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Abstract Friction and impacts during oscillations lead to
discontinuities of the velocity and of the internal forces in
the time-domain and to changes in the number of degrees
of freedom, Ibrahim (1994). The analytical procedure for
the integration of such non-smooth motions is to compute
the history dependent separation times and to patch to-
gether a sequence of solutions for successive smooth
problems, Popp (1998). However, this very accurate pro-
cedure has limits even for a relatively low number of
generalized coordinates because of the required compu-
tational effort. Regularization techniques as usually used
with FE allow to avoid the exact computation of all dis-
continuities by smoothing. But there is a big uncertainty in
the choice of the regularization parameters needed for a
sufficiently correct description of the oscillations under
investigation. Stationary solutions of two forced mass–
spring oscillators are used to calibrate the regularization
parameters by comparing analytical results with regular-
ized ones. This allows to compute the self-excitation of a
continuous system and to prove the phenomena with
known experimental data.
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1
Introduction
A non-smooth discrete system changes its mechanical
properties during the course of time. Examples are the
possibility of sliding or sticking at contact points or the
change from a motion in contact to a free motion or vice
versa. Generally there exists a set of possible states which
can differ in their degrees of freedom. At the beginning of
a motion it is neither known how many possible states will
become active in the future, nor the sequence of the active
states is predetermined. However, we have to note, that
each state represents itself a smooth problem. If X denotes
the vector of generalized coordinates, the total solution in
the time domain is given in general by a sequence of
smooth solutions

X ¼

X1; t1 � t < t2

X2; t2 � t < t3

..

.

Xi; ti � t < tiþ1

8>>>><
>>>>:

9>>>>=
>>>>;

i ¼ 1; 2; 3; . . .

Let us assume, the solution Xi corresponding to a distinct
element of the set of possible states is known by integration
up to a certain time t > ti. Then a condition must be given,
to determine the end of this state at tiþ1. This condition is
found by checking switching conditions for each t � ti.
Knowing tiþ1 a switching decision allows to choose the new
state Xiþ1 out of the set of all possible states. The complete
information about the mechanical quantities at the end of
the state Xi is used as initial conditions for Xiþ1. By
sequential application the total solution is patched
together at the points of discontinuities ti.

The spatial discretization of a continuum by the FE-
method leads to equations of motions with a finite number
of degrees of freedom. Therefore all dynamic contact
problems lead to non-smooth mechanical systems. In
principle, analytical solutions can be computed as
described above. In practice such an exact solution can
only be obtained if the number of all possible states is
relatively low, which leads essentially to the restriction to a
small number of coordinates and contact points, Vielsack
and Kammerer (1999). FE discretizations, however, lead to
large numbers of coordinates. Therefore regularizations of
all discontinuities are vital to achieve a solution at all. First
the number of degrees of freedom of all possible smooth
states should be the same for all t; secondly the switching
conditions and switching decisions must be eliminated or
at least transformed into a weaker form. Finally, the correct
computation of the separation times should be avoided.

From the mechanical point of view all regularizations
imply changes in the mechanical model of a non-smooth
system. Restricting to the so-called penalty method as
regularization, additional stiffnesses or dampers are in-
troduced. Therefore, the solution of a regularized system
can only be an approximation of the exact solution. The
quality of the solution depends on a reasonable choice of
the regularization parameters.

2
Calibration of the regularization parameters for friction
In the following a discrete mass–spring system (Fig. 1) is
considered. This simple model allows a detailed discussion
about the consequences of regularizing Coulomb’s friction
law.
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The theoretical background of the analytical treatment
can be found in Vielsack (2001). The non-smooth system
has three possible smooth states: (a) the mass m sticks
(1 DOF), (b) the mass moves to the left (2 DOF) or (c) the
mass moves to the right (2 DOF). What really happens is
depending on the property of the excitation yðtÞ, the
drive.

To compare both approaches, first states of sticking are
considered. Both situations are shown in Fig. 2. In the
analytical approach the degrees of freedom are reduced to
one. The displacement x2 ¼ x0

2 of the mass m remains
constant. Its value is known from the end of the preceding
sliding state. In the case of regularization an additional
spring with stiffness cT (the penalty, Pfeiffer and Glocker
1999) is added to the mass m at the unloaded state x2 ¼ x0

2.
This penalty method leads to a modified system with the
same number of degrees of freedom, two. It is obvious that
the mass m can move despite the fact that sticking requires
a complete stop. Theoretically the displacements x2ðtÞ of
the mass m could be made arbitrarily small by choosing cT

sufficiently large. However, this would lead to the well-
known numerical problems in integrating stiff differential
equations.

Secondly states of sliding are considered. In both ap-
proaches the system has two degrees of freedom. The ana-
lytical procedure is based on Coulomb’s law R ¼ R0 sgnð _xx2Þ
which shows a constant friction force R0 opposite to the
direction of the relative velocity _xx2 (see circle in Fig. 1, I)
between the rigid support and the mass m. Within the reg-
ularized formulation, see Engleder and Vielsack (2001),
R ¼ R0 sgnðHÞ is used with H incrementally updated in each
time step by Hðt þ DtÞ ¼ HðtÞ þ cT ½x2ðtÞ � x2ðt þ DtÞ	,
with an upper bound jHj � jR0j. Now the friction force
depends on the absolute displacement x2 (see circle in Fig. 1,
II) of the mass m.

The regularization leads to a friction law which is
identical to the description of linear elastic-ideal plastic
behaviour and can therefore be called the elasto-plastic

regularization model. Its advantage lies in the fact that it is
well established in F.E.M.

To follow stationary periodical oscillations long time
integration is needed, mainly because the influence of the
initial conditions at the beginning of the instationary
motion must be eliminated by internal damping. Within
the analytical approach a Runge–Kutta integration scheme
with an accurate calculation of all separation points, see
Meijard (1999) is taken. The regularized model, however,
is integrated by the Newmark-method with uniform time
steps. No iteration of separation times is performed. This
leads to permanent numerical disturbances during the
course of time with often detrimental effects. If the time
step is not chosen sufficiently small, irregular response of
the system will occur, see Vielsack and Hartung (1999).
The major differences between both procedures are as
follows:

An example is presented to illustrate the consequences
of the regularization. The parameters – nondimensional –
of the system are R0 ¼ 1, M=m ¼ 25, K=k ¼ 1 and
D ¼ 0:01. The drive has a constant velocity v ¼ 0:5 su-
perimposed by a harmonic part with an amplitude
A ¼ 0:75 and a frequency ratio of g ¼ 0:2. The regular-
ization parameter � is defined by � ¼ k=cT . The interaction

Fig. 2. Mechanical models for sticking of mass m: (I) non-
smooth model, (II) regularized model with spring

Fig. 1. Mechanical model for friction benchmark example (left)
and considered friction laws – (I) Coulomb (center), (II) Regu-
larization (right)
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of the regularization parameter and the time step of the
Newmark integration with average acceleration assump-
tions is discussed by combining � ¼ 0:1 and 0:001 with the
time steps Ds ¼ 0:1 and 0:001. Figure 3 shows the phase
curves for m in relative coordinates and Fig. 4 the corre-
sponding contact forces.

Both, regularization parameter and time step size ap-
pear to have interacting effects on the results. The con-
tact force shows oscillations during each state of sticking.
The frequencies of the oscillations depend on the value
of cT . The combination of a small regularization

parameter � (large contact stiffness) with a large time
step give rise to structural errors in the phase curves as
well as in the contact forces. Only a small time step in
combination with a small regularization parameter leads
to sufficiently good results at least for the phase curve.
Nevertheless, the high frequency oscillations of the con-
tact force cannot be avoided then. It should be men-
tioned, that the contact force can be improved by adding
a viscous damper parallel to the contact spring cT , see
Vielsack (1996). However, this would increase the num-
ber of regularization parameters to be calibrated and the

Fig. 3. Effects of regularization: phase curves in relative coordi-
nates (nrel, n0rel) for m using � ¼ 0:1 and 0:001 in combination
with the time steps Ds ¼ 0:1 and 0:001

Fig. 4. Effects of regularization: contact forces for m using
� ¼ 0:1 and 0:001 in combination with the time steps Ds ¼ 0:1
and 0:001
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applicability of the elasto-plastic regularization model
would be lost.

3
Calibration of regularization parameters for impacts
Mechanical systems consisting of several subsystems can
exhibit intermittent constraints. During oscillations the
subsystems can move separately or come into contact with
each other. Then impacts occur, Brogliato (1996). Gener-
ally the duration of an impact is much smaller than a
representive periodical time of a stationary oscillation.
Then the concept of Newton’s impact law is often sufficient
for a description. Impact is considered as one smooth state
of the non-smooth problem with vanishing time of dura-
tion. Only the velocities are affected by this model. This
effect can be controlled by a restitution factor 0 � e � 1.

Again a mass-spring system is considered (Fig. 5)
which is subjected to harmonic base excitation. It
consists of two beam-subsystems, with length l0 and
l0 þ l1, lumped masses m0 and m1, m2 and bending
stiffness EI0 and EI1, respectively. In addition a small
internal damping is assumed to provide stationary
responses when starting the oscillations with arbitrary
chosen initial conditions. During oscillation three smooth
states are possible: (a) the mass m0 and m1 are in
permanent contact (2 DOF), (b) both subsystems move
separately from each other (3 DOF), and (c) an impact
between m0 and m1 occurs. A detailed discussion of the
analytical treatment of the problem can be found in
Engleder, Vielsack and Spiess (1998).

The regularization of the impact is performed similar to
the previous model by the penalty method discussed be-
fore. For q0 > q1 a contact spring with stiffness cN only
acting in compression is added between the masses m0 and
m1. The restitution coefficient is modelled by a contact
damper with constant dN only acting in compression. The
sudden impact is enlarged to a finite time interval with
unknown time-dependent damping force and displace-
ment of the damper. Therefore, a correlation of the energy
loss between a restitution coefficient and its corresponding
constant dN of damping cannot be given.

Thus, the introduction of both regularization parame-
ters leads to the fact that the number of DOF is kept
constant for all possible states (3 DOF). The intrinsic
problem is the appropriate choice of the values of both
regularization parameters. The finite duration of the im-
pact requires sufficiently small time steps using the New-
mark-method, as the integration with constant time steps
leads to similar problems concerning the separation times
as discussed before. Knowing the solution of the non-
smooth model for a given problem, extensive numerical
experiments are necessary to calibrate cN and dN and to
find the acceptable time step size Dt for the regularized
model.

As an example for the regularization results for varying
coefficients of restitution respectively damping factors are
given in Figs. 6 and 7. Both figures show essentially the
same stationary oscillations. The phase curves for the
contacting masses m0 and m1 are plotted as two separate
lines in all diagrams. An overlapping of q0 and q1 indicates

Fig. 5. Mechanical model for impact: (I)
non-smooth model (Newtows impact
law), (II) regularized model (linear spring
cN and linear damper dN )

Fig. 6. Non-smooth model:
phase curves for q0 and q1 using
the coefficients of restitution
e ¼ 0:3 ðX ¼ 0:81Þ and
e ¼ 0:7 ðX ¼ 1:569Þ
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a state of permanent contact. Following the non-dimen-
sional representation of the system’s parameters given in
Engleder, Vielsack and Spiess (1998) the values A ¼ 0:001
and D ¼ 0:001 are used.

The exact result for e ¼ 0:3 (close to ideal plastic
impact) contains periodic oscillations with three states:
(a) free motion, (b) impact and (c) motion in contact. In
the case of a large restitution coefficient e ¼ 0:7 (close to
ideal elastic impact) only two states are present: free
motion and impact. Moreover, the oscillation is modu-
lated in the amplitudes but remains stationary. All regu-
larized solutions (Fig. 7) are calculated with a constant
time step Dt ¼ 10�4. Compared to the lowest non-peri-
odical time 4:0 of the excitation this value – necessary to
obtain a reasonable solution – is very small. The contact
stiffness is taken as cN ¼ 10000. Taking a contact
damper value dN ¼ 50 for the case e ¼ 0:3 and a value
dN ¼ 20 for e ¼ 0:7 the regularized solutions agree fairly
well with the exact responses. It must be stated, however,
that the parameters cN , dN and Dt cannot be chosen
separately, because they have interacting effects on the
solutions.

4
Self-excitation of an elastic frame due to friction
and impacts
The paradigm for self-excitation is a mass-spring system
in contact with a rough surface, the latter moving with
constant velocity. Its trivial solution describes a state of
static equilibrium where the contact points remain in
sliding for all times. The nontrivial, stationary solution is a
stick-slip motion. Much effort has been made to compute
such self-excited oscillations. A large number of different
friction laws has been tested, usually keeping the normal
force constant. Surprisingly, in the case of Coulomb’s law
only the trivial motion will exist under this assumption.
Oden and Martin (1985) have solved this discrepancy by
taking time varying normal forces into account. Then the
trivial solution becomes also unstable and shows a stick-
slip motion.

The idea with non-constant normal forces will be ex-
tended in the following by considering lift-off and impact
in addition to time-varying normal forces. The mechanical
system chosen is a steel frame with a horizontal and ver-
tical member. The constant rectangular cross section is
20=2 mm. The length of each side is 300 mm. The hori-
zontal edge is clamped, the lower end touches a rough

surface which moves with constant velocity v0. The upper
end can be moved vertically by q0

1 to induce a defined
prestressing. Thus we achieve a problem with the com-
bined behavior of Example 1 and 2.

The oscillations found in the structure can be described
by five possible states. They are illustrated in Fig. 8. In
addition experimental data are known, see Engleder (2000)
about the main features of self-excited oscillations of the
real frame.

The experiments show two kinds of phenomena: (a)
self-excitation without lift off for low driving velocities and
(b) oscillations where all five possible states are present for
higher velocities.

Now, as in real practical situations, a finite element
analysis with regularization should be performed without
any information about the expected results. However, this
would not lead to any reasonable result. Thus, all neces-
sary parameters are calibrated in a way that the observed
phenomena can be represented by the numerical analysis.
Extensive numerical experiments lead to a time step size of
Dt ¼ 10�3 for the standard Newmark-method (without
numerical damping). The penalty parameters are chosen

Fig. 7. Regularized model:
phase curves for q0 and q1

using damping values
DN ¼ 50 ðX ¼ 0:81Þ,
DN ¼ 20 ðX ¼ 1:569Þ, contact
stiffness cN ¼ 10000 and time
step size Dt ¼ 10�4

Fig. 8. Possible states during oscillation of the non-smooth
model
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as cN ¼ 105, cT ¼ 104 and DN ¼ 80. Internal damping is
described by Rayleigh-damping with a ¼ 0:0301 and
b ¼ 1:841e � 5. The FE discretization uses 9-node plane
stress elements. The mesh at the contact region can be
seen in Fig. 9. The rigid surface is modelled as a rigid
body.

In addition the numerical calculations need information
about the friction factor l and the amount of dissipation
during one impact. The friction factor l has not been
measured in the experiments and it would have been

rather difficult to find such values. We will therefore re-
strict to a qualitative comparison between calculation and
reality, which means whether the main features of the
problem can be captured by the FE-regularization which
are self-excitation without lift off for low driving velocities
and motions with lift off for higher ones. Therefore in the
following we are relatively free to choose the system pa-
rameters l; v0 and q0

1 needed for the calculation in addi-
tion to the regularization parameters given above.

The time-displacement history in the first case without
lift-off can be seen in Fig. 10. The horizontal line in both
figures corresponds to a constant vertical relative dis-
placement q0

1 ¼ 2:5 mm of the node in the middle of the
contact region. To get the same result as observed in the
experiments for its vertical motion, the driving velocity
must be reduced from v0 ¼ 250 mm/s (experiment) to
v0 ¼ 100 mm/s (simulation). The Coulomb friction factor
is assumed to be l ¼ 0:1.

In the second case the driving velocity v0 ¼ 500 mm/s is
the same in both diagrams. Numerical experiments show
that significant lift off occurs by increasing the prestress.
Therefore q0

1 ¼ 5 mm is used for the analysis and a larger
friction factor of l ¼ 0:2 is chosen.

The depicted range of the time history of the computed
displacement (Fig. 11) shows segments of irregularity.
Obviously the existence of impacts can induce major

Fig. 11. Displacement-time relation for self-excitation with lift-
off: (A) experimental and (B) numerical results

Fig. 9. Finite element model and discretization of the contact
region

Fig. 10. Displacement-time relation for self-excitation without
lift-off: (A) experimental and (B) numerical results
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errors into the analysis. However, the amplitudes of the
oscillations in these segments are limited and the irregu-
larities vanish after some periods of the response. A coarse
inspection shows a periodic motion in the total time do-
main.

5
Conclusions
Smooth continuous systems can be transformed to dis-
crete systems by the FE method after choosing an appro-
priate discretization. Then vibrations can be investigated
by integrating numerically the smooth discrete system.
Oscillations of non-smooth continuous systems demand
additional effort, because they consist of a priori unknown
sequences of smooth states. Then within a solution with
FE, regularizations of all irregularities at the impact and
separation times are needed, thus always when the
system’s properties are changed. This implies the appro-
priate choice of

– the time step size for integration to capture the impact
and separation times with sufficient accuracy and to
allow the numerical computation of all regularized
models

– the internal damping to avoid incorrect responses
– the penalty parameter for dry friction to describe the

state of sticking
– the penalty parameter for an unilateral normal contact
– the damping parameter in case of a normal impact

The intrinsic problem is to choose all these numbers for
a given problem. The fact of mutual dependence of all
these essentially artificially introduced parameters makes a
decision about the correctness of any result obtained with
a model even more difficult than in standard FE analyses.

When treating smooth oscillations the experienced an-
alyst is aware of the type of solution he can expect. A nice
looking result gives mostly some confidence that all so-
lution steps are correct. Non-smooth systems do not allow
to follow this experience from smooth systems. In Vielsack
(1999) it is shown for a harmonically excited single mass
system with impacts, that a too large choice of the time
step size leads to permanent numerical disturbances which
causes a nice looking periodic response of the system,
which is totally wrong. Summarizing it must be stated, that
without the possibility of calibrating the regularization

parameters and the time step size for the time integration
procedure to some known real data, the computed results
must be looked at with some suspicion.

Thus, calculating non-smooth oscillations of dynamical
systems, the investigator must be aware of the strong
nonlinearity of the problem. Extensive and brought vari-
ations of all regularization parameters are necessary to
find out the sensivity of the systems response on these
parameters.
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