current due to electrons

that are backscattered while attempting to traverse the hole. The results for f
(0)
~k

(~r) and

e�(0)(~r) are standard and shown in Figs. 2 and 3.18 Fig. 2 is a position-momentum space

hybrid, showing f
(0)
~k
(~r) at T = 0, with its ~k-space origin drawn at the position ~r to which it

corresponds. One can understand Fig. 2(a) almost without calculation, simply by realizing
that in the absence of collisions, electrons will maintain a constant total energy E~k. Thus,
an electron that is injected from z = �1 in the R=L lead with total energy E~k

(z = �1) =
"~k � eV=2 and traverses the hole, will experience a change in its potential energy from

e�(�1) = �eV=2 to e�(�1) = �eV=2 and hence accelerate or decelerate in such a way
that E~k(~r) = "~k + e�(~r) remains constant.

The key feature of Fig. 2 is that the distribution of occupied electron states in momentum
space, at any point ~r in the vicinity of a ballistic constriction, is highly anisotropic and
consists of two sectors, to be denoted by L and R. The L=R sector contains the momenta

of all electrons that are incident as L=R-movers, i.e. originate from the �V=2 or R=L side
of the device, and have reached ~r along ballistic straight-line paths, including paths that

traverse the hole (the bending of paths due to the electric �eld is of order eV="F and hence

negligible). At a given point ~r, the momentum states in the L=R sectors are �lled up to a

maximum energy of
�
E~k(~r)

�
F
which, because of energy conservation along trajectories, is

18Our �gures and arguments are given for the case eV > 0. We take e = �jej and hence V = �jV j.

With ��eV=2 for R=L leads, there then is a net 
ow of electrons from right to left, and the current

to the right is positive.
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equal to � � eV=2, the Fermi energy at z = �1 from where the electrons where injected.

Thus, for ~k in the L=R sector, one �nds

f
(0)
~k2L=R(~r) = fo

�
E~k

(~r)�
�
E~k

(~r)
�
f

�
= fo

h
"~k �

�
� � eV=2 � e�(0)(~r)

�i
: (A1)

Fig. 3 shows that e�(0)(~r) changes smoothly from �eV=2 to +eV=2 (the change occurs

within a few constriction radii a from the hole). It is worth emphasizing, though, that the

electrostatic potential energy e�(~r) plays only an indirect role when it comes to calculating

low-energy (i.e. T="F ; V="F � 1) transport properties. The reason is simply that the only

role of e�(~r) is to de�ne the bottom of the conduction band, hence causing acceleration and

deceleration of electrons to maintain E~k(~r) = constant. Low-energy transport properties,

however, are determined by what happens at the top of the conduction band, in particular

by the sharply anisotropic features characterizing Fig. 2 and Eq. (A1).19

The above considerations suggest that the essence of the non-equilibrium nature of the

problem will be captured correctly if we adopt the following simpli�ed picture: ignore the

spatial variation of the electrostatic potential e�(~r) altogether, and simply consider two

leads (R=L) with chemical potentials (measured relative to the equilibrium �) �� = � 1
2
eV ,

which inject L=R-moving ballistic electrons into each other (recall that � = (+;�) for
(L;R)-movers). The two leads are assumed in�nitely large and hence \independent and
unperturbed", in the sense that their thermal distribution properties are not perturbed

when a small number of electrons are transferred from one to the other. This simpli�ed
picture is the basis for the Ansatz (4) for the free density matrix �o in section IIB.

APPENDIX B: THE BULK NON-MAGNETIC KONDO MODEL

In this appendix we recall some basic properties of Zawadowksi's non-magnetic (or or-
bital) Kondo model for the interaction of a TLS with conduction electrons in a bulk metal.
Thus, this appendix provides the background material that was assumed known when we
introduced the introduction of the nanoconstriction two-channel Kondo model in section II.

Zawadowski proposed his model in Ref.8, subsequently developed it with his coworkers
in Refs.36;9;37{39, and rather recently, together with Zar�and, introduced some important
re�nements40{43. Brief, lengthy and exhaustive reviews may be found in16,44 and45, respec-
tively.

19This is illustrated, for example, in the calculation of the Sharvin formula for the conductance

Go of the a circular constriction (radius a) in the absence of scattering20:

Io =

Z
hole

dxdy
2e

Vol

X
~p

(v~p)zf~p(x; y; z = 0) = a2e2m"F =(2��h
3)jV j : (A2)

It depends on the electrostatic potential only through e�(x; y; z = 0) = 0, and it is easy to verify

that the V -dependence arises solely from the L=R anisotropy of f~p(x; y; z = 0).
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1. Zawadowski's Bulk Bare Model

Consider a tunneling center (TC) in a bulk smetal, i.e. an atom or group of atoms that

can hop between two di�erent positions inside the metal, modelled by a double-well potential

[see Fig. 1, and Fig. 6 of I]. At low enough temperatures and if the barrier is su�ciently

high, hopping over the barrier through thermal activation becomes negligible. However, if

the separation between the wells is su�ciently small, the atom can still move between them

by tunneling.

If the tunneling is slow (hopping rates45 ��1 < 108s�1), the atom is coupled only to the

density 
uctuations of the electron sea, which can be described by a bosonic heat bath46;47.

The tunneling is then mainly incoherent, and the only e�ect of the electron bath is to

\screen" the tunneling center: an electron screening cloud builds up around the center and

moves adiabatically with it, which leads to a reduced tunneling rate due to the non-perfect

overlap of the two screening clouds corresponding to the two positions of the tunneling

center.

In this paper we are interested only in the case where the tunneling is fast (at rates45

108s�1 < ��1 < 1012s�1), in which case the tunneling center is usually called a two-level

system (TLS) [though in this appendix and the next we shall continue to call it a tunneling
center, because in general more than two states can be associated with it, see Eq. (B2)]. Then
the energy corresponding to the tunneling rate, determined by the uncertainty principle, is
in the range 1 mK to 10 K. (If the tunneling is \ultra-fast" (��1 > 1012s�1), the energy
splitting E2 � E1 between the lowest two eigenstates due to tunneling becomes too large

(> 10K) and the interesting dynamics is frozen out.) Moreover, the TLS-electron coupling is
assumed strong enough that in addition to screening, an electron scattering o� the tunneling
center can directly induce transitions between the wells: it can either induce direct tunneling
through the barrier (electron-assisted tunneling), or excite the atom to an excited state in
one well, from where it can decay across to the other well (electron-assisted hopping over

the barrier).
To describe such a system, Zawadowski introduced the following model. The Hamiltonian

is the sum of three terms:

H = HTC +Hel +Hint : (B1)

The �rst term describes the motion of the tunneling center the double well, in the absence

of electrons [see Fig. 1, and Fig. 6 of I]:

HTC =
X
a

Eab
y
aba : (B2)

This problem is considered to be already solved: the energies Ea (E1 < E2 < : : :) are the
exact eigenenergies of the exact eigenstates j	ai = byaj0i of the tunneling center, with corre-

sponding wave-functions 'a(~R). The spectrum will contain two nearly-degenerate energies
E1 and E2, split by an amount E2�E1, corresponding to even and odd linear combinations

of the lowest-lying eigenstates of each separate well; the remaining energies, collectively de-
noted by Eex, correspond to more highly excited states in the well, with Eex � E2 typically

on the order of the Debye temperature of the metal, i.e. several hundred Kelvin.
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The tunneling center-electron interaction is described by a pseudo-potential V (~R � ~r),

which describes the change in energy of the tunneling center at position ~R due to the presence

of an electron at position ~r, and is assumed to depend only on the relative coordinate ~r� ~R:

Hint =
X
i

Z
d3~r	

y
i (~r)	i(~r)V (~r � ~R)

Z
d~R

X
aa0

bya'
�
a(
~R)ba0'a0(~R) ; (B3)

where 	i(~x) = (Vol)�1=2
P

~p e
i~p�~xco~pi : Here c

y
o~pi creates a free electron (hence the subscript

o) with momentum ~p (= pp̂), energy "p (assumed independent of the direction p̂ or 
p̂ of

~p) and Pauli spin i ="; # (we use the index i because this will turn out to be the channel

index). Terms in Eq. (B3) with a 6= a0 correspond to transitions between eigenstates of the

tunneling center induced by the scattering of an electron.

Now, let fF�(p̂)g be any complete set of orthogonal functions of p̂ (e.g. F�(p̂) =p
4�Ylm(p̂), but in principle any set of orthogonal angular functions can be used), labelled

by a discrete index � and satisfying

X
�

F �
�(p̂)F�(p̂

0) = 4��(p̂� p̂0) ;
Z
d
p̂

4�
F �
�(p̂)F�0(p̂) = ���0 : (B4)

Then the electrons' continuous direction index p̂ can be traded for the discrete index � by
making a unitary transformation (No is the density of states per spin at "F ):

co"�i = N1=2
o

Z
d
p̂

4�
F �
�(p̂)co~pi ; co~pi = N�1=2

o

X
�

F�(p̂)co"�i ; (B5)

The new set of operators fco"�ig are labelled by the continuous energy index " (= "p) and
the discrete index �, to be called the conduction electron pseudo-spin index, for reasons that

will become clear below.
In the new basis, the electrons kinetic energy and interaction with the tunneling center

can be written in the following form:

Ho =
Z D

�D
d"
X
�

" c
y
o"�ico"�i ; (B6)

Hint =
X
��0

X
aa0

Z D

�D
d"

Z D

�D
d"0 vaa

0

��0c
y
o"�ico"0�0ib

y
aba0 : (B7)

For simplicity, the standard assumptions were made that electron energies lie within a band

of width 2D, symmetric about "F , with constant density of states No per �; i species, and
that the energy dependence of the coupling constants vaa

0

��0 can be neglected. (These as-
sumptions are justi�ed by the fact that the Kondo physics to be studied below is dominated

by excitations close to the Fermi surface.) The vaa
0

��0 are volume-independent, dimension-

less constants (typically of order 0.1 or smaller), whose exact values are determined by the

potential V (~r � ~R) and the tunneling center eigenstates 'a(~R).

Written in this form, the interaction has the form of a generalized, anisotropic Kondo
interaction: a and � can be regarded as impurity- and electron pseudo-spoin indices (since �

takes on in�nitely many values, the electrons have an in�nitely large pseudo-spin), and the
interaction describes electron-induced \spin-
ip" transitions of the impurity. Note, however,
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that because the nature of the interaction is non-magnetic (to which fact the model owes

its name), the interaction is diagonal in the Pauli spin index i = ("; #). Thus we have

two identical channels of conduction electrons, the fcyo"�"g- and the fcyo"�#g operators, and
accordingly i is called the channel index.

2. The Renormalized Bulk Model

The formal similarity of the interaction of Eq. (B7) with the Kondo interaction implies

that here too perturbation theory will fail at temperatures below a characteristic Kondo

temperature TK, leading to complicated many-body physics as T ! 0 and a strongly corre-

lated ground state. Perturbation theory fails for T < TK because the e�ective (T -dependent)

coupling constants vaa
0

��0 grow as T decreases, and eventually become too large (see Fig. 8 in

Appendix C). The way in which this happens was studied in great detail by Zawadowski

and co-workers. Using Anderson's poor man's scaling technique to analyse the renormal-

ization group evolution of the bare model, they concluded that the renormalized model to

which it 
ows as the temperature is lowered is48 the isotropic two-channel Kondo model (see

Eq. (B10) below). Below we brie
y give the starting point and �nal result of their poor
man's scaling analysis. A summary of the intermediate steps and main assumptions made
along the way can be found in Appendix C.

The interaction vertex, calculated to second order in perturbation theory, is given by the
following expression:

�aa
0

"�"0�0 = vaa
0

��0 +
X
b�

Z D

�D
d�" �

"
vab��v

ba0

��0
1 � f�(�")

"0+Ea0 � (�"+Eb)
� vab��0v

ba0

��

f�(�")

"0+Ea0 � (��"+"0+"+Eb)

#
(B8)

' vaa
0

��0 +
X
b�

ln [maxfEa0; Eb; T; "; "
0g=D]

h
vab��v

ba0

��0 � vba
0

��v
ab
��0

i
; (B9)

To obtain the second line, only the logarithmic terms were retained.
Note the occurence of the \commutator"

h
vab��v

ba0

��0 � vba
0

��v
ab
��0

i
; the fact that this is in

general non-zero, due to the non-trivial angular dependence of the coupling constants, is

crucial for the presence of logarithmic corrections (and is the reason why this model is
sometimes called a non-commutative model).

Now Anderson's poor man's scaling RG49 is implemented: one changes the bandwidth

from D to a slightly smaller D0, and compensates this change by introducing new coupling
constants that depend on x = lnD=D0, namely v = v(x), with the x-dependence chosen

such that �aa
0

��0 remains invariant. The procedure is repeated successively until D0 reaches
Emax = maxfEa0; Eb; T; "; "

0g, at which point the RG 
ow is cut o�, and the resulting

renormalized model, with coupling constants v(ln(D=Emax)), has to be analyzed anew.

The upshot of a lengthy analysis (summarized in Appendix C) is the following: All but
the lowest two of the excited states of the tunneling center decouple from the interaction,
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which eventually involves an impurity with e�ectively only two states,20 a = 1; 2 (i.e. a TLS

with an e�ective pseudo-spin Simp = 1=2), with a renormalized splitting E2 � E1 � � and

Hamiltonian Htunnelingcenter =
P

a;a0=1;2 b
y
a(

1
2
��za;a0)ba0. Likewise, for the conduction electrons

all but two of the pseudo-spin degrees of freedom, which we label by � = 1; 2, decouple

from the interaction. These two \surviving" channels, cyo"1i and c
y
o"2i, are in general two

complicated linear combinations of the initial cyo"�i's. They represent those two angular

degrees of freedom that initially were coupled most strongly to the impurity and for which

the couplings hence grow faster under the renormalization group than those of all other

channels (which hence e�ectively decouple). Furthermore, the resulting e�ective interaction

is spin-isotropic (spin-anisotropy can be shown to be an irrelevant perturbation26), so that

the e�ective interaction can be written in the form [see Eq. (C15)]:

Hint =
Z
d"

Z
d"0

X
��0=1;2

X
aa0=1;2

X
i=";#

vK
�
c
y
o"�i

1
2
~���0co"0�0i

�
�
�
bya

1
2
~�aa0ba0

�
: (B10)

Here vK is the magnitude of the e�ective tunneling center-electron coupling (and

estimated42;Table1 to be of order vK ' 0:1 � 0:2). Thus, the e�ective Hamiltonian21 has ex-

actly the form of the isotropic, magnetic 2CK problem, with impurity pseudo-spin Simp = 1=2

(a = 1; 2), electron pseudo-spin sel = 1=2 (� = 1;2), and the Pauli spin i ="; # as channel
index.

When the temperature is lowered even further, then, provided that � = 0, this model

ows towards a non-trivial, non-Fermi-liquid �xed point at T = 0, at which the system
shows non-Fermi-liquid behavior10;11. However, � is a relevant perturbation (with scaling
dimension �1

2
, see section VIIC of I). This means that if � 6= 0, the 
ow towards the non-

Fermi-liquid �xed point will be cut o� when T becomes smaller than �2=TK, after which
the 
ow will be towards a di�erent, Fermi-liquid �xed point that corresponds to potential
scattering o� a static impurity. In subsequent sections we shall always adopt assumption
(A2) of paper I (for reasons explained in section VIIC of paper I) namely that � is su�ciently
small relative to T (��

p
TTK) that the physics is governed by the non-Fermi-liquid �xed

point, and that the departure of the 
ow from the latter towards the Fermi-liquid �xed point
has not yet started.

It is tempting to propose for the e�ective Hamiltonian of Eq. (B10) the following physical
interpretation (which is given in this form by Moustakas and Fisher15, and can be viewed as
complimentary to Zawadowski's picture of electron-induced tunneling). A charged impurity

in a metal will be screened by a screening cloud of electrons, which can be thought of as

part of the \dressed" impurity. If the impurity is a two-state system, it will drag along its
tightly bound screening cloud as it tunnels between the wells. In doing so, it will redistribute

20The two states are considered here in the energy representation, i.e. their wavefunctions are

'1;2 =
1p
2
('r�'l) in terms of the wavefunctions 'r or 'l describing the tunneling center localized

mainly in the r or l wells.

21Of course, the 
ow toward the isotropic 2CK model only happens provided that all relevant

perturbations that would drive the system away from this �xed point are su�ciently small { this

implicit assumption will be critically discussed in Appendix D.
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the low-energy excitations near the Fermi surface. In particular, it will likely interact most

strongly with two spherical waves of low-energy electrons, \centered" on the two impurity

positions in the left and right wells9;p:1575, with which one can associated a pseudo-spin index

� = L;R. Now, when the impurity and its screening cloud tunnels from the left to the right

well, low-energy electrons around the right well will move in the opposite direction to the

left well, to compensate the movement of electronic charge bound up in the screening cloud,

and thereby to decrease the orthogonality between the pre- and post-hop con�gurations.

Thus, a 
ip in the impurity pseudo-spin is always accompanied by a 
ip in electron pseudo-

spin, as in Eq. (B10). In two very recent papers15, Moustakas and Fisher have used this

interpretation as a starting point for a related but not quite equivalent description of the

tunneling center-electron system15.

APPENDIX C: POOR MAN'S SCALING ANALYSIS OF BULK

NON-MAGNETIC KONDO MODEL

In this appendix, we summarize, following the recent papers by Zar�and and

Zawadowski41;42 and Zar�and43;50, the poor man's scaling arguments that suggest that the
bare, equilibrium non-magnetic Kondo model of Eq. (B3) renormalizes to the isotropic 2-
channel Kondo model Eq. (B10). It should be mentioned at the outset, though, that the
ensuing analysis has a somewhat heuristic character, since it employs scaling equations de-
rived in the weak-coupling limit, based on perturbation theory in the coupling constants.

Since such scaling equations cease to be strictly valid as soon as one scales into strong-
coupling regions of parameter space, by such an analysis the conclusion that the bare model

ows towards the 2CK model can at best be made plausible, and never be proven conclu-
sively. In fact, this conclusion has recently been called into question12;15, on the basis of
theoretical considerations (controversial themselves17), that are discussed in Appendix D.

1. Hamiltonian and Initial Parameters

The starting point is the Hamiltonian introduced and motivated in Appendix B, written

in the form of Eqs. (B2), (B6) and (B7). Let �b = E2 � E1 be the bare energy di�erence
between the two lowest-lying eigenstates, nearly degenerate eigenstates states of the well.
The remaining energies, Ea, a = 3; 4; : : :, collectively denoted by Eex, correspond to more
highly excited states in the well.

We are interested in the regime where �b � T � Eex � D. Hence we take �b ' 0,

i.e. consider a symmetrical double well with a two-fold degenerate ground state. It is then
convenient to make a change of basis from the exact symmetrical and anti-symmetrical

ground states j	1i and j	2i to the right and left states jri and jli = 1p
2
(j	1i � j	2i).

Note that, since a non-zero bare tunneling matrix element (�0) between the wells always

leads to a splitting E1 � E2 ' �o, by taking �b ' 0 we are also implicitly assuming that

�o � T . This means that direct tunneling events are very unlikely, raising the question of
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whether Kondo-physics will occur at all.22 However, the inclusion of excited states in the

model overcomes this potential problem as follows41;42: a careful estimate of the coupling

constants40 in terms of the overlap integrals (B3) has shown that

jvr;lj ' 10�3jvl;l � vr;rj ; jvl;exj ' jvr;exj ' jvl;l � vr;rj : (C1)

The �rst relation re
ects the fact that direct electron-assisted tunneling, parameterized by

jvr;lj, is proportional to the bare tunneling rate �o and hence very small. However, the

second relation shows that the matrix elements for electron-assisted transitions to excited

states, parametrized by jvl;exj and jvr;exj, are of the same order of magnitude as for the usual

\screening term" jvl;l � vr;rj [this is because the overlap integrals in Eq. (B3) are larger for

'�
ex
'r;(l) than for '�r'l, since the excited state wave-function spreads over both wells (see

Fig. 1)]. Although the amplitudes for such processes are proportional to the factor 1=Eex

(which is small, since Eex is large), Zar�and and Zawadowski showed that such terms also

grow under scaling [see Eq. (C3) below], and eventually lead to a renormalized model which

has su�ciently large e�ective tunneling amplitudes to display Kondo physics.

2. Poor Man's Scaling RG

The interaction vertex, calculated to second order in perturbation theory from to the
diagrams in Fig. 7(a), is given by Eq. (B9):

�aa
0

"�"0�0 = vaa
0

��0 +
X
b�

ln [maxfEa0; Eb; T; "; "
0g=D]

h
vab��v

ba0

��0 � vba
0

��v
ab
��0

i
: (C2)

Now Anderson's poor man's scaling RG49 is implemented (very nicely explained
in45;sections3:2:2): electron or hole excitations with large energy values do not directly par-
ticipate in real physical processes; their only e�ect occurs through virtual excitions of the
low-energy states to intermediate high-energy states. Hence such processes may be taken
into account by introducing renormalized coupling parameters, which sum up all the virtual

processes between a new, slightly smaller cut-o� D0 and the original D. In other words, all
virtual processes between the energies D0 and D are integrated out and their contributions
are incorportated in new, D0-dependent coupling constants. This procedure is repeated for
smaller and smaller D0, until D0 becomes on the order of maxfEc; T; "p0g.

Concretely, this is done by writing v
a;b
��0 = v

a;b
��0(x), where x = ln(D0=D) and the x-

dependence of the coupling constants is determined by the requirement that the interaction

vertex be invariant under poor man's scaling, i.e. @x�
a;b
��0 = 0. By Eq. (C2), this leads to the

following leading-order scaling equation:

22This was a serious limitation of Zawadowski's original model, which did not include excited

states: to give non-trivial many-body physic (i.e. a su�ciently large Kondo energy TK), the bare

tunneling rate �o could not be too small; yet at the same time, the model only 
ows to the

interesting non-Fermi liquid �xed point if E1�E2 � T . This would have required a rather delicate

and perhaps questionable �ne-tuning of parameters. This problem has been overcome by including

excited states in the model41;42, as explained above.
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@xv
a;b(x) =

X
c

�(D0 � Ec)[v
a;c(x); vc;b(x)] ; (C3)

where we have adopted the matrix notation va;b��0 � va;b. [The signi�cance of �(D0 � Ec) is

explained in section C5.] This equation, to be solved with the boundary condition va;b(0) =

(va;b)bare, determines the nature of the RG 
ow away from the weak-coupling limit.

In the following two sections we outline the results obtained by Zawadowski and co-

workers concerning the nature of the �xed point that the Hamiltonian 
ows towards as it

scales out of the weak-coupling region. However, the arguments that are to follow all have a

somewhat heuristic character: since they are based on scaling equations that were derived in

the weak-coupling limit, based on perturbation theory in the coupling constants, in principle

they cease to be strictly valid as soon as one scales into strong-coupling regions of parameter

space. (The only method that gives quantitatively reliable results for the cross-over region

is Wilson's numerical NRG51{53;26;54.) Many of the results obtained below are therefore of

mainly qualitative value, and not expected to be quantitatively accurate.

3. Scaling to 2-D Subspace

Let us for the moment consider the model without any excited tunneling center states,
i.e. with

P
c =

P
r;l (as was done in the �rst papers8;36;9), postponing the more general case

to section C5. In this case, the coupling constants va;b(x) can be expanded in terms of Pauli
matrices in the 2-dimensional space of the tunneling center (in the l-r basis),

v
a;b
��0(x) =

3X
A=0

~vA��0(x)�
A
a;b ; a; b = l; r ; (C4)

where A = (0; 1; 2; 3) = (0; x; y; z) and �0ab � �ab. The v
z term is called the screening term,

and characterizes the di�erence in scattering amplitudes for processes in which an electron
scatters from the atom in the right or left well without inducing a transition to the other
well. The vx and vy terms are called electron-assisted tunneling terms, and describe the
amplitude for processes in which the scattering of an electron induces the tunneling center

to make a transition to the other well. According to Eq. (C1), ~vx ' ~vy � ~vz. If one chooses
the wave-functions of the tunneling center to be real, time-reversal invariance requires ~vy = 0
(see9;(a);eq:(2:11)).

The problem is now formally analogous to a (very anisotropic) magnetic Kondo problem
in which a spin-1

2
impurity is coupled to conduction electrons with very large pseudo-spin

(since � takes on a large number of values). However, Vlad�ar and Zawadowski (VZ) have

shown9;(a);sectionIII:C that (with realistic choices of the initial parameters) the problem al-
ways scales to a 2-dimensional subspace in the electron's �-index, so that the electrons

have pseudo-spin Se =
1
2
(this happens indepedent of the signs of the initial couplings, see

section C4). Their argument goes as follows:
In the notation of Eq. (C4), the scaling equation (C3) takes the form9;p:1573;eq:(3:3)

@vA

@x
= �2i

X
BC

"ABC vBvC : (C5)
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Since ~vx � ~vz and ~vy = 0, Eq. (C5) can be linearized in vx and vy. VZ solved the linearized

equations in a basis in �-space in which ~vz��(0) is diagonal [~v
z
��(0) = ���~v

z
�(0)], and obtained

the following solution9;p:1576;eq:3:17:

~vz��(x) = ���~v
z
�(0) (C6)

~vx��(x) = ~vx��(0) cosh 2x
h
~vz�(0)� ~vz�(0)

i
; (C7)

~vy��(x) = i~vx��(0) sinh 2x
h
~vz�(0)� ~vz�(0)

i
: (C8)

Barring unforeseen degeneracies in the matrix ~vz, this shows that the two elements of ~vz

which produce the largest di�erence j~vz�(0) � ~vz�(0)j will generate the most rapid growth in

the corresponding couplings ~vx��(x) and ~v
y
��(x). In fact, since this growth is exponentially

fast, any couplings with only slightly smaller j~vz�(0) � ~vz�(0)j will grow much slower and

hence decouple. Thus, we conclude that according to the leading-order scaling equations,

the system always renormalizes to a 2-D subspace in which the electrons have pseudo-spin

Se =
1
2
.

The argument just presented is not quite waterproof, though. Firstly, it depends on the

assumption of extreme initial anisotropy in the couplings, and secondly, it is based only
on the leading-order scaling equations. As one scales towards larger couplings, sub-leading
terms in the scaling equations can conceivably become important. Zar�and has investigated

this issue by including next-to-leading-order logarithmic terms [generated by the diagrams
in Fig. 7(b)] in the scaling equations, which turn out to be43;eq:(2:6):

@xv
A = �2i

X
BC

"ABCvBvC � 2Nf

X
B 6=A

h
vATr[(vB)2]� vBTr[vAvB]

i
(C9)

Note that the number of channels, Nf (equal to 2 for the case of interest), shows up here
for the �rst time in the next-to-leading order, since each electron loop [see Fig. 7(b)] carries
a factor Nf . Performing a careful analysis of the stability of the various �xed points that
occur, he concluded that the above-mentioned Se =

1
2
�xed point is the only stable �xed

point in of these equations.

Zar�and and Vlad�ar also investigated the e�ect of the other channels, that don't couple
as strongly as the two dominant ones, near the �xed point50. They produce irrelevant
operators that eventually scale to zero (which is why these channels decouple), but that
can nevertheless in
uence the critical behavior near the �xed point. However, Zar�and and
Vlad�ar found that they have the scale critical exponent as the leading irrelevant operator

in the pure 2CK model, which means that these extra operators don't change the universal
critical behavior, merely some of the corresponding amplitudes.

Since these results are independent of the value of Nf and the number of orbital channels
considered, and Zar�and's analysis is exact in the limitNf !1, he expects his results to also

be valid for Nf = 2. (However, no completely rigorous proof exists yet for this expectation;
in particular, his analysis assumes �b = 0, and the case �b 6= 0 is substantially more

complicated, see9;(b);sectionIII. For another, symmetry-based argument in favor of Se = 1
2
,

see45;section3:3:2(iii).)
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4. The �xed point is Pseudo-Spin Isotropic

Next one shows, following43;sectionIII , that the Se =
1
2
�xed point is actually isotropic in

pseudo-spin space.

The last term in Eq. (C9) can be eliminated from the �xed-point analysis by making a

suitable orthogonal transformation vA ! P
B OABv

B. Therefore, it is su�cient to consider

the �rst two terms on the right-hand side of Eq. (C9). At the �xed point, where @xv
A = 0,

we have

X
BC

"ABCvBvC = iNfvA
X
B 6=A

Tr[(vB)2] : (C10)

Multiplying by vA and taking the trace, one obtains the three relations

iNf�
A(�B +�C) = � ; where fA;B;Cg = fx; y; zg (cyclically) ; (C11)

where we have de�ned �A � Tr[(vA)2] and � � Tr(vAvBvC � vCvBvA). This immediately

implies one of two possibilities: either at least two of the �A's are zero, which is the trivial

(commutative) case without electron-assisted tunneling (vx = vy = 0); or else they are all

equal:

�A = �B = �C = � : (C12)

The latter case is the one of present interest. The conclusion that the couplings are all equal
(i.e. the e�ective Hamiltonian isotropic) was checked numerically by Zar�and43;F ig:4, and is
illustrated in Fig. 8.

What is the matrix structure of the vA's? Introducing the notation JA = 1
2Nf�

vA,

Eqs. (C10) and (C12) imply that the JA satisfy the SU(2) Lie algebra,

[JA; JB] = i"ABCJC ; (C13)

which means that they must be a direct sum of irreducible SU(2) representations:

JA =
nX

�k=1

SA
(k) : (C14)

According to the analysis of Zar�and mentioned in the previous section, only a single subspace
Se =

1
2
in this sum corresponds to a stable �xed point (all the others correspond to unstable

�xed points), in the vicinity of which we can therefore write JA��0 =
1
2
�A��0.

After a rotation in �-space to line up the quantization axis of the pseudospins of the

impurity and the electrons, the e�ective Hamiltonian to which (B3) renormalizes can be

written as:

Hint =
Z
d"

Z
d"0

X
��0=1;2

X
aa0=1;2

X
i=";#

vK
�
c
y
o"�i

1
2
~���0co"0�0i

�
�
�
bya

1
2
~�aa0ba0

�
: (C15)

Here vK is the magnitude of the e�ective tunneling center-electron coupling (and

estimated42;Table1 to be of order vK ' 0:1� 0:2). This is the main result of the RG analysis:

The e�ective Hamiltonian has exactly the form of the isotropic, magnetic 2-channel Kondo
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problem; the two surviving orbital indices � = 1; 2 play the role of pseudo-spin indices and

the Pauli spin indices i ="; # the role of channel indices.

An intuitively appealing interpretation of this model, due to Moustakas and Fisher, is

given in Appendix B, after Eq. (B10).

We conclude this appendix with a number of miscellaneous comments:

The fact that one always scales towards an isotropic e�ective Hamiltonian is rather re-

markable (though in accord with the conformal �eld theory results that show that anisotropy

is an irrelevant perturbation26;eq:(3:17)): the initial extreme anisotropy of the couplings is

dynamically removed, and a SU(2) symmetry emerges that is not present in the original

problem!

Note that the initial signs of the anisotropic coupling constants did not matter in the

above arguments. A more careful argument45;section3:3:2(ii) shows that the 
ow toward this

�xed point indeed occurs irrespective of the initial signs of the coupling constants.

Relevant perturbations: When the initial splitting �b is non-zero, the 2-nd order RG is

considerably more complicated9;(b);sectionIII. The result is that �b gets normalized downward

by about two orders of magnitude9;(b);F ig:3. However, as emphasized in45;section3:4:1(c), the

splitting �b is nevertheless a relevant perturbation: it can be shown to scale downward

much slower than the bandwidth D0, so that �b(D
0)=D0 grows as D0 is lowered.

By analyzing the stability of the �xed point equations against a perturbation that
breaks channel symmetry, it can likewise be shown that channel anisotropy is a relevant
perturbation45;section3:4:1(c).

Kondo temperature: The Kondo temperature is the cross-over temperature at which the
couplings begin to grow rapidly. It can be estimated from an approximate solution of the
second order scaling equation (C9).23 The result found for TK by VZ9;p:1590;eq:(4:11) is

TK = D [vx(0)vz(0)]
1=2

 
vx(0)

4vz(0)

! 1
4vz(0)

: (C16)

Note that the factor [vx(0)vz(0)]1=2 is absent24 if one estimates TK only from the leading-

order scaling equation (C3)9;p:1577;eq:(4:11). Since the bare vx(0) � 1, this factor causes a
substantial suppression of TK (by about two orders of magnitude), if one simply inserts vx(0)
into Eq. (C16), leading to pessimistically small values of TK ' 0:01 � 0:1 K41;42. However,
the inclusion of excited states remedy this problem, in that excited states renormalize vx to
larger values by about two orders of magnitude (see below).

23Since TK is only a statement about the onset of rapid growth of coupling constants, the value

obtained from scaling equations derived by perturbation theory is expected to give approximately

the correct scale even though the scaling equations themselves become invalid when the couplings

become too large51.

24The presence of the prefactor to the exponent in (C16) is of course a well-known feature of

second-order scaling, see e.g.55;eq:(3:47).
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5. The Role of Excited States

Let us now return to the more general problem where the excited states in Eq. (B2) with

energies Eex, are not neglected from the beginning.

The �rst important consequence of including excited states in the model has already

been discussed in section C1: electron-assisted hopping transitions between the two wells

via excited states allow Kondo physics to occur even if the barrier is so large that direct and

electron-assisted tunneling through the barrier is negligible (i.e. �o ' 0). This is good news,

since the energy splitting �b = E1�E2 is limited from below by �o, but simultaneously �b

(being a relevant perturbation) needs to be very small if scaling to the 2-channel �xed point

is to take place.

Secondly, in the presence of excited states, poor man's scaling towards strong-coupling,

based on Eq. (C3), has to proceed in several steps: the excited state j	ci only contributes

as long as the e�ective bandwidth D0 is larger than Ec, as is made explicit by the �(D0�Ec)

in Eq. (C3). As soon as D0 < Ec, the excited state decouples.

Assuming that the presence of excited states does not a�ect the result found in sec-

tion C 3, namely that the e�ective Hamiltonian scales towards a 2-D subspace in which the

electrons have pseudo-spin Se =
1
2
, Zar�and and Zawadowski41;42 have analyzed the successive

freezing out of excited states. They concluded that whenD0 becomes smaller than the small-
est excited-state energy E3, one ends up with a tunneling center of formally precisely the
same nature as the one discussed in sections C 3 and C4, but with renormalized couplings.

The renormalized couplings turn out to be still small, which means that the perturbative

scaling analysis of sections C 3 and C4 still applies; however, vx and vy are renormalized
upward by a factor of up to 50 from their bare values (which were three orders of magni-
tude smaller than vz see Eq. (C1)). This has very important consequences for the Kondo
temperature Eq. (C16), which strongly depends on vx: with realistic choices of parameters
(given in the caption to Fig. 1) the Kondo temperature turns out to be about 2 orders of

magnitude larger with than without excited states in the model, and Kondo temperatures
in the experimentally relevant range of 1 to 3 K were obtained42;tableII .

To summarize: the inclusion of excited states in the model leads to more favorable
estimates of the important parameters �o (can be zero) and TK (larger); but since the
excited states eventually decouple for small enough e�ective band-widths, they do not a�ect
the 
ow toward the 2-channel Kondo �xed point in any essential way.

APPENDIX D: RECENT CRITICISM OF THE 2-CHANNEL KONDO

SCENARIO

Very recently, the claim that Zawadowksi's non-magnetic Kondo problem will renormal-

ize to the non-Fermi-liquid �xed point of the 2-channel Kondo model at su�ciently low
temperatures has been called into question in two separate papers12;15. We ignored the con-

cerns stated there when introducing our NTKM in section II, because there our attitude

was phenomenological and our aim merely to write down a phenomenological Hamiltonian

that accounts for the observed phenomena. However, the question as to whether or not the

bare non-magnetic Kondo model does indeed renormalize toward the non-Fermi-liquid �xed
point 2CK model is an interesting theoretical one in its own right, which, in our view, has
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become all the more relevant in the light of the apparent success of the NTKM in accounting

for all aspects of RB's experimental results. Therefore, we summarize the relevant issues in

this appendix.

1. Large � due to Static Impurities

Wingreen, Altshuler and Meir have recently argued12 that tunneling centers with very

small splittings (� < 1K) can not occur at all in a disordered material if the TLS-electron

coupling has the large values that apply to the over-screened 2-channel Kondo �xed point.

Their argument goes as follows:

If HTC of Eq. (B2) is truncated to the lowest two states and written in the left-right

basis [see Eq. (C4)], it has the following general form: HTC = 1
2

P
A=x;y;z �A�

A, where

�z is the asymmetry energy and �x the spontaneous hopping rate (for the bare system,

time-reversal symmetry enables one to choose �y = 0 by choosing real eigenfunctions,

but under renormalization � 6= 0 can be generated, see below). Hence �A can be be

interpreted as an e�ective local �eld at the TLS site (in the language of the magnetic Kondo

problem, this would be called a local \magnetic �eld"). The energy splitting is of course
� = (�2

x +�2
y +�2

z)
1=2.

Now, WAM pointed out that ordinary elastic scattering of electrons o� other static

defects in the system, which causes Friedel oscillations (wavelength 1=kF ) in the electron
density (see e.g.56), will make a random contribution to �A (not considered in Zawadowski's
theory). The magnitude of this e�ect can be characterized by the typcial �� = h�2i2, i.e.
the average of � over all realizations of disorder.25

WAM estimated �� using simple 2nd-order perturbation theory in the coupling between

the electrons and static impurities, and found26

�� ' "FvK=
q
kF ` : (D1)

Here ` is the mean free path (a measure of the concentration of static impurities), and vK the

e�ective TLS-electron coupling strength in Eq. (B10). Moreover, WAM argue that because
�A has three components, the probability distribution P (�) goes to 0 at � = 0, because
the probability to simultaneously �nd all three components �A = 0 is vanishingly small.

WAM estimated vK ' 0:1 at the 2CK �xed point, by using a Kondo temperature of
about 4K (as cited in6) in the standard formula vK = log(kBTK=�F ) obtained from the

leading-order scaling equations. (This value for vK agrees with the values estimated by

25Actually, ��, the average of � over all realizations of disorder, can considerably overestimate

the typical splitting, because the average can be dominated by a few realizations of disorder that

give rise to very large splittings (e.g. if some static defect is very close to the TLS, so that the

Friedel oscillations have very large amplitudes at the TLS). However, following WAM, we shall

nevertheless refer to �� as the typical splitting.

26Cox has reproduced WAM's result57 by a simple calculation analogous to the one by which one

obtains the RKKY interaction between two magnetic impurities.
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Zar�and and Zawadowski42 for the 2CK �xed point (see caption of Fig. 1). Using l ' 3 nm,

WAM then found a value of � ' 100K (the result is so large because according to Eq. (D1)
�� is proportional to "F ).

Since 100 K is a huge energy scale compared to all other scales of interest, WAM ar-

gued that the 2-channel Kondo physics evoked in paper I to explain the Ralph-Buhrman

experiment would never occur. Instead, they proposed an alternative explanation of the

experiment based on disorder-enhanced electron interactions. The latter suggestion, which

we believe contradicts several experimental facts12;(b), is critically discussed section VA of

paper I. Here we brie
y comment on their estimate of ��, following12;(b) and16.

We believe that WAM are correct in pointing out that static disorder interactiond can

act to increase the energy splitting, �, of the TLS. However, we suggest that �� � 100 K

may be a considerable overestimate, for the following reason.

According to Zar�and and Zawadowski (ZZ)16, WAM's statements are equivalent to as-

suming that �A is renormalized by Hartree-type corrections to the TLS self-energy (see

Fig. 2 of16 for the Feynman diagram): �A(!) =
R
d!���0(!)~v

A
�0�[ln(!=D)]. Here ���0(!) is

the spectral function of the conduction electrons in the presence of impurities and ~vA the

renormalized vertex function of Eq. (C4) [with x = ln(!=D) there; the corresponding bare

vertex function would be ~vA(0)]. WAM's estimate of �� = 100 K is obtained if one simply
uses the unrenormalized diagonal part of the spectral function. However, this is too sim-
plistic, since if the renormalized spectral function is used, �A is reduced signi�cantly41;58

(despite the growth in the couplings ~vA under renormalization). The spontaneous hopping

rates �x;�y, in particular, decrease by as much as three orders of magnitude under renor-
malization (ZZ estimate their �nal typical value to be ��x ' ��y

<
� 1 to 0.1 K16). This

simply re
ects the screening of the TLS by conduction electrons: when tunneling between
the wells, the tunnling center has to drag along its screening clowd, which becomes increas-
ingly di�cult (due to the orthogonality catastrophy) at lower temperatures. In contrast,
the asymmetry term �z is not reduced as much58 (ZZ estimate that after renormalization
��z

>
� 1 K), because of a much larger value of the bare coupling ~vz(0) [' 103~vx(0) ' 103~vy(0),

see Eq. (C1)].
Thus, we believe that the reason for WAM's huge estimate of �� = 100 K is their neglect

of the reduction of �A under scaling. Though ZZ's studies of this reduction were performed
without considering static disorder, disorder should not essentially change matters27 (since

this reduction simply re
ects the well-understood physics of screening). Moreover, because
�x;�y end up being so much smaller than �z, WAM's conclusion that P (0) = 0 for the
distribution of splittings is not persuasive, because the distribtions PA(�A) of the individual

�A are not equivalent, as they assumed.
Note that although ��z

>
� 1 K, implying that also �� >

� 1 K, this is only a statement about

the typical splitting of a typical TLS. In a disordered system, it seems very likely that some
TLSs will exist with a splitting � signi�cantly smaller than the typical ��. In particular,

ZZ's estimate that typically �x;�y are
<
� 0:1 K implies that assumption (A2) of paper I,

27To check this statement, an extra term, including the e�ects of static disorder, should be added

to Zawadowski's Hamiltonian, and then a full RG analysis should be performed to determine self-

consistently how the couplings and the \local �eld" �A, evolve together under renormalization.
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section VID), namely that the nanoconstriction does contain TLS with � < 1 K, does not

seem unreasonable, despite the fact that �� >
� 1 K.

Finally, note that two-state systems with small energy splittings (� < 1K) have been

directly observed in disordered metals in at least two experiments: Graebner et al.59 found a

linear speci�c heat in amorphous superconductors below Tc in the regime 0:1 < T2 K, which

they attributed to two-state systems; and Zimmerman et al. directly observed individual

slow 
uctuators in Bismuth wires60;61, with �s as small as 0.04 K. Though the detailed

properties of these two-state systems may be di�erent than those of fast TLS, this illustrates

that even in systems where the average splitting is expected to be large, the physics can be

sometimes dominated by those two-state systems that have smaller splittings.

The relevance of WAM's calculation to the interpretation of the experiments discussed

in paper I are discussed in section VIC3 of paper I.

2. Another Relevant Operator

The theoretical justi�cation for the non-magnetic Kondo model proposed by Zawadowski

has recently also been questioned by Moustakas and Fisher (MF)15. Reexamining a degen-
erate two-level system interacting with conduction electrons, they argued that the model of
Eqs. (B6) and (B7) used by Zawadowski is incomplete, because it neglects certain subleading
terms in the TLS-electron interaction that have the same symmetries as the leading terms.
MF showed that when combined in certain ways, they generate an extra relevant operator,

not present in Zawadowski's analysis, which in general prevents the system from 
owing to
the T = 0 �xed point. Therefore, unless a �ne-tuning of parameters miraculously causes
this relevant operator to vanish, it will eventually always become large, and the system will
never reach the T = 0 �xed point.

Zawadowski et al.17 have recently investigated the nature of this new relevant term. Pre-

liminary investigations suggest that it arises due to the breaking of particle-hole symmetry.
They estimate that before renormalization, its prefactor in the bare model is smaller than
the e�ective Kondo coupling at the �xed point by a factor of 10�6, and still by 10�3 after
poor man's scaling renormalization to e�ective bandwiths of order D0 = �o (the sponta-
neous tunneling rate). Thus, they conclude that this e�ect can probably be neglected in

realistic systems. However, their conclusions are still preliminary and this issue deserves
further investigation62.

APPENDIX E: THE LIMIT OF LARGE CHANNEL NUMBER: K !1

In this appendix, we perform a check on the CFT calculation of the backscattering

current of section V, by considering the (unphysical) limit of a large number of conduction
electron channels, i = 1; : : : ; k, with k !1. In this limit, the poor man's scaling approach

becomes exact, even though it is based on perturbation theory. The reason for this is that
(for the isotropic model) the over-screened �xed point occurs when the coupling constant

has the special value v� = 2
2+k

[see e.g. section IIB of paper III for the case k = 2], which

! 0 as k !1. Thus, in this limit one never scales into a \strong-coupling" regime, and the
perturbative expressions from which the scaling equations are derived retain their validity
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throughout. Therefore, results from the poor man's scaling approach should agree with exact

results from CFT in the limit k !1, which serves as a useful check on both methods.

Thus, in this appendix we consider the k-channel version of the NTKM of section II, in

which the index i = 1; : : : ; k, but the interaction still has the form of Eq. (8).

1. Backscattering current

To begin, we need a perturbative expression for the backscattering current �I (i.e. the

negative contribution to I, which we de�ned such that I > 0 if it 
ows to the right) due to

the backscattering events of V aa0

��0 . We use the most naive approach for treating the e�ects

of the interaction in a non-equilibrium situation: we simply do perturbation theory in Hint

according to the rules of T = 0, V = 0 quantum mechanics, and insert by hand, into

all sums over intermediate states, appropriate non-equilibrium distribution functions that

indicate with what probabilitiy the corresponding states are occupied or empty,
P

�

R
d"f�(")

or
P

�

R
d"[1 � f�(")], as in Eq. (B8). This is the method Kondo63 used when deriving his

famous log T for the �rst time, and when one is merely interested in the lowest few orders

of perturbation theory, it is certainly the simplest approach.
In this approach, �I is given quite generally by28

�I = �
~KNo

jej

Z
d"

Z
d"0

h
b��0(1� f�("))f�0("

0)�("0; �0 ! "; �) (E1)

� b��0�(1� f�0("
0))f�(")�("; �! "0; �0)

i
; (E2)

where � = L and �0 = R, and the backscattering rate from �0-movers to �-movers is

�("0; �0 ! "; �) = 2�=�h �("0 � ")N�2
o

1
2

X
�ia;�0i0a0

jT aa0

"�"0�0j2 : (E3)

In writing down Eq. (E1), the fact that the Fermi functions do not depend on the indices

that appear in the sums
P

�ia;�0i0a0 has been exploited to pull them out to the front of these
sums, which could thus be included in the de�nition (E3) of �. In Eq. (E3) the factor 1

2
has

been included so that 1
2

P
a0 represents an average over the initial states of the TLS. T aa0

"�"0�0

is the generalization of the interaction vertex �aa
0

��0 of Eq. (B8) to all orders of perturbation

theory, and depends not only on the matrix elements V aa0

��0 , but also on the distribution

functions f("; �) (as Eq. (B8) illustrates explicitly). The factor ~K � e2
P

� ��(0)=h (where
��(") is de�ned below) is included in Eq. (E1) for dimensional reasons, and the dimensionless
constants b��0 characterize all those details of scattering by the impurity that are energy-

independent and of a sample-speci�c, geometrical nature, such as the position of the impurity
relative to the constriction, etc. (compare section III of paper I).

Now, since V aa0

��0 is independent of the indices �; �0, the same is true for jT aa0

"�"0�0j2. (Al-

though the \internal sums"
P

�00 involving intermediate states are highly non-trivial, because

28Though the relation of the perturbative expression (E1) to the non-perturbative ones of section V

is not readily apparent, note that Eq. (E5) has the same form as Eq. (53).
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of the presence of �00-dependent f("�00) functions, T aa0

"�"0�0 of course does not depend on such

�00-indices, since they are summed over.) Therefore it follows immediately that

�("0; �0 ! "; �) = �("; �! "0; �0) : (E4)

Exploiting eq. (E4) and the �("0� ") function in �("0; �0 ! "; �), the backscattering current

can be brought into the suggestive form [compare with Eq. (53)]

�I = �
~Kb

jej

Z
d"0 [fR("

0)� fL("
0)] 1

2

X
�0;i0

1

��0("0)
: (E5)

Here we have taken b��0 = b for simplicity, and have de�ned the total scattering rate 1
��0("

0)

for a electron with energy "0 and discrete quantum numbers �0 by29

1

��0("0)
� N�1

o

Z
d"
X
�

2�

�h
�("0 � ")1

2

X
aa0

jT aa0

"�"�0j2 : (E6)

How is T aa0

"�"�0 to be calculated explicitly? For T > TK, the leading order logarithmic
terms of the perturbation series in powers of Hint can be summed up using the poor man's
scaling approach, discussed in the next subsection. On the other hand, an analysis of the
regime around the T = 0, V = 0 �xed point requires the use of CFT (see paper III). A

consistency check between the two methods can be performed by taking the limit k ! 1
in which perturbation theory becomes exact, as discussed above.

2. Gan's Results for Large Channel Number

A calculation of ��1� (") for the bulk isotropic k-channel Kondo model, in the limit k !
1, has been carried out by Gan64. More speci�cally, he calculated the imaginary part of
the electron self-energy, �I(!;D; g), perturbatively30 to order k�4 (we cite only the lowest
relevant terms below). By then using poor man's scaling methods, he was able to obtain

agreement to order k�2 with the exact CFT results for �I.
Since Gan considered precisely the interaction Hamiltonian of Eq. (12) that governs our

even channels, we can directly use his results. He obtained the following expression at T = 0,
V = 0:

�I(!;D; vK) /
"
1� c1

�
!

TK

���
#
: (E7)

29The 1
2 in Eq. (E5) is needed because the de�nition (E6) of ��1�0 contains a sum

P
�0 that does

not occur in Eq. (E3), and is = 2, since T aa0

��0 is independent of �
0.

30Since the coupling constant v � 1=k, and closed electron loops get a factor k, Gan had to include

up to 8-th order diagrams!
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His perturbative expression for the exponent occuring here is �� = 2
k
(1� 2

k
), which agrees to

order k�2 with the exact CFT result � = 2
2+k

.

Since Eq. (E7) was derived using poor man's scaling methods, it also holds in the non-

equilibrium case, as long as ! > V (see section II E). This condition does not hold strictly in

the integral (E5). Nevertheless, if we use 1
�(!)

= �2�I(!) in Eq. (E5) with T = 0, V 6= 0, the

resulting asymptotic expression for the backscattering conductance �G(V; 0) = @V�I(V; 0),

�G(V; 0) / V �� ; (E8)

should still be approximately correct up to logarithmic corrections that are typical of the

poor man's scaling approach. Indeed, the corresponding expression that we obtained in

section V from our CFT approach has the same asymptotic form [see Eq. (58)], but with ��

replaced by the exact value for the exponent, namely � = 2
2+k

. [Actually, in section V we

always use k = 2, and hence � = 1
2
in Eq. (58).] This agreement is a reassuring con�rmation

that the methods used in sections III to V agree with the present perturbative results in the

one limit (k !1) where perturbation theory can be trusted.

APPENDIX F: HERSHFIELD'S Y -OPERATOR APPROACH TO

NON-EQUILIBRIUM PROBLEMS

In this appendix we summarize the main ideas of Hersh�eld's Y -operator approach to
non-equilibrium problems.

1. The Kadano�-Baym Ansatz for V 6= 0

The problem at hand is de�ned by the free Hamiltonian Ho of Eq. (2), the free density
matrix �o of Eq. (4) and the interactionHint of Eq. (8). Ho and �o describe free electrons that
move between two leads or baths (R=L), at di�erent chemical potentials (��), by passing
ballistically through a nanoconstriction, in which L- and R-movers can be scattered into
each other by Hint.

How does one calculate statistical averages for such a system, in other words, how does

one de�ne the full density matrix in the presence of Hint? The main complication that
has to be confronted is that the number of electrons in each bath is not conserved, in that
[NL;R;Hint] 6= 0 (compare footnote 6 on page 8). Therefore, any attempt to naively replace

�o(V ) in Eq. (4) by e��(H�Yo) will (apart from lacking �rst-principles justi�cation) quickly
run into problems: since [H;Yo] 6= 0, many of the standard properties of equilibriumGreen's

functions [e.g. G(� + �) = �G(� )], no longer hold.
Kadano� and Baym have shown how such a general problem can be dealt with, by using

the notion of adiabatically switching on the interaction18;eq:(6:20): Thermal weighting has

to be done with the initial density matrix �o at some early time to ! �1, at which all
interactionsHint are switched o�, and thenHint is adiabatically turned on [Hint(t) � Hinte

�t,

with � ! 0+] while the system is time-evolved to the time t of interest. Concretely, to
evaluate the thermal expectation of an operator O, one writes the operator in the Schr�odinger

picture, and uses the thermal weighting factors e��[Eon�
1
2 eV (NL�NR)n] appropriate to a traceP

nhn; toj jn; toi of Schr�odinger states taken at some early time to ! �1 (where they are
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eigenstates of Ho with eigenvalues Eon). However, one then takes the actual trace between

the time-evolved versions of these states jn; ti = U(t; to)jn; toi, where31 U = e�iH(t�to) is the
Heisenberg time-evolution operator:

hO(t)iV �
P

n e
��[Eo� 1

2 eV (NL�NR)n]hn; tjOjn; tiP
n e

��[Eon� 1
2 eV (NL�NR)n]

=
Tr �o(V; to)U

y(t; to)OU(t; to)

Tr �o(V; to)
; (F1)

where in the second equality the trace is taken between the states jn; toi. (Since steady-

state expectation values of a single operator are time-independent, t is here just a dummy

variable, and is often taken to be 0.)

Eq. (F1) is the de�ning prescription for taking non-equilibrium expectation values in the

presence of interactions. For V = 0, it reduces to the standard equilibrium prescription,32

hOiV =0 �
Tr�(0; to)O

Tr�(0; to)
; where �(0; to) � e��H ; (F2)

as shown, e.g., by Hersh�eld in14. Eq. (F2) is of course the starting point for familiar equi-

librium statistical mechanics. One of its most useful features is that the thermal weighting
factor e��H and the dynamical time-evolution factor U(t; to) = e�iH(t�to) commute; Green's
functions therefore have the periodicity property G(� + �) = �G(� ), which makes it con-

venient to formulate perturbation expansions in Hint along the negative imaginary axis,
t = �i� 2 [0;�i�].

2. Hersh�eld's Formulation of the case V 6= 0

If V 6= 0 so that Eq. (F1) and not Eq. (F2) is the starting point, there are no obvious
periodicity properties along the imaginary time axis, and the conventional approach, due to
Keldysh, is to formulate perturbation expansions in Hint along the real axis

65;66. The various
non-equilibrium diagrammatic techniques that have been devised are simply ways of doing

the real-time integrals
R t
to
dt0 that result from the expansion of U(t; to). However, for our

purposes such expansions are inconvenient: �rstly, perturbation expansions have limited use
in the Kondo problem, and secondly, we would in the end like to apply A�eck and Ludwig's
non-perturbative CFT results.

Hersh�eld has recently shown that Eq. (F1) can be rewritten in a way that exactly meets
our needs. The �rst step is trivial: using the cyclical property of the trace to move U(t; to)

to the front, Eq. (F1) can be written as

hO(t)iV �
Tr�(V; t)O

Tr�(V; t)
; (F3)

31No time-ordered exponential is needed here, because H is assumed to be time-independent.

32The second argument to in �(0; to) is super
uous; it is retained here only for the sake of notational

consistency with the V 6= 0 case.
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where

�(V; t)

Tr�(V; t)
� U(t; to)�o(V; to)U

y(t; to)

Tr�o(V; to)
: (F4)

The formal de�nition (F4) makes it clear that �(V; t) is the density operator that �o(V; to)

develops into as the interaction is switched on and the system time-evolves from to to t,

with appropriately changing normalization. Thus, all complications introduced through the

adiabatic switch-on procedure are lumped into the time-evolved density operator �(V; t).

Next, Hersh�eld transfers these complications to a new operator, Y , which he de�nes by

writing �(V; t) in the form

�(V; t) � e��[H�Y (V;t)] ; (F5)

purposefully constructed to resemble the de�nition of �o(V; to) in Eq. (4). Then he was

able to show33 (and herein lies the hard work) that the operator Y thus de�ned can be

characterized as follows:

(P) Y is the operator into which Yo evolves as the interactions are turned on [as is suggested
by a comparison of Eqs. (F4) and (4)]. It satis�es the relation

[Y;H] = i�(Yo � Y ) ; where �! 0+ ; (F6)

which implies that Y is a conserved quantity.

The fact that the Y -operator is a conserved quantity is the great advantage of the Y -
operator approach. It implies that the problem is now formally equivalent to an equilibrium
one (for which one has �N (N= total electron number) instead of Y , and [H;N ] = 0).

Once the scattering states have been found, one can therefore apply the usual methods of
equilibrium statistical mechanics,34 using the density matrix � � e��(H�Y ) and Heisenberg
time-development Ô(� ) = eH�Ôe�H� , to calculate physical quantities.

Explicit expressions for H and Y in a typical scattering problem are given in section IIIA.

33Hersh�eld's proof is perturbative: using Eq. (F6) he showed explicitly that Eq. (F5), expanded in

powers of Hint, reproduces the Keldysh perturbation expansion obtained from the Kadano�-Baym

Ansatz (F1).

34From Eq. (14)it is clear that Y can actually be shifted away in � = e��(H�Y ) by de�ning new

energies "0 � " � �� associated with c"�, i.e. measuring the energy of an excitation relative to the

Fermi surface of the bath from which it originates. The weighting factor then completely resembles

its equilibrium form, but because c"�(�) = c"�e
��("0+��), extra factors of e��2�� appear on some

operators that are not diagonal in �, such as Hint. We shall not follow this approach here.
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APPENDIX G: EXAMPLE: 2-SPECIES POTENTIAL SCATTERING

In this appendix we illustrate the formalism developed in section IVD by applying it

to a very simple scattering problem, namely the scattering of only two species of (spinless)

electrons o� a static scattering potential. We take � equal to the species index, � � � =

(L;R) = (+;�) (i.e. � contains no extra channel indices i, and L=R denotes physical L=R

movers). As Hamiltonian we take [compare Eqs. (23) and (24)]:

H = Ho +Hint =
X
�

Z
dx
2�
 y�(ix) (���0i@x + 2��(x)V��0) �0(ix

0) : (G1)

Here V��0 is simply a hermitian 2 � 2 matrix representing potential scattering of the two

species into each other (i.e. the impurity is not a dynamical object with internal degrees of

freedom). Since V��0 is Hermitian, we can make a unitary transformation of the form

 � �M��0 �0 ; (G2)

with M chosen such that it diagonalizes

Hscat =
X
��0

 
y
�(0)

�
MVM�1

�
��0

 �0(0) �  
y
�(0)

�
vo

1
2
���0 + v3

1
2
�3��0

�
 �0(0) : (G3)

Since the scattering term is now diagonal, its only e�ect on the  �-�elds can be to cause a
phase shift of the outgoing �elds relative to the incident ones:

 
R�(ix) = P��0 L�0(ix) for x < 0 ; where P��0 = ���0e

�i(�o+��3) : (G4)

and the phase shifts �0 and �3 are functions of vo and v3. Rotated back into the  �-basis,
this phase shift of course becomes an actual [SU(2)] rotation of the two species into each
other:

 R�(ix) = ~U��0 L�0(ix) ; (G5)

where ~U��0 is a unitary matrix of the form:

~U��0 �
�
M�1PM

�
��0

�
 

T R
�R�=T � T

!
; [jT j2 + jRj2 � 1] : (G6)

Comparing Eq. (G5) with Eq. (34) and Eq. (31), we see that ~U��0("
0) = ~U��0 , i.e. in this

simple case ~U is "0-independent. Physically, this rotation of physical L- and R-movers into

each other simply re
ects the fact that Hint causes backscattering: an incoming L-mover
has amplitude T to undergo forward scattering and emerge as a L-mover, and R to be
backscattered into a R-mover. This illustrates how our formalism is able to deal with

backscattering despite the fact that we expressed both � = L and � = R as mathematical

L-movers in Eq. (20), for which both the transmitted (T ) and re
ected (R) parts of  � live
at x < 0.

To calculate the current, insert Eq. (G6) into Eq. (40). One readily �nds

I = jej
h

X
��

Z
d�" jT j2 �� f(�"; ��) = e2

h
jT j2jV j : (G7)
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As expected, the conductance G � @V I =
e2

h
jT j2 is reduced from its customary value for a

single channel in the absence of scattering, namely e2

h
, by the transmission coe�cient squared

jT j2.
Eq. (G7) can also be used to illustrate that the conductance assumes a V=T scaling form

if the transmission coe�cient T is energy dependent. Assume that for some reason the T in

Eq. (G7) depends on the energy distance from the Fermi surface, and can be expanded as

jT j2 � Ao + ("="F )A1 + ("="F )
2A2 + : : : Then the conductance G = @V I is readily found to

be

G(V; T ) = e2

h

"
Ao + A2

�2

3

�
T

"F

�2  
1 + 3

4�2

�
eV

T

�2
!#

: (G8)

This has the scaling form G(V; T ) = G(0; 0) + BT 2�(v), where �(v) =
�
1 + 3

4�2
v2
�
is a

universal function, and v � eV=T .

In the 2CK case, a scaling form for the conductance arises in a similar fashion, namely

from an energy-dependence in the transmission coe�cient. The non-trivial di�erence is that

there we shall �nd jT (")j2 = Ao +A1T
1=2~�("=T ) ., see section V.

APPENDIX H: THE NCA APPROACH

In section VI we compare our results to recent numerical calculations by Hettler, Kroha
and Hersh�eld (HKH)13, who used the non-crossing-approximation (NCA) approach to the
Kondo problem. Therefore, a few words about their work are in order here.

1. Anderson model used for NCA

HKH represent the system by the following in�nite-U Anderson Hamiltonian in a slave
boson representation:

H1 =
X

p;�;�;i

("p � ��)c
y
p��ic

y
p��i + "d

X
�

fy�f� +
X

p;�;�;i

V�
�
fy� bicp��i +H.c.

�
: (H1)

The �rst term describes conduction electrons in two leads, � = (L;R) = (+;�), separated
by a barrier and at chemical potentials �� = � + � 1

2
eV . The electrons are labeled by

a momentum p, the lead index �, a pseudospin index � = (1; 2), and their Pauli spin
i = ("; #). The barrier is assumed to contain an impurity level "d far below the Fermi surface,

hybridizing (with matrix elements V�, with VL = VR for our purposes) with the conduction

electrons, which can get from one lead to the other only by hopping via the impurity level.
f and b are slave fermion and slave boson operators, and the physical electron operator on

the impurity is represented by dy�bi, supplemented by the constraint
P

� f
y
�f� +

P
i b

y
ibi = 1.

Although this picture of two disconnected leads communicating only via hopping through

an impurity level does not directly describe the physical situation of ballistic transport

through a hole accompanied by scattering o� two-level systems, the Hamiltonian (H1) can
be mapped by a Schrie�er-Wol� transformation onto the more physical one [Eq. (8)] intro-

duced in section IIA. It is therefore in the same universality class and describes the same
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low-energy physics, provided that one identi�es the impurity-induced \tunneling current"

Itun in the HKH model with the impurity-induced backscattering current �I in the actual

nanoconstriction.

HKH calculate the tunneling current,

Itun(V; T ) =
Z
d!Ad(!)[fo(! � eV=2) � fo(! + eV=2)] ; (H2)

where fo(!) = 1=(e�! + 1), by calculating the impurity spectral function Ad(!) using the

NCA approximation, generalized to V 6= 0 using Keldysh techniques. The NCA technique67

is a self-consistent summation of an in�nite set of selected diagrams (which becomes exact

in the limit N ! 1, where N is the number of values the pseudo-spin quantum number

can assume), and in that sense it is not an \exact" solution of the model. However, it

has been shown31 that for a U(1) � SU(N)s � SU(M)f Kondo model (i.e. M channels of

electrons, each with N possible pseudo-spin values, here we have N = M = 2), the NCA

approach gives leading critical exponents for Ad(!) identical to those of conformal �eld

theory for all N and M (with M > 2). Hence the NCA method can be regarded as a useful

interpolation between the high-T regime where any perturbative scheme works, and the low-
T regime where it gives the correct exact critical exponents. Moreover, when combined with
the Keldysh technique, it deals with the non-equilibrium aspects of the problem in a more
direct way than our CFT approach (it can be regarded as a self-consistent determination

of the scattering amplitudes), and is able to go beyond the weakly non-equilibrium regime
(V � TK).

2. Electron Self-Energy

One would expect that the most direct comparison between CFT and the NCA could be
obtained by comparing the retarded self-energy �R(!) for conduction electrons at V = 0,
calculated from the NCA with that from CFT [essentially the function ~�(x) of Eqs. (48)
and (59)]. However, the usefulness of this comparison is somewhat diminished by the fact
that the NCA self-energy is not a symmetric function of frequency, which is a result of

using the asymmetric Anderson model. This asymmetry disappears when calculating the
conductance, because Itun(V ) = Itun(�V ) in Eq. (H2) even if Ad(!) 6= Ad(!), meaning that
the zero-bias conductance is the more meaningful quantity to compare (see next section).

Nevertheless, for ! < 0, the CFT and NCA results agree very well30.

3. Impurity Spectral Function Ad(!)

Figure 9 is very instructive, in that it illustrates what when eV � TK (a regime not

accessible to CFT), the Kondo resonance splits into two (as also found in68 for a related

model). (TK is de�ned as the width at half maximum of the V = 0 impurity spectral
function at the lowest calculated T .) However, note that even for V ' TK, this splitting has

not yet set in, illustrating that non-equilibrium e�ects are not important for eV < TK. This
is the main justi�cation for the the approach followed in section IIIB of neglecting all V=TK
corrections to the scattering amplitudes.
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APPENDIX I: V -DEPENDENT CORRECTIONS TO ~U��0

In this appendix, V -dependent corrections to the scattering amplitudes ~U��0 are dis-

cussed.

A key assumption made throughout this paper was that the scattering amplitudes that

describe scattering in the non-Fermi-liquid regime are V -independent, for reasons given in

section IIIB. However, a simple poor man's scaling argument shows that this assumption

can not be correct in general: If V > T , then the RG 
ow will eventually be cut o� at an

energy scale of order V ; in the poor man's RG approach, this is implemented by replacing

the renormalized bandwidth D0 by V in the e�ective interaction vertex, which means that

the e�ective renormalized Hamiltonian now is explicitly V -dependent, which means that the

same will be true for its scattering amplitudes.

Intuitively, the V -dependence arises because when V 6= 0, the di�erence in Fermi energies

of the L- and R leads causes the Kondo peak in the density of states to split69;68 into two

separate peaks (at energies � � 1
2
eV , (see Fig. 9 of appendix H, taken from30). However,

in the non-Fermi-liquid regime, this V -dependence can nevertheless be neglected, because

when V=TK � 1, the splitting of the Kondo peak by eV is negligible compared to its width,

which is / TK (said di�erently, then V 6= 0 cuts o� the RG 
ow at a point su�ciently close
to the non-Fermi-liquid �xed point that the latter still governs the physics).

To investigate the onset of Kondo peak-splitting e�ects with increasing V but still in

the non-Fermi-liquid regime, we use the same kind of arguments as the ones used by AL
to �nd the leading T=TK term in G��0 (see sections IIC 2 and IIC 3 of paper III): V 6= 0
breaks a symmetry of the system (namely � = L $ R), and the breaking of a symme-
try allows boundary operators to appear in the action describing the neighborhood of the
�xed point that had been previously forbidden (for extensive applications of this principle,
see26;sectionIII:C).

To �nd the form of the leading V 6= 0 boundary operator, we argue as follows: V enters
the formalism only via Yo [see Eq. (5)], which takes the following form when written in terms
of the �elds  � of Eq. (20) or  � of Eq. (26):

Yo =
1
2
eV

X
�

Z 1

�1
dx
2�
 y�(ix)� �(ix) ; (I1)

= 1
2
eV

X
���i

Z 1

�1
dx
2�

h
 
y
e���i(ix) o���i(ix) +  

y
o���i(ix) e���i(ix)

i
: (I2)

[For the second line we used (N�zN�1)����0 = �x����0 , with N given by Eq. (10).] Eq. (I2) shows

that Yo mixes even and odd channels. Since the CFT solution was formulated only in the
even sector, the present model35 can strictly speaking not be solved exactly by CFT for
V 6= 0, unless one neglects all e�ects of Yo on the �xed point physics.

The form (I2) for Yo leads us to conjecture that the leading boundary operator appearing

35However, related models exist which can be treated exactly by CFT even if V 6= 0, for example

the model used by Schiller and Hersh�eld in70. There, the pseudospin index is also the L-R index
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in the action when V 6= 0 will have the form36

�SV = �10
V

TK

X
���i

Z �

0
d�
h
 
y
e���i(� ) o���i(� )) +  

y
o���i(� ) e���i(� )

i
� �10

V

TK

Z �

0
d�Jeo(� ) : (I3)

Since the \even-odd" current Jeo de�ned on the right-hand-side has scaling dimension 1

(i.e. ��1 = 1; �0 = 0), �SV has scaling dimension zero (see Eq. (20) of paper III), and

is therefore a marginal perturbation. This means that even if V=TK � 1, if T=V is made

su�ciently small the system will eventually 
ow away from the non-Fermi-liquid �xed point,

at a cross-over temperature T �
V
, say. However, since this perturbation is marginal, it only

grows logarithmically slowly as T is decreased, so that T �
V
will be very small. Therefore,

the non-Fermi-liquid regime, in which one has both V; T � TK and T > TK, can be rather

large. The lack of deviations from scaling in the data for the low-T regime (see section VII of

paper I) indicate that T �
V
is smaller than the lowest temperatures obtained in the experiment.

How does �SV a�ect the scattering amplitudes? First note that the V -dependence of

�SV enters in a very simple way, namely as a \parameter" that governs the strength of

the perturbation. Therefore, the methods of section IVD, which extract ~U~��(") from an

equilibrium CFT Green's function, are still applicable.

Standard CFT arguments37 show that the e�ect of �SV on G����0 is to simply cause a
rotation of the �� = e=o indices of the outgoing ��-�elds relative to the incident ��0-�elds by

(i.e. the interaction matrix elements are 1
2~���0 �

~S), which means that

Yo =
1
2eV

X
�i

Z 1

�1
dx
2� 

y
�i(ix)�

z
��0 �0i(ix) = eV

Z 1

�1
dx
2�J

z
s (ix)

where ~Js is the spin current (see Eq. (4) of paper III). Now, in this case it is easy to �nd the

exact Y -operator in the presence of the Kondo interaction. Y must both commute with H and

reduce to Yo when the interaction is switched o�. This is evidently satis�ed by Y = eV
R1
�1

dx
2�J

z
sL,

where J z
sL is the z-component of the new spin current ~Js(ix) = ~Js(ix) + 2��(x)~S (see Eq. (14)

of paper III). Thus, in the combination H � Y that occurs in the density matrix �, eV simply

plays the role of a bulk magnetic �eld in the z-direction, which can be gauged away exactly by a

gauge transformation25;eq: (3:37). Hence in this model, non-equilibrium properties can be calculated

exactly using CFT.

36It is easy to check that the operator Jeo is indeed allowed at the boundary: it must be the product

�e�o of boundary operators in the even and odd sectors, with quantum numbers (Qe; je; fe) =

(�Qo; jo; fo) = (�1; 1
2 ;

1
2). �o, which lives on a free boundary (since the odd sector is free), is

simply the free fermion �eld  o�i in the odd sector. �e must live on a Kondo boundary, which

indeed does allow a boundary operators with the quantum quantum numbers (�1; 12 ;
1
2), as may

be checked by AL's double fusion procedure (see table 1c of11).

37See, for example,71. At T = 0, one can prove that �SV generates such a rotation by closing

the
R1
�1 d� integral along an in�nite semi-circle in the lower half-plane (this is allowed, because

Jeo(z) � z�2 ! 0 along such a contour72;Eq:(2:19)); having closed the contour, �SV has precicely

the form required for a generator of e=o rotations.
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R����0(V ) = �����0��i�i0

 
cos �V �i sin �V
�i sin �V cos �V

!
����0

; where �V � arctan

�
cV

TK

�
: (I4)

Here �V is simply a convenient way to parametrize the rotation71. Thus, the e�ect of

�SV can be incorporated by replacing the scattering amplitude ~U ����0(") of Eq. (46) by

R����00(V )
~U ��00��0("). Evidently, the �nal scattering amplitude ~U~��(") of Eq. (45) will now be

V -dependent.

It turns out that for the simple form (9) used for the backscattering matrix V��0 , this extra

V -dependence \accidentally" cancels out38 in Eq. (51) for P�("). However, for more general

forms of V��0 , it survives. To lowest order in V=TK, there will then be a contribution to the

conductance of the form (V=TK)T
1=2�1(V=T ) = T 3=2�2(V=T ). However, this is evidently

only a subleading correction to the scaling function of Eq. (58). It is of the same order as

corrections arising from subleading irrelevant operators of the equilibrium theory, that we

have argued in section V 3 would not be worth while calculating since there are too many

independent ones.

To summarize the results of this appendix: when V 6= 0, corrections to the scattering

amplitudes ~U��0("
0) of order V=TK can arise; however, they only give rise to subleading

corrections to the scaling function �(v).

38This can be seen from by replacing U by RU in Eq. (51) for P�("), and checking that

R
y
N�zNyR = R

y
�xR = �x, which is independent of V because R generates rotations around

the x-axis in the e=o indices. However, if V and N are more complicated than in Eqs. (9) and (11),

the V -dependence will clearly not cancel out.
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FIGURES
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FIG. 1. A symmetrical square double well potential (heavy line), such as that used by Zar�and

and Zawadowski for their model calculations, and the wave-functions for the states jri, jli and the

�rst excited state j	3i.
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FIG. 2. (taken from20;F ig: 7): The T = 0 electron distribution function f
(0)
~k

(~r) shown (a) at

the hole and (b) at two points near the hole. The picture is a position-momentum space hybrid,

showing the momentum-space distribution function f
(0)
~k

with its origin drawn at the position ~r to

which it corresponds. A �nite temperature simply smears out the edges of the two (R=L) Fermi

seas.
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FIG. 3. (taken from20;F ig: 6): The electrostatic potential energy e�(0)(~r), which de�nes the

bottom of the conduction band, near a point contact with radius a, shown along the z-axis for the

case eV > 0. Within a few radii a from the hole, e�(0)(~r) changes smoothly from �eV=2 on the

left to +eV=2 on the right.
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FIG. 4. Scaling plots of the conductance for (a) the NCA calculations of Hettler et al.13

and (b) experiment (sample #1). With B� determined from the zero-bias conductance,

G(0; T ) = G(0; 0) + B�T
1=2, [Eq. (23)], there are no adjustable parameters. The temperatures

in the NCA- and experimental plots are in units of TK and Kelvin, respectively.
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FIG. 5. Comparison between NCA theory and experiment for three individual conductance

curves from sample # 1. By using TK as a single �tting parameter and choosing TK = 8K

for sample 1, this kind of agreement is achieved simultaneously for a signi�cant number of in-

dividual curves [Hettler, private communication],30. The NCA curves shown here correspond to

T = 0:3TK = 2:4K, 0:2TK = 1:6K and 0:15TK = 1:2K (NCA curves for the actual experimental

temperatures of T = 2:257K, 1:745K and 1:1K were not calculated.)
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FIG. 6. The conductance scaling function �(v). Curves 1,2,3 are the experimental curves of

Fig. 11 (b). Curve 4 is the CFT prediction from Eq. (56). Curves 5 and 6 are the NCA results of

HKH, with T=TK = 0:003 and 0:08, respectively. All curves have been rescaled in accordance with

Eq. (56).
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FIG. 7. (a) The second-order vertex corrections that contribute to Eq. (B8) and gener-

ate the leading order scaling equation (C3). (b) The impurity self-energy correction and the

third-order next-to-leading-logarithmic vertex correction that generate the subleading terms in the

second-order scaling equation (C9). (Note that subleading diagrams that are generated by the

leading-order scaling relation derived from the diagrams in (a) have to be omitted.) Dashed and

solid lines denote impurity and electron Green's functions, respectively.
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FIG. 8. Scaling trajectories of the matrix norms �A � Tr[(vA)2] (A = x; y; z), calculated

numerically for the case Nf = 3. All three norms tend to the same value, in accord with eq. (C12).

Consult43, from which this �gure was taken, for details regarding the initial parameters used.
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FIG. 9. The Kondo resonance in the impurity spectral function Ad(!), calculated T=TK = 0:001

using the NCA30. For our purposes the most important feature of this �gure is that the Kondo

peak does not start to split for eV < TK.
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