KIT | KIT-Bibliothek | Impressum | Datenschutz

Limit distributions for measures of multivariate skewness and kurtosis based on projections

Henze, Norbert ORCID iD icon 1; Baringhaus, Ludwig
1 Fakultät für Mathematik – Institut für Mathematische Stochastik (Inst. f. Math. Stochastik), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

We derive the asymptotic distributions for measures of multivariate skewness and kurtosis defined by Malkovich and Afifi if the underlying distribution is elliptically symmetric. A key step in the derivation is an approximation by suitable Gaussian processes defined on the surface of the unit d-sphere. It is seen that a test for multivariate normality based on skewness in the sense of Malkovich and Afifi is inconsistent against each fixed elliptically symmetric non-normal distribution provided that a weak moment condition holds. Consistency of a test for multinormality based on kurtosis within the class of elliptically symmetric distributions depends on the fourth moment of the marginal distribution of the standardized underlying law. Our results may also be used to give tests for a special elliptically symmetric type against asymmetry or difference in kurtosis.


Originalveröffentlichung
DOI: 10.1016/0047-259X(91)90031-V
Zugehörige Institution(en) am KIT Fakultät für Mathematik – Institut für Mathematische Stochastik (Inst. f. Math. Stochastik)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2004
Sprache Englisch
Identifikator ISSN: 0047-259X, 1095-7243
KITopen-ID: 114991
Erschienen in Journal of multivariate analysis
Verlag Academic Press
Band 38
Heft 2
Seiten 51- 69
Vorab online veröffentlicht am 30.06.2004
Schlagwörter multivariate skewness, multivariate kurtosis, test for multivariate normality, elliptically symmetric distributions, univariate projections
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page