
INSTITUT FÜR WIRTSCHAFTSTHEORIE
UND OPERATIONS RESEARCH

UNIVERSITÄT KARLSRUHE

Generation of Resource-Constrained Project Scheduling
Problems with Minimal and Maximal Time Lags

Christoph Schwindt

Report WIOR-489

TECHNICAL REPORT

Kaiserstraße 12 . D - 76128 Karlsruhe . Germany

Generation of Resource-Constrained Project Scheduling
Problems with Minimal and Maximal Time Lags

Christoph Schwindt

Report WIOR-489

November 1996

This research was done within the Research Group Resource–Constrained Project
Scheduling (http://www.wior.uni-karlsruhe.de/RCPSP/), which is partially sup-
ported by the Deutsche Forschungsgemeinschaft (DFG).

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval
system, without permission in writing form from the authors.

Abstract

We describe a new problem generator for three different types of resource-constrained
project scheduling problems with minimal and maximal time lags: the project duration
problem, the resource leveling problem, and the resource investment problem. The
cyclicity of the underlying project network requires special techniques for the parameter-
driven generation of cycle structures. Two different approaches to the generation of cycle
structures are presented: the direct method which adds backward arcs to an acyclic
network and the contraction method which constructs isolated strong components which
are then contracted to a single node and incorporated into an acyclic network. Efficient
algorithms for the direct method and the contraction method are provided.
The generation of the project's basic data as well as the resource demand and availability
is based on ProGen by Kolisch et al.
A computational experiment relating computation times for the solution of the project
duration problem to several control parameters shows the strong impact of parameter
configuration on problem hardness.

Key Words

Problem generator, activity-on-node networks, network measures, resource-constrained
project scheduling, maximal time lags.

Contents

Page

1. Introduction 1
2. Basic Concepts 3

2.1 Models for Resource-Constrained Project Scheduling 3
2.2 Basic Definitions and Theorems 5
2.3 Network Measures 16

3. Generation of the Basic Data and the Network 21
3.1 Basic Data 21
3.2 Network Structure 22

3.2.1 Acyclic Network Structure 24
3.2.2 Cycle Structures 28

3.3 Activity Durations and Arc Weights 37
4. Resource Demand and Availability Generation 39

4.1 Resource Demand 39
4.2 Resource Availability 41

5. Computational Results 42
5.1 Accuracy of Thesen's Restrictiveness Estimator RT 42
5.2 Hardness of RCPSP/max Instances 43

6. Conclusions 47

Appendix: Functional Description of ProGen/max 48

References 52

1. Introduction

Several network and problem generators for resource-constrained scheduling problems
are known from literature (Kolisch et al. 1995, Demeulemeester et al. 1993, Agrawal et al.
1994). One of the best-known scheduling problems is the Resource-Constrained Project
Scheduling Problem (RCPSP). Until 1992, an inhomogeneous testset of Patterson (1984)
has been used as a benchmark for algorithms. This testset includes problems published in
Davis (1969), Patterson and Huber (1974), Davis and Patterson (1975), Talbot and
Patterson (1978), and Patterson (1984). Of course, these problems were not generated using
a unified and systematic approach controled by several network and resource-based
parameters like network complexity or resource strength.
Moreover, the development of a new efficient branch-and-bound procedure for RCPSP by
Demeulemeester and Herroelen (1992) has shown that all problems of the Patterson testset
without exception belong to a class of "easy" problems, that is, they can be solved
optimally within a very short amount of time. Kolisch et al. (1995) have shown that there
are lower-sized problems which are much harder to solve.
Therefore, the empirical analysis of algorithms should be based on problem instances
which have been generated systematically by a problem generator. The performance of the
tested algorithms can then be evaluated depending on different problem measures.
The problem generator ProGen of Kolisch et al. (1995) creates problem instances of RCPSP
or the generalized multi-mode problem MRCPSP. Several network measures such as the
number of nodes, the network complexity, the number of predecessors and successors of a
node as well as parameters for the generation of the basic data and the resource
constraints can be specified.
The network generator of Demeulemeester et al. (1993) creates acyclic weakly connected
digraphs where each network structure (with given number of nodes and arcs) can be gen-
erated with exactly the same probability (strongly randomized networks). Due to the spe-
cific approach required for the strong randomness, other network measures such as re-
dundancy cannot be observed.
Whereas the networks generated by Kolisch et al. (1995) and Demeulemeester et al. (1993)
are so-called activity-on-node networks (A-on-N networks, that is, the activities are
identified with the nodes of the project network, the arcs define time and precedence
constraints), the generator of Agrawal et al. (1994) constructs activity-on-arc networks (A-
on-A networks) for which the arcs correspond to the activities of a project. Control
parameters are the number of nodes, the number of arcs, and the CI-index of reduction
complexity (which is defined to be the minimum number of node reductions sufficient to
reduce a series-parallel digraph to a single edge, cf. Bein et al. 1992).
An important generalization of RCPSP is problem RCPSP/max where maximal time lags
between the start of activities define additional time constraints. Maximal time lags can,
for instance, be used to model due dates, time-varying resource demands of activities, or
time windows due to technological or organizational restrictions. For applications we refer
to Neumann and Schwindt (1995).
A maximal time lag −Tij

max between activities i and j can be represented by a backward arc

 < j, i > from the node corresponding to activity j to the node corresponding to activity i in

the underlying A-on-N project network
r

N =< V ,E;c > . < j, i > is weighted with . The

introduction of backward arcs, however, generates cycle structures in
r

N . Thus, project
networks modeling precedence and time constraints of RCPSP/max instances are no

2

longer acyclic and we need specific techniques for the parameter-driven generation of
cycle structures.
The new problem generator ProGen/max developed within this paper is based on the
methodology of ProGen for the basic data generation and the construction of acyclic
network structures. The generation of resource demand and availability is adopted from
ProGen without almost any modification and will only be sketched briefly. The main
emphasis of this paper is on theoretical results for cyclic digraphs and methods
incorporated in ProGen/max for an efficent construction of cyclic networks taking into
account several measures like number, size, and density of cycle structures.

The remainder of this paper is organized as follows. Section 2 is concerned with three dif-
ferent optimization models for resource-constrained project scheduling with minimal and
maximal time lags, basic definitions of graph theory, theorems which will be used for the
network generation algorithms, and several network measures which are known from
literature. Two different approaches to the construction of cyclic networks, the direct and
the contraction method, are presented in Section 3. In Section 4 we summarize the genera-
tion of resource constraints developed by Kolisch et al. (1995). Section 5 deals with the
evaluation of the relationship between problem parameters and the hardness of problem
instances.

The problem generation can be outlined as follows:

Algorithm A1. Problem generation

(1) Basic data generation (cf. Subsection 3.1)

(2) Construction of the structure of the underlying project network (cf. Subsection 3.2)

(3) Determination of the activity durations (cf. Subsection 3.3)

(4) Determination of minimal and maximal time lags between activities (cf. Subsection
3.3)

(5) Generation of resource availability and resource demand (cf. Section 4)

3

2. Basic Concepts

2.1 Models for resource-constrained scheduling

ProGen/max generates instances of several types of multi-mode resource-constrained
project scheduling problems with minimal and maximal time lags and renewable, non-re-
newable, and doubly-constrained resources: The project duration problem MRCPSP/max,
the resource-leveling problem MRLP/max, and the resource investment problem
MRIP/max. Of course, special cases, such as MRCPSP or RLP/max can be obtained as
well, by fixing the number of maximal time lags to zero or, respectively, by restricting the
number of possible execution modes for any activity to one.
In this subsection we give a formal definition of the three problems MRCPSP/max,
MRLP/max , and MRIP/max. For more details and formulations as linear optimization
problems with binary variables, we refer to Franck and Schwindt (1996).

We introduce the following notation:

0, n+1 dummy activities representing the start and the end of the project, re-
spectively (D0 = Dn+1 = 0)

 bjlm weight of arc < j, l >∈E (m ∈Mj) with

bjlm:=

Tjlm
min , if there is a minimal time lag between activities j and l

−Tlj
max , if there is a maximal time lag between activities l and j

 ci integer-valued cost of one unit of resource i (i ∈Rρ ∪ Rν)

 Djm non-preemptable integer-valued duration of activity j scheduled in
mode m (j ∈V ,m ∈Mj)

E arc set of the underlying project network
r
G =< V ,E >

 Mj set of modes in which activity j can be performed (j ∈V)

 R
ρ set of renewable and doubly-constrained resources

 R
ν set of nonrenewable and doubly-constrained resources

 Ri
ρ integer-valued per period capacity of renewable (doubly-constrained)

resource i (i ∈Rρ)

 Ri
ν integer-valued total capacity of nonrenewable (doubly-constrained)

resource i (i ∈Rν)

rijm

ρ integer-valued per period usage of renewable (doubly-constrained) re-

source i performing activity j in mode m (j ∈V , i ∈Rρ ,m ∈Mj)

 rijm
ν integer-valued total consumption of nonrenewable (doubly-con-

strained) resource i performing activity j in mode m

 (j ∈V , i ∈Rν ,m ∈Mj)

 STj start time of activity j (j ∈V)
T fixed maximum project duration

 T upper bound on the project duration

4

 Tjlm
min ,Tjl

max minimal and maximal integer-valued time lags, respectively, between
the start of activities j and l. The minimal time lag is depending on exe-
cution mode m of activity j

 V = 0,... ,n + 1{ } set of activities which are to be performed. V at the same time corre-

sponds to the node set of the underlying project network
r
G =< V ,E >

 V(t) set of activities which are in progress at time t

 xjm binary variable which is exactly one, if activity j is performed in mode
m, zero otherwise (j ∈V ,m ∈Mj)

MRCPSP/max can be stated as follows:

(2.1) (MRCPSP / max)

min STn+1

s.t. STl − STj ≥ bjlmxjm
m∈Mj

∑ (< j, l >∈E)

rijm
ρ xjm ≤ Ri

ρ

m∈Mj

∑
j∈V(t)
∑ (i ∈Rρ , t = 0,...,T − 1)

rijm
ν xjm

m∈Mj

∑
j∈V
∑ ≤ Ri

ν (i ∈Rν)

xjm = 1
m∈Mj

∑ (j ∈V)

xjm ∈ 0,1{ } (j ∈V,m ∈Mj)

The project duration is to be minimized. Minimal and maximal time lags between activi-
ties as well as limited availabilities of renewable, nonrenewable, and doubly-constrained
resources have to be taken into account. Any job is performed in exactly one mode.

The resource leveling problem MRLP/max consists of the determination of a feasible
schedule which minimizes a monotonously increasing function of the variation in time of
resource requirements. Different objective functions can be found in literature. An objec-
tive function with many applications in practice is, for instance,

(2.2)

f (ST1,... ,STn):= ci max

t=0,...,T−1
rijm

ρ xjm
j∈V(t)
∑

i∈Rρ
∑

which corresponds to the mean resource availability which has to be provided if the re-
source availability (which is constant in time) is determined by the maximum resource re-
quirements during the execution of the project.

MRLP/max can be stated as follows:

5

(2.3) (MRLP / max)

min f (ST1,...,STn)

s.t. STl − STj ≥ bjlmxjm
m∈Mj

∑ (< j, l >∈E)

STn+1 ≤ T

rijm
ρ xjm

m∈Mj

∑
j∈V(t)
∑ ≤ Ri

ρ (i ∈Rρ , t = 0,...,T − 1)

rijm
ν xjm

m∈Mj

∑
j∈V
∑ ≤ Ri

ν (i ∈Rν)

xjm = 1
m∈Mj

∑ (j ∈V)

xjm ∈ 0,1{ } (j ∈V,m ∈Mj)

A leveling objective function f of schedule (ST1,... ,STn) is to be minimized. Analogously to
MRCPSP/max, precedence, time, and resource constraints must be observed and each
activity is performed in exactly one mode. Additionally, the project has to be completed by
a given point in time T.

The resource investment problem MRIP/max can be viewed as some kind of dualization
of MRCPSP/max (cf. Demeulemeester 1992). The objective is the minimization of the costs
for resource availability subject to the punctual completion of the project.

MRIP/max can be stated as follows:

(2.4) (MRIP / max)

min ciRi
ρ

i∈Rρ
∑ + ciRi

ν

i∈Rν
∑

s.t. STl − STj ≥ bjlmxjm
m∈Mj

∑ (< j, l >∈E)

STn+1 ≤ T

rijm
ρ

m∈Mj

∑
j∈V(t)
∑ xjm ≤ Ri

ρ (i ∈Rρ ,t = 0,... ,T − 1)

rijm
ν xjm

m∈Mj

∑
j∈V
∑ ≤ Ri

ν (i ∈Rν)

xjm = 1
m∈Mj

∑ (j ∈V)

xjm ∈ 0,1{ } (j ∈V ,m ∈Mj)

The only difference between MRIP/max and MRLP/max is made by the objective func-
tion.

2.2 Basic Definitions and Theorems

In this section, we provide some basic definitions and results for digraphs which are used
in Section 3 for the generation of cycle structures. For an introduction to the theory of
graphs and digraphs we refer to Bondy and Murty (1976), Berge (1985), or Neumann and
Morlock (1993).

6

We introduce the following notation. The symbols refer to digraph
r
G =< V ,E > or to net-

work
r
G =< V ,E;c > , repectively:

A adjacency matrix
C set of cycle structures

r
C(i) cycle structure to which node i ∈V belongs; not defined, if i ∈V is not in the set of

nodes of a cycle structure
r
C ∈C

 bij weight of arc <i,j>

 δ
−(i) outdegree of node i ∈V

 δ
+(i) indegree of node i ∈V

E set of arcs

 E(
r
G) set of arcs of digraph or network

r
G , respectively

I identity matrix
<i,j> arc from node i ∈V to node j ∈V
P(i) set of direct predecessors of node i ∈V
R set of sources
R reachability matrix
R(i) set of nodes j ∈V which are reachable from node i ∈V

 R (i) set of nodes j ∈V from which node i ∈V can be reached
S set of sinks
S(i) set of direct successors of node i ∈V
V set of nodes

 V(
r
G) set of nodes of digraph or network

r
G , respectively

We assume that digraph or network
r
G is simple, that is, it contains no parallel arcs or di-

rected loops.

Definition 1. Adjancency matrix A of a digraph

The adjacency matrix A of digraph
r
G =< V ,E > is defined to be the |V|×|V| matrix

aij()i , j∈V

with

aij :=

1, if < i, j >∈E

0, otherwise

.

Definition 2. Indegree and outdegree of node i ∈V

The indegree δ
−(i) of node i ∈V is defined to be the number of (direct) predecessors of

node i: δ
−(i):= P (i) .

Analogously, the outdegree δ
+(i) of node i ∈V is defined to be the number of (direct) suc-

cessors of node i: δ
+(i):= S(i) .

7

Definition 3. Reachability

A node j ∈V is called reachable from node i if j = i or if there is a (directed) path Wij with
origin i and terminus j.

Definition 4. Reachability matrix of a digraph

The reachability matrix R of digraph
r
G =< V ,E > is defined to be the n × n matrix

rij()i , j∈V

with

rij :=

1, if j is reachable from i
0, otherwise

.

Definition 5. Connectivity

Let
r
G =< V ,E > be a digraph with reachability matrix R. Two nodes i, j ∈V are called

connected in
r
G if i = j or if there is a sequence (i0 , i1,... , ik) of nodes is ∈V (s = 0,... ,k) with

i0 = i, ik = j, and 1 − (1 − ris−1 ,is

)(1 − ris ,is−1
)[]

s=1

k

∏ = 1.

Definition 6. Subdigraph and subdigraph induced by node set

A digraph
r
G' =< V ' ,E' > represents a subdigraph of digraph

r
G =< V ,E > if V ' ⊆ V ,E' ⊆ E

and (< i, j >∈E'⇒ i, j ∈V ').

A digraph
r
G' ' =< V ' ' ,E' ' > represents the (unique) subdigraph of digraph

r
G =< V ,E > in-

duced by node set V ' ' if V ' ' ⊆ V and (< i, j >∈E' ' ⇔ i, j ∈V ' ' ,< i, j >∈E).

Definition 7. Weak component

A weak component
r
G' =< V ' ,E' > of

r
G is defined to be a maximal subdigraph of

r
G (with

respect to V ') induced by node set V ' for which all nodes i, j ∈V ' are connected. A di-

graph
r
G which constitutes a weak component of itself is called weakly connected.

Remark 1.

If there is a subdigraph
r
G' =< V ' ,E' > of digraph

r
G =< V ,E > with V ' ⊂ V , such that

r
G' is a

weak component of
r
G , then

r
G is no weak component.

8

Definition 8. Network

An arc-weighted digraph
r
G =< V ,E;b > with c: E → IR is called network if the underlying

digraph
r
G =< V ,E > is weakly connected.

Definion 9. Strong component

A strong component
r
G' =< V ' ,E' > of

r
G is defined to be a maximal subdigraph of

r
G (with

respect to V ') for which all nodes i, j ∈V ' are mutuallay reachable. A digraph
r
G which

constitutes a strong component of itself is called strongly connected.

Remark 2.

Obviously, any strong component is a weak component, too.

Definition 10. Cycle structure

A cycle structure
r
C(i) =< V ' ,E' > of

r
G is a strong component of

r
G with V ' ≥ 2.

Remark 3.

A cycle structure
r
C =

r
C(i) =< V ' ,E' > is the subdigraph of

r
G induced by the node set

 V ' = R (i) ∩ R (i) with i{ } ⊂ V ' .

Definition 11. Contraction of a cycle structure.

The contraction of a cycle structure
r
C to a contracted cycle structure c in a digraph

r
G =< V ,E > is an operation on

r
G which derives a digraph

r
G' =< V ' ,E' > such that

(i) V ' := V \V(
r
C) ∪ c{ }

(ii)

E' := E \ < i, j >∈E i, j{ } ∩ V(
r
C) ≠ ∅{ }

∪ < c, j > ∃ < i, j >∈E:i ∈V(
r
C){ }

∪ < i,c > ∃ < i, j >∈E: j ∈V(
r
C){ }

9

Definition 12. Expansion of a contracted cycle structure

Let c be a contracted cycle structure
r
C in a digraph

r
G =< V ,E > and

r
G' =< V ' ,E' > a di-

graph with subdigraph
r
G . By the expansion of c with respect to

r
G' we mean an operation

on
r
G which derives a digraph

r
G' ' =< V ' ' ,E' ' > such that

(i) V ' ' := V ∪ (V(
r
C) ∩ V ')\ c{ }

(ii)

E' ' := < i, j >∈E' i, j{ } ⊆ V ' '{ }\ < i, j >∈E c ∈ i, j{ }{ }.

Definition 13. Redundant arc

An arc < i, j >∈E is said to be redundant in
r
G =< V ,E > if there is a (directed) path Wij in

r
G which contains more than one arc.

Remark 4.

Obviously, it holds that: < i, j > redundant ⇔ r'ij = 1 for
r
G' =< V ,E \ < i, j >{ } > with reach-

ability matrix R'.

Definition 14. Redundancy-generating arc

An arc < i, j >∈E is said to be redundancy-generating in
r
G =< V ,E > if < i, j > is redundant

in
r
G or if there is an arc < k, l >∈E and a (directed) path Wkl in

r
G such that < i, j > belongs

to Wkl.

Remark 5 (cf. Kolisch et al. 1995).

 < i, j > is redundancy-generating in
r
G ⇔ one of the following two cases is true

(i) j ∈R (i)\ S(i)
(ii) ∃l ∈R (j): P (l) ∩ R (i) ≠ ∅

Theorem 1.

Let
r
G =< V ,E > be an acyclic digraph with reachability matrix R and < i, j >∉E , and let

(2.5)

ρij := δ akl
l∈R (j)
∑

k∈R (i)
∑

 (i, j ∈V) with

δ(x):=

1, if x > 0
0, otherwise

.

10

Then, the following equivalences hold:

(i) j ∈R (i)\ S(i) ⇔ rij = 1

(ii) (∃l ∈R (j): P (l) ∩ R (i) ≠ ∅) ⇔ ρij = 1

Proof. Obvious.

Corollary 1.

Let
r
G =< V ,E > be an acyclic digraph with < i, j >∉E . The insertion of arc < i, j > generates

redundancy (that is, < i, j > is redundancy-generating in
r
G' =< V ,E ∪ < i, j >{ } >) exactly if

 rij + ρij > 0 .

Theorem 2.

The maximum number mred
max of arcs < i, j > which can be inserted in an acyclic digraph

r
G =< V ,E > without redundant arcs, such that < i, j > is redundant in digraph

r
G' =< V ,E ∪ < i, j >{ } > and

r
G' is acyclic is

(2.6)

mred

max = rij − V
i , j∈V
∑ − E .

Proof.

With Remark 4 and

(i) rii = 1 ∀i ∈V and
(ii) < i, j >∈E ⇒ rij = 1

we obtain

(2.7)

mred
max = rij

j∈V\ i{ }
<i , j>∉E

∑
i∈V
∑ = rij

i , j∈V
∑ − rii

i∈V
∑ − rij

<i , j>∈E
∑ = rij

i , j∈V
∑ − V − E . ❏

Theorem 3.

Let
r
G =< V ,E > be a digraph with reachability matrix R. Let

R2:= rij

(2)()
i , j∈V

 be the squared

reachability matrix. If rij = 1, the cardinality of node set V' of the cycle structure
r
C(i) =

r
C(j)

which results from the insertion of arc < j, i > in
r
G is

11

(2.8)

V ' = V(

r
C(i)) = V(

r
C(j)) = rij

(2) .

Proof.

Due to rij = 1, the insertion of arc < j, i > generates the cycle structure
r
C(i) =

r
C(j) with

node set R (i) ∩ R (i) = R (j) ∩ R (j) .

(i)

rij

(2) ≤ V ' :

rij

(2) = rikrkj
k∈V
∑ = l ∈V l ∈R (i) ∩ R (j){ } .

After the insertion of < j, i > we obtain: k ∈R (j) ∩ R (i) ∀ k ∈ l ∈V l ∈R (i) ∩ R (j){ }.

 ⇒ k ∈R (i) ∩ R (i) = R (j) ∩ R (j) = V(
r
C(i)) ∀ k ∈ l ∈V l ∈R (i) ∩ R (j){ }

 ⇒ l ∈V l ∈R (i) ∩ R (j){ } ⊆ V(
r
C(i))

⇒ rij

(2) ≤ V(
r
C(i)) = V '

(ii)

rij

(2) ≥ V '

After the insertion of < j, i > , let k ∈V be a node of the cycle structure
r
C(i). Then, k is

a node on a path Wij from node i to node j.

 ⇒ ∀k ∈V(
r
C(i)): rikrkj = 1

⇒ rikrkj

k∈V(
r
C(i))

∑ = V(
r
C(i))

⇒ rij

(2) ≥ V(
r
C(i)) = V '

(i), (ii)

⇒ rij

(2) = V ' ❏

Corollary 2.

Let
r
G =< V ,E > be a digraph with squared reachability matrix R2 and set of cycle

structures C. Then,

(2.9)

V(

r
C(i)) = rii

(2) ∀i ∈ V(
r
C)

r
C∈C
U .

12

Corollary 3.

Let
r
G =< V ,E > be a digraph with squared reachability matrix R2 and set of cycle

structures C. The number Γ:= C of cycle structures in
r
G is

(2.10)

Γ = 1
rii

(2)
i∈V
rii

(2) >1

∑ .

Remark 6.

For i ≠ j

rij

(2) ≤ 1 implies rij = 0 , since

rij

(2) = rikrkj
k∈V
∑ = rikrkj

k∈V\ i , j{ }
∑ + riirij + rijrjj ≥ riirij + rijrjj = 2rij > 1 if rij = 1.

Remark 7.

Let
r
G =< V ,E > be a digraph with adjacency matrix A and the squared reachability matrix

 R2 . Arc < i, j >∈E is redundant in
r
G exactly if aij = 1 and

rij

(2) > 2 .

Definition 15. Creation of a cycle structure within a digraph

Let
r
G =< V ,E > be a digraph with set of cycle structures C . By a creation of a cycle

structure
r
C(i) within

r
G we mean an operation on

r
G which derives a digraph

r
G' =< V ,E' >

with set of cycle structures C ' such that C ' ⊃ C , E' ⊃ E , and |E'|=|E|+1.

Definition 16. Extension of a cycle structure within a digraph

Let
r
G =< V ,E > be a cyclic digraph with set of cycle structures C ≠ ∅. By an extension of a

cycle structure
r
C(i) ∈C within

r
G we mean an operation on

r
G which derives a digraph

r
G' =< V ,E' > with set of cycle structures C ' such that |C|=|C '|, E' ⊃ E , |E'|=|E|+1, and

 ∃
r
C' (i) ∈C ' with V(

r
C' (i)) ⊃ V(

r
C(i)) .

Definition 17. Densification of a cycle structure within a digraph
r
G

Let
r
G =< V ,E > be a cyclic digraph with set of cycle structures C ≠ ∅. By a densification of

a cycle structure
r
C ∈C within

r
G we mean an operation on

r
G which derives a digraph

13

r
G' =< V ,E' > with set of cycle structures C ' such that |C|=|C '|, E' ⊃ E , |E'|=|E|+1, and

 V(
r
C' (i)) = V(

r
C(i)) ∀

r
C' (i) ∈C ' .

Definition 18. Acyclic skeleton of a digraph

Let
r
G' =< V ,E' > be a digraph with reachability matrix R'. We call digraph

r
G =< V ,E > with

reachability matrix R an acyclic skeleton of
r
G' if

(i) E ⊆ E'
(ii) rij ' rji ' = 0 ⇒ rij = rij '
(iii) rij ' rji ' = 1 ⇒ rij + rji = 1
(iv) rij = 1,< i, j >∈E'⇒< i, j >∈E

Theorem 4.

Let
r
G =< V ,E > be an acyclic digraph. Then, any cyclic digraph

r
G' =< V ,E' > for which

r
G is

an acyclic skeleton can be obtained by first performing creations of cycle structures within

r
G , then performing extensions of cycle structures within

r
G , and finally performing

densifications of cycle structures within
r
G .

Proof.

Let
r
G =< V ,E > with reachability matrix R be an acyclic skeleton of digraph

r
G' =< V ,E' >

with reachability matrix R' and set of cycle structures C' . The following algorithm
transforms

r
G to a digraph

r
G' ' =< V ,E' ' > : We will show that Step 1 corresponds to the

creation of cycle structures, Step 2 extends cycle structures, Step 3 densifies cycle
structures and that digraph

r
G' ' which is obtained at the end of Step 3 equals

r
G' .

(0) Initialization
 E' ' := E, R' ' := R,C ' ' := ∅.

(1) Creation of cycle structures
WITH

r
C'∈C ' DO
Determine an arc < i, j >∈(E'\E' ') ∩ E(

r
C').

 E' ' := E' ' ∪ < i, j >{ }. Update matrix R'' and set C ' ' .
END (* WITH *).

14

(2) Extension of cycle structures
WHILE

∃ < i, j >∈E'\E' ' : (rij ' ' = 0 ∧ i, j{ } ∩ V(

r
C' ')

r
C ' '∈C ' '
U ≠ ∅) DO

Select < i, j >∈E'\E' ' with

rij ' ' = 0 ∧ i, j{ } ∩ V(

r
C' ')

r
C ' '∈C ' '
U ≠ ∅.

 E' ' := E' ' ∪ < i, j >{ }. Update matrix R'' and set C ' ' .
END (* WHILE *).

(3) Densification of cycle structures
WITH < i, j >∈E'\E' ' DO

 E' ' := E' ' ∪ < i, j >{ }.
END (* WITH *).

For < i, j >∈E'\E it follows from (iv) that rij = 0 . With rij ' = 1 and (ii) we obtain rij ' rji ' = 1,
that is, < i, j >∈E'\E ⇒ rij ' rji ' = 1. With (iii) we obtain < i, j >∈E'\E ⇒ rji = 1.
That is the reason why the arcs < i, j >∈E'\E which are added to E' ' in Steps 1, 2, and 3

belong to one of the cycle structure
r
C' of

r
G' (< i, j >∈E(

r
C')). From rij = 0 , rji = 1, and (i) it

can be concluded that any arc added to E' ' in Step 1 generates an additional cycle structure
in

r
G' ' . Obviously, after Step 1 we have C ' ' = C ' . Due to (i) and C ' ' = C ' , no cycle

structure will be generated in Step 2 or Step 3.
Since in Step 1 no arc has been removed from E' ' , we have rij = 0 for any arc

 < i, j >∈E'\E' ' with rij ' ' = 0 after Step 1. Hence, rij ' ' = 0 ⇒ rij = 0 ⇒ rji ' = 1 for < i, j >∈E'\E' '

and the addition of arcs < i, j > in Step 2 extends a cycle structure
r
C' '∈C ' ' .

After Step 2, it holds that for any cycle structure
r
C'∈C ' there is a cycle structure

r
C' '∈C ' '

with V(
r
C' ') = V(

r
C') since, otherwise, there would be a cycle structure

r
C'∈C ' and nodes

 j, l ∈V(
r
C') with rjl = 0 which obviously contradicts the strong connectivity of

r
C' . Hence,

 rij ' rji ' = 1 ⇔ rij ' ' rji ' ' = 1. With < i, j >∈E'\E' '⇒< i, j >∈E'\E ⇒ rij ' rji ' = 1 ⇒ rij ' rji ' = 1 we have
shown that Step 3 corresponds to the densification of cycle structures. Due to (i), E' ' = E'
after Step 3. ❑

Lemma 1.

Let
r
G be an acyclic weak component with (at least) two sinks (that is, S ≥ 2). Then, for any

sink s ∈S , there are a further sink s'∈S, s' ≠ s and a source r ∈R , such that

 r ∈R (s) ∩ R (s').

Proof.

Since
r
G is acyclic, for each sink s ∈S there is a source r ∈R , such that r ∈R (s) .

Let us assume that for a given sink s there are no sink s'∈S, s' ≠ s and source r ∈R , such
that r ∈R (s) ∩ R (s').

15

 ⇒ R (s) ∩ R (s') = ∅ ∀s'∈S: s' ≠ s

⇒ the subdigraph
r
G' of

r
G induced by R (s) is a weak component of

r
G , and

r
G' ≠

r
G since

 s'∉R (s).
⇒

r
G is not weakly connected, which contradicts the assumptions. ❏

Lemma 2.

Let
r
G be an acyclic weak component with (at least) two sources (that is, R ≥ 2). Then, for

any source r ∈R , there are a further source r'∈R,r' ≠ r and a sink s ∈S , such that
 s ∈R (r) ∩ R (r') .

Proof. The proof can be led analogously to Lemma 1.

Theorem 5.

Let
r
G be an acyclic weak component with two sources and two sinks (that is, R ≥ 2,

 S ≥ 2). Then, there is always a sink s ∈S with R (s) ∩ R ≥ 2 , and for each sink s ∈S with

 R (s) ∩ R ≥ 2 there are two corresponding sources r,r'∈R,r ≠ r' with s ∈R (r) ∩ R (r') ,
where r can be chosen such that there is a sink s'∈S, s' ≠ s with r ∈R (s) ∩ R (s').

Proof.

Since
r
G is acyclic and weakly connected with R ≥ 2 and S ≥ 2, the assumptions of Lem-

mata 1 and 2 are met.
From Lemma 2 it follows that ∃ s ∈S: (∃ r1,r2 ∈R,r1 ≠ r2: s ∈R (r1) ∩ R (r2)) .
With Lemma 1 we obtain that there is a further sink s'∈S, s' ≠ s such that there is a source
 ̂r ∈R with ̂r ∈R (s) ∩ R (s') .

(i) ̂r ≠ r1, r̂ ≠ r2

 ⇒ r1,r2 , r̂ ∈R (s) and ̂r ∈R (s').
By setting r:= r̂ ,r' := r1 or r' := r2 , we obtain s ∈R (r) ∩ R (r') and r ∈R (s) ∩ R (s').

(ii) ̂r = r1

 ⇒ r2 , r̂ ∈R (s) and ̂r ∈R (s').
By setting r:= r̂ ,r' := r2 , we obtain s ∈R (r) ∩ R (r') and r ∈R (s) ∩ R (s').

(iii) ̂r = r2

 ⇒ r1, r̂ ∈R (s) and ̂r ∈R (s').
By setting r:= r̂ ,r' := r1, we obtain s ∈R (r) ∩ R (r') and r ∈R (s) ∩ R (s'). ❏

16

Corollary 4.

Let
r
G be an acyclic weak component with two sources and two sinks. Then, there are

sources r,r'∈R,r ≠ r' and sinks s, s'∈S, s ≠ s' such that r ∈R (s) ∩ R (s') and s ∈R (r').

Theorem 6.

Let
r
G be an acyclic weak component with two sources and two sinks. Let r,r'∈R,r ≠ r'

and s, s'∈S, s ≠ s' with r ∈R (s) ∩ R (s') and s ∈R (r').
Then, the insertion of arc < s,r > generates a cycle structure

r
C(r) =

r
C(s) such that the con-

traction of
r
C(r) =

r
C(s) to the contracted cycle structure c in

r
G derives a digraph

r
G' in

which c neither constitutes a source nor a sink.

Proof.

From Corollary 3 it follows that there are sources r,r'∈R,r ≠ r' and sinks s, s'∈S, s ≠ s'
with r ∈R (s) ∩ R (s') and s ∈R (r'). We obtain:

(i) r ∈R (s), s'∉V(
r
C(r)) ⇒ c ∈R (s')

(ii) s ∈R (r'),r'∉V(
r
C(r)) ⇒ c ∈R (r')

(i), (ii) ⇒ s'∈R (c) and r'∈R (c) which implies R (c)\ c{ } ≠ ∅ and R (c)\ c{ } ≠ ∅ . Hence, c
neither constitutes a sink nor a source. ❏

2.3 Network Measures

The structure of the underlying network generally has a strong impact on the time which
an exact algorithm requires for solving a sequencing problem as well as on the gap
between the objective function values of solutions which have been obtained by heuristics
and the objective function value of an optimum.
In literature, a large number of network measures can be found which describe the size,
the logic, and the shape of networks (cf. Thesen 1977, Elmaghraby and Herroelen 1980,
Davis 1975, Kaiman 1974, Kurtulus and Davis 1982, Patterson 1976).
Table 1 summarizes the control parameters used by ProGen/max for the generation of the
structure

r
G =< V ,E > of project network

r
N =< V ,E;b > :

17

Measure Definition
Number of nodes V
Thesen's estimator for the restrictiveness (see below)

RT =

2 rij
i , j∈V
∑ − 6(V − 1)

(V − 2)(V − 3)
Degree of redundancy

ρ =

< i, j >∈E rij
(2) > 2{ }

mred
max

Number of predecessors and number of successors of a node P (i) , S(i) (i ∈V)
Number of cycle structures

Γ:= C = 1
rii

(2)
i∈V
rii

(2) >1

∑

Number of backward arcs

< j, i >∈E rij = 1{ }
Number of nodes in a cycle structure

rii

(2) (i ∈ V(
r
C)

r
C∈C
U)

Table 1. Network measures

Instead of the most commonly used CNC coefficient of network complexity (that is, the
ratio of the number of arcs to the number of nodes), we employ one of the approximations
for the restrictiveness devised by Thesen (1977).

Definition 19: Restrictiveness of a digraph

Let
r
G =< V ,E > be a weakly connected digraph with exactly one source 0 and exactly one

sink n+1 and node set V = 0,1,... ,n,n + 1{ }. Let Π denote the number of permutations

 (i1, i2 ,... , in) of V ' = 1,... ,n{ } ⊆ V such that k < l ⇒ ik ∉R (il). The restrictiveness is defined

as

Ρ:= 1 − log Π

logn!
.

Remark 8.

 Ρ ∈[0,1], Ρ = 0 for parallel digraphs, and Ρ = 1 for series digraphs (cf. Thesen 1977).

Ρ represents an exact measure of the degree to which precedence constraints restrict the
number of feasible node sequences. Thus, Ρ is an appropriate index of network
complexity. The determination of Π , however, constitutes a hard combinatorial problem.
That is why Thesen has tested a set of over 40 different estimators for Ρ . With RT we
denote that estimator which yields the lowest mean relative error (with respect to Ρ) in
the empirical analysis of Thesen:

18

Definition 20. Estimator RT for the restrictiveness

Let
r
G =< V ,E > be a weakly connected acyclic digraph with exactly one source 0 and

exactly one sink n+1, node set V = 0,1,... ,n,n + 1{ } and reachability matrix R. Fictitious
(undirected) edges with incident nodes i, j ∈V between which no precedence relation has
been established (that is, i ∉R (j) ∪ R (j)) are called disjunctive arcs. Let nd be the number

of disjunctive arcs in digraph
r
G and let nd

max be the maximum number of possible disjunc-
tive arcs in a weakly connected digraph with node set V, exactly one source, and exactly
one sink. Then, the restrictiveness estimator RT is defined to be

(2.11)

RT:= 1 − nd

nd
max .

Theorem 7.

Let
r
G =< V ,E > be a weakly connected acyclic digraph with exactly one source 0 and

exactly one sink n+1, node set V = 0,1,... ,n,n + 1{ }, reachability matrix R, and
restrictiveness estimator RT. Then,

(2.12)

RT = 1 −

(n + 2)(n + 3) − 2 rij
i , j∈V
∑

n(n − 1)
.

Proof.

There is a disjunctive arc between nodes i, j ∈V exactly if rij + rji = 0 . Moreover,

 rij + rji = 0 ⇔ rij + rji − rijrji ≠ 1. Since
r
G is acyclic by assumption, we have rijrji = 0 for i ≠ j .

For the number of disjunctive arcs nd we obtain

(2.13)

nd = 1
2

(n + 2) − (rij + rji − rijrji)
j∈V
∑

i∈V

∑

= 1
2

(n + 2) − (rij + rji) + 1
j∈V
∑

i∈V

∑

= 1
2

(n + 2)2 + n + 2 − (rij + rji)
i , j∈V
∑

= 1
2

(n + 2)(n + 3) − 2 rij
i , j∈V
∑

.

19

Note that rii = 1 ∀i ∈V ,r0 j = 1 ∀j ∈V ,ri ,n+1 = 1 ∀i ∈V . From (2.13) it follows that the number
of disjunctive arcs is maximal if rij = 0 ∀i, j ∈V \{0,n + 1}, i ≠ j . Hence, we obtain for the

maximum number of disjunctive arcs

nd

max = 1
2

(n + 2)(n + 3) − 2 3(n + 2) − 3[][] = n(n − 1)
2

 .

Then,

RT = 1 − nd

nd
max = 1 −

1
2

(n + 2)(n + 3) − rij
i , j∈V
∑

n(n − 1)
2

= 1 −

(n + 2)(n + 3) − 2 rij
i , j∈V
∑

n(n − 1)
.

The computational results obtained by Thesen for the accuracy of RT w.r.t. the
restrictiveness Ρ of acyclic digraphs will be confirmed in Section 5.1. The properties of RT
stated in the following theorem could explain the very good performance of RT in
predicting the restrictiveness of networks.

Theorem 8.

Let
r
G =< V ,E > be a weakly connected acyclic digraph with exactly one source 0 and

exactly one sink n+1, node set V = 0,1,... ,n,n + 1{ }, reachability matrix R, and
restrictiveness estimator RT. For RT the following properties apply:

(i) RT ∈[0,1].

(ii) RT=0 exactly if
r
G is parallel.

(iii) RT=1 exactly if
r
G is serial.

(iv) The insertion of a non-redundant arc in
r
G increases RT.

(v) The insertion of a redundant arc in
r
G does not affect RT.

Proof.

From the weak connectivity of
r
G it follows that r0 j = 1 ∀j ∈V , ri ,n+1 = 1 ∀i ∈V ,

 ri0 = 0 ∀i ∈V , and rn+1, j = 0 ∀j ∈V .

(i)

Since
r
G is acyclic, it holds that

3n + 3 ≤ rij ≤ (n + 2)(n + 3)

2i , j∈V
∑ . For R T we obtain

(n + 2)(n + 3) − (n + 2)(n + 3)
n(n − 1)

= 0 ≤ 1 − RT ≤ 1 = (n + 2)(n + 3) − 6n − 6
n(n − 1)

.

20

(ii) parallel digraphs:

r
G is a parallel digraph ⇔ rij = 0 ∀i, j ∈V \ 0,n + 1{ }, i ≠ j . We obtain:

RT = 1 −

(n + 2)(n + 3) − 2 rij
i , j∈V
∑

n(n − 1)
= 1 −

(n + 2)(n + 3) − 2 rij
i , j∈V\R\S

∑ + rij
i∈R, j∈V

∑ + rij
i∈V\R, j∈S

∑

n(n − 1)

= 1 − (n + 2)(n + 3) − 2 n + n + 2 + n + 1()
n(n − 1)

= 1 − (n + 2)(n + 3) − 6n − 6
n(n − 1)

= 1 − n2 − n
n(n − 1)

= 1 − 1 = 0

(iii) series digraphs:

r
G is a series digraph ⇔ there is a permutation (0, j1,... , jn ,n + 1) of the nodes jν ∈ 1,... ,n{ }
such that

riµ jν

= 1 ⇔ µ ≤ ν. It can easily be shown, that in that case

rij = V (V + 1)

2i , j∈V
∑ = (n + 2)(n + 3)

2
. For RT we obtain:

RT = 1 −

(n + 2)(n + 3) − 2 rij
i , j∈V
∑

n(n − 1)
= 1 −

(n + 2)(n + 3) − 2
1
2

(n + 2)(n + 3)

n(n − 1)
= 1

(iv)

Obviously, the insertion of any arc < i, j > (i, j ∈V) in
r
G cannot decrease

rij

i , j∈V
∑ .

If < i, j > is not redundant, at least rij will be set from 0 to 1, which increases

rij
i , j∈V
∑ .

(v)

If < i, j > is redundant, there is a (directed) path Wij from i to j which includes more than
one arc. In that case, there will be no k, l ∈V such that rkl is set from 0 to 1. ❏

Remark 9.

Let ST:= (n!)1−RT be the estimator of Π based on RT. For cases (ii) and (iii) of Theorem 8,
ST represents the exact number of feasible permutations Π . Properties (iv) and (v) give a
(partial) explanation for the good behaviour of estimator ST even for digraphs which are
not parallel or series, since the insertion of non-redundant arcs always decreases the num-

21

ber of feasible permutations, whereas the introduction of additional redundant arcs does
not influence the precedence constraints.

Because of the good approximation of the number of feasible activity sequences, ST
probably has a strong impact on the hardness of instances of project scheduling problems.
Recently, de Reyck and Herroelen (1994) investigated the relationship between the
hardness of problem instances and the reduction complexity index CI of the underlying
project network for RCPSP and the time/cost tradeoff problem. In de Reyck (1995) it is
shown that the more intuitive measure RT plays an even more important role for the
computational effort required to solve instances of RCPSP. The empirical analysis
presented in Section 5.2 will show the strong impact of RT on the hardness of RCPSP/max
instances.

3. Generation of the Basic Data and the Network

3.1 Generation of the Basic Data

The user of ProGen/max has to enter values for the following basic data which will be
used for the construction of the project network and the generation of the resource data:

 n
min ,nmax minimal and maximal number of activities

 M
min , Mmax minimal and maximal number of modes per activity

 R
min ,Rmax minimal and maximal number of resources

 pρ ∈[0,1], pν ∈[0,1] percentage of renewable and nonrenewable resources, respec-
tively (the percentage of doubly-constrained resources is

 pδ := 1 − pρ − pν)

 c
ρ,min ,cρ,max minimal and maximal costs for the period availability of one

unit of a renewable or doubly-constrained resources

 c
ν,min ,cν,max minimal and maximal costs for the total availability of one unit

of a nonrenewable or doubly-constrained resources

Let rand a,... ,b{ } (a,b ∈IN0) be an integer pseudo random number out of the set a,... ,b{ }
and let rand[a,b] (a,b ∈IR) be a real pseudo random number out of the interval [a,b], both
based on a uniformly distributed pseudo random number generated with the congruence-
generator of Schrage (cf. Schrage 1979). With int(x) (x ≥ 0) we denote the rounded value of
x: int(x):= x + 0.5 .

The basic data is calculated as follows:

- number of activities:

n:= rand nmin ,... ,nmax{ }

- number of modes of activity j:

Mj := rand Mmin ,... , Mmax{ } (j ∈V \ 0,n + 1{ })

- number of resources:

Rρ ∪ Rν := rand Rmin ,... , Rmax{ }

- number of renewable resources:

Rρ \ Rν := int(pρ Rρ ∪ Rν)

22

- number of nonrenewable resources:

Rν \ Rρ := int(pν Rρ ∪ Rν)

- number of doubly-constrained resources:

Rν ∩ Rρ := int(pδ Rρ ∪ Rν)

- cost coefficients:

ci := rand cρ,min ,... ,cρ,max{ } (i ∈Rρ) and ci := rand cν,min ,... ,cν,max{ } (i ∈Rν)

3.2 Network Structure

Let
r
G =< V ,E > be the weakly connected digraph which represents the structure of the

project network
r

N =< V ,E;b > under consideration. Precedence and time constraints of
corresponding instances of problems MRCPSP/max, MRLP/max, and MRIP/max (cf.
(2.1), (2.3), and (2.4)) are given by the digraph

r
G and the corresponding minimal and

maximal time lags.

Obviously, several minimal time lags
1Tij

min ,...,nij Tij
min between two activities i and j can be

replaced by

Tij

min:= max
ν=1,...,nij

νTij
min , whereas several maximal time lags

1Tij
max ,...,nij Tij

max

between two activities i and j can be replaced by

Tij

max := min
ν=1,...,nij

νTij
max . A minimal time lag

 Tij
min between the start of activity i and the start of activity j can be represented by an arc

 < i, j > weighted by bij := Tij
min. A maximal time lag Tij

max between the start of activity i and
the start of activity j can be represented by a (backward) arc < j, i > weighted by

 bji := −Tij
max . Negative minimal time lags can be considered as positive maximal time lags

and vice versa (cf. Neumann and Schwindt 1995).
If there is a minimal time lag Tij

min > 0 and a maximal time lag Tji
max > 0 which both would

be represented by an arc < i, j > , the maximal time lag Tji
max can be neglected since it will

always be met if we observe the minimal time lag Tij
min. That is why there will be no paral-

lel arcs in digraph
r
G and the corresponding project network

r
N . Since a precedence or a

time constraint concerning a single activity does not make sense in project scheduling, we
can rule out the case of loops and the generation of the network structure can be limited to
the case of simple digraphs.

We consider two methods for the generation of cyclic network structures.
The first algorithm, called direct method in the following, starts with the generation of an
acyclic, generally not weakly connected digraph. Then, backward arcs are added to gener-
ate cycle structures. Finally, a supersource and a supersink are added to obtain a weakly
connected digraph.
The second algorithm, called contraction method in the following, first creates cycle struc-
tures which are then contracted. With the contracted cycle structures and the nodes not
employed during the first step we generate an acyclic, generally not weakly connected di-
graph, similarly to the direct method. Subsequently, the contracted cycle structures are
expanded and integrated into the digraph. Finally, we add a supersource and a supersink
to obtain a weakly connected digraph.

23

Algorithm A2. Direct method

(1) Generation of an acyclic digraph without redundancy

(1.1) Selection of sources and sinks (nodes which will correspond to initial and ter-
minal activities)

(1.2) Generation of direct predecessors
(1.3) Generation of direct successors
(1.4) Insertion of additional arcs such that the resulting digraph is still without

redundancy

(2) Insertion of redundant arcs

(3) Generation of cycle structures

(3.1) Creation of cycle structures
(3.2) Extension of cycle structures
(3.3) Densification of cycle structures

(4) Addition of a supersource and a supersink

Algorithm A3. Contraction method

(1) Generation of cycle structures

(1.1) Generation of several weak components
(1.2) Transformation of the weak components to cycle structures

(2) Contraction of the cycle structures to contracted cycle structures

(3) Generation of an acyclic digraph based on the contracted cycle structures and
additional nodes

(4) Expansion of the contracted cycle structures and insertion in the digraph

(5) Addition of a supersource and a supersink

Subsection 3.2.1 deals with the generation of an acyclic digraph, which will be used in the
direct and in the contraction method. In Subsection 3.2.2 we treat the case of cycle
structures.

24

3.2.1 Acyclic Network Structure

Suppose that the following input data for the generation of acyclic digraph
r
G =< V ,E > are

given:

V set of nodes

 Pn+1
min , Pn+1

max minimum and maximum number of sinks in
r
G

 S0
min ,S0

max minimum and maximum numner of sources in
r
G

 P
max maximum number of non-redundant arcs entering node j ∈V

 S
max maximum number of non-redundant arcs leaving node i ∈V

 RT restrictiveness of Thesen for acyclic weak components
ρ degree of redundancy in

r
G , that is, the percentage of redundant arcs in E

relative to mred
max

Algorithm A4. Generation of an acyclic digraph without redundancy

Set V:= 1,... ,n{ } and E:= ∅ . Initialize adjacency matrix A:= O and reachability matrix
R := I.

(1) Generation of sources and sinks

Determine a random number

r:= rand S0

min ,... ,S0
max{ } of sources and a random number

s:= rand Pn+1

min ,... , Pn+1
max{ } of sinks.

Let 1,... ,r be the sources of
r
G : Pj

max := 0 ∀j ∈R:= 1,... ,r{ } .

Let n − s + 1,... ,n be the sinks of
r
G : Si

max := 0 ∀i ∈S:= n − s + 1,... ,n{ }.

 Pj
max := Pmax , Sj

max := Smax ∀j ∈ r + 1,... ,n − s{ }.

(2) Generation of direct predecessors

 Vp := V \ R .
WHILE Vp ≠ ∅ DO

Select randomly a node j ∈Vp .

 Vp := Vp \ j{ }.
Determine set Pj of possible predecessors of node j:

Pj := i ∈V rij + ρij = 0,rji = 0,δ+(i) = 0{ }.

IF Pj = ∅ THEN

Pj := i ∈V ρij = 0,rji = 0,δ+(i) < Si

max{ }.

END (* IF *).
Select randomly a node i ∈Pj .

25

Insert arc < i, j > in
r
G : E:= E ∪ < i, j >{ }.

Update sets Pj , P , S ,R , and R :

 Pj := Pj \(R (i) ∪ R (i))

 P (j):= P (j) ∪ i{ }.

 S(i):= S(i) ∪ j{ }.

 R (l):= R (l) ∪ k{ } ∀(k, l): k ∈R (i), l ∈R (j) .

 R (k):= R (k) ∪ l{ } ∀(k, l): k ∈R (i), l ∈R (j).

Update matrices A, R, and R2 (cf. Figure 1):
A: aij := 1.

R: rkl := 1 ∀(k, l): k ∈R (i), l ∈R (j) .

 R2 : rkl
(2):= R (k) ∩ R (l) ∀(k, l): k ∈R (i), l ∈R (j) .

END (* WHILE *).

k i j l

Fig. 1. Insertion of arc < i, j >

(3) Generation of direct successors

 Vs:= V \ R .
WHILE Vs ≠ ∅ DO

Select randomly a node i ∈Vs .

 Vs:= Vs \ i{ } .
Determine set Si of possible successors of node i:

Si := j ∈V rij + ρij = 0,rji = 0,δ−(j) < Pj

max{ } .

Select randomly a node j ∈Si .

Insert arc < i, j > in
r
G : E:= E ∪ < i, j >{ }.

Update sets Si ,P , S ,R , and R :

 Si := Si \(R (j) ∪ R (j))

 P (j):= P (j) ∪ i{ }.

 S(i):= S(i) ∪ j{ }.

 R (l):= R (l) ∪ k{ } ∀(k, l): k ∈R (i), l ∈R (j) .

 R (k):= R (k) ∪ l{ } ∀(k, l): k ∈R (i), l ∈R (j).

Update matrices A, R, R2 :
A: aij := 1.

R: rkl := 1 ∀(k, l): k ∈R (i), l ∈R (j) .

 R2 : rkl
(2):= R (k) ∩ R (l) ∀(k, l): k ∈R (i), l ∈R (j) .

END (* WHILE *).

26

(4) Generation of additional arcs which do not generate redundancy

Determine the estimator for the restrictiveness rt of
r
G :

rt =

2 rij
i , j∈V
∑ − 2n

n(n − 1)
 (cf. 2.11; notice that the supersource 0 and the supersink n + 1 have not

been introduced).

IF rt < RT THEN
Determine the set of nodes P whose indegree can be increased:

P:= i ∈V δ+(i) < Si

max{ }.

WHILE rt < RT DO
Select randomly a node i ∈P .
Determine the set Si of possible successors of node i:

Si := j ∈V rij + ρij = 0,rji = 0,δ−(j) < Pj

max{ } .

IF Si = ∅ THEN

 P:= P \ i{ }
ELSE

Select randomly a node j ∈Si .

Insert arc < i, j > in
r
G : E:= E ∪ < i, j >{ }.

Update sets P,P , S ,R , and R :
IF δ

+(i) = Si
max THEN

 P:= P \ i{ }.
END (* IF *).

 P (j):= P (j) ∪ i{ }.

 S(i):= S(i) ∪ j{ }.

 R (l):= R (l) ∪ k{ } ∀(k, l): k ∈R (i), l ∈R (j) .

 R (k):= R (k) ∪ l{ } ∀(k, l): k ∈R (i), l ∈R (j).

Update matrices A, R, R2 , and restrictiveness estimator rt:
A: aij := 1.

rt:

rt:= rt + 2

n(n − 1)
(k, l) ∈V × V rkl = 0,k ∈R (i), l ∈R (j){ } .

R: rkl := 1 ∀(k, l): k ∈R (i), l ∈R (j) .

 R2 : rkl
(2):= R (k) ∩ R (l) ∀(k, l): k ∈R (i), l ∈R (j) .

END (* IF *).
END (* WHILE *).

END (* IF *). ❏

27

Algorithm 5. Insertion of redundant arcs in a digraph without redundancy

Determine the number of redundant arcs to be inserted in
r
G :

mred := ρmred

max
(cf. Theorem 2).

 mnonRed := E .

P:= i ∈V δ+(i) < V \ R{ }\S.

WHILE E < mnonRed + mred DO
Select randomly a node i ∈P .
IF i has been selected for the first time THEN

Determine the set Si of possible successors of node i:

Si := j ∈V \ R rij = 1, aij = 0,rji = 0{ } .

END (* IF *).
IF Si = ∅ THEN

 P:= P \ i{ }.
ELSE

Select randomly a node j ∈Si .

Insert arc < i, j > in
r
G : E:= E ∪ < i, j >{ }.

Update sets P,Si ,P , and S (R and R remain unchanged):

IF δ
+(i) = V \ R THEN

 P:= P \ i{ }.
END (* IF *).

 Si := Si \ j{ }.

 P (j):= P (j) ∪ i{ }.

 S(i):= S(i) ∪ j{ }.

Update matrix A (matrices R and R2 remain unchanged):
A: aij := 1.

END (* IF *).
END (* WHILE *). ❏

Remark 10.

The application of Algorithm A5 does not influence the restrictiveness of
r
G .

Remark 11.

The insertion of an arc < i, j > in Algorithm A5 generates exactly one redundant arc,
namely < i, j > . If we replaced rij = 1 by rij + ρij > 0 for the determination of set Si , we
would not restrict ourselves to redundant arcs < i, j > but could also insert redundancy-
generating arcs < i, j > , which are not redundant. In this case, however, the insertion of arc

 < i, j > would increase the restrictiveness of
r
G .

28

3.2.2 Cycle Structures

Suppose that the following input data for the generation of cycle structures in the acyclic
digraph

r
G =< V ,E > are given:

 MTLmin , MTLmax ∈[0,1] minimum and maximum percentage of maximum time lags, re-
spectively

 CSmin ,CSmax minimum and maximum number of cycle structures, respec-
tively

 nc
min ,nc

max minimum and maximum cardinal number of a cycle structure,
respectively

 δ ∈[0,1] percentage of arcs employed for cycle structure densification

Algorithm 6. Generation of the structure of a cyclic network: Direct method

Determine randomly the number t of backward arcs corresponding to maximal time lags

which will be inserted in
r
G :

t:= rand E MTLmin ,... , E MTLmax { } .

Determine randomly the number CS of cycle structures which are to be generated in
r
G :

CS:= rand CSmin ,... ,min t,CSmax{ }{ }.

Initialize the set of cycle structures C := ∅.

(1) Creation of cycle structures

Set P:= V .

WHILE

Γ:= 1
rii

(2)
i∈V
rii

(2) >1

∑ < CS DO (cf. Corollary 2)

Select randomly a node i ∈P .
Determine the set Ti of nodes j for which a maximal time lag Tij

max (a corresponding
backward arc < j, i > , respectively) can be introduced:

Ti := j ∈V \ i{ } ricrcj = 0,nc

min ≤ rij
(2) ≤ nc

max

c∈C
∑

 (cf. Theorem 3).

Select randomly a node j ∈Ti .

Insert arc < j, i > in
r
G : E:= E ∪ < j, i >{ }.

 t:= t − 1.

Update set of cycle structures:

C := C ∪

r
C(i){ }.

29

Update sets P,P , S ,R , and R :

 P:= P \(R (j) ∩ R (i))

 P (i):= P (i) ∪ j{ } .

 S(j):= S(j) ∪ i{ } .

 R (h):= R (h) ∪ g{ } ∀(h, g): h ∈R (j), g ∈R (i).

 R (g):= R (g) ∪ h{ } ∀(h, g): h ∈R (j), g ∈R (i) .

Update matrices A, R, and R2 (cf. Figure 2):
A: aji := 1.

R: rhg := 1 ∀ (h, g): h ∈R (j), g ∈R (i) .

 R2 :

rhg

(2):= R (g) ∩ R (h) ∀(h, g): h ∈R (j), g ∈R (i).

Let c be the contracted cycle structure of
r
C(i) =

r
C(j) .

Insert new column c and new row c in matrices R and R2 :

 rhc := 1 ∀h ∈R (j).

 rcg := 1 ∀g ∈R (i).
END (* WHILE *).

k i j l

g h

Fig. 2. Insertion of arc < j, i >

(2) Extension of cycle structures

Determine the number te of arcs to be used for the extension of cycle structures:

 te := C + (1 − δ)(t − C) .
Set P:= V .
WHILE te > 0 DO

Select randomly a node i ∈P .
Determine the set Ti of nodes j for which a maximal time lag Tij

max (a corresponding
backward arc < j, i > , respectively) can be introduced:

Ti := j ∈V \ i{ } rij = 1, ricrcj

c∈C
∑ = 1,nc

min ≤ rij
(2) ≤ nc

max

.

IF Ti = ∅ THEN

 P:= P \ i{ }.
ELSE

Select randomly a node j ∈Ti .

30

Insert arc < j, i > in
r
G : E:= E ∪ < j, i >{ }.

 t:= t − 1.

 te := te − 1.
Update sets P , S ,R , and R :

 P (i):= P (i) ∪ j{ } .

 S(j):= S(j) ∪ i{ } .

 R (h):= R (h) ∪ g{ } ∀(h, g): h ∈R (j), g ∈R (i).

 R (g):= R (g) ∪ h{ } ∀(h, g): h ∈R (j), g ∈R (i) .

Update matrices A, R, and R2 :
A: aji := 1.

R: rhg := 1 ∀(h, g): h ∈R (j), g ∈R (i),

 R2 :

rhg

(2):= R (g) ∩ R (h) ∀(h, g): h ∈R (j), g ∈R (i).

Let c be the contracted cycle structure
r
C with i, j{ } ∩ V(

r
C) ≠ ∅.

 rhc := 1 ∀h ∈R (j).

 rcg := 1 ∀g ∈R (i).
END (* IF *).

END (* WHILE *).

(3) Densification of cycle structures

Set P:= V .
WHILE t > 0 DO

Select randomly a node i ∈P .
IF i has been selected for the first time THEN

Determine the set Ti of nodes j for which a maximal time lag Tij
max (a corre-

sponding backward arc < j, i > , respectively) can be introduced:

Ti := j ∈V \ i{ } aji = 0,rij = 1,rji = 1{ }.

END (* IF *).
IF Ti = ∅ THEN

 P:= P \ i{ }.
ELSE

Select randomly a node j ∈Ti .

Insert arc < j, i > in
r
G : E:= E ∪ < j, i >{ }.

 t:= t − 1.

31

Update sets Ti ,P , and S (R and R remain unchanged):

 Ti := Ti \ j{ } .

 P (i):= P (i) ∪ j{ } .

 S(j):= S(j) ∪ i{ } .

Update matrix A (R and R2 remain unchanged):
A: aji := 1.

END (* IF *).
END (* WHILE *). ❏

Let
r
G =< V ,E > be a digraph. The following algorithm introduces a supersource 0 and a

supersink n + 1, thus transforming
r
G into a weakly connected digraph.

Algorithm A7. Addition of supersource 0 and supersink n+1

 V:= V ∪ 0,n + 1{ }.

 E:= E ∪ < 0, j > j ∈R{ } ∪ < i,n + 1 > i ∈S{ }.

 a0, j := 1 ∀j ∈R, ai ,n+1:= 1 ∀i ∈S .

 P (j):= P (j) ∪ 0{ } ∀j ∈R, S(i):= S(i) ∪ n + 1{ } ∀i ∈S

 r0, j := 1 ∀j ∈V , ri ,n+1:= 1 ∀i ∈V .

 R (0):= V ,R (n + 1):= V . ❏

The direct method for the generation of cyclic networks consists of the application of
Algorithms A5, A6, and A7. Since cycle structures are constructed by the subsequent in-
sertion of backward arcs in the acyclic digraph, it may happen that a feasible number

CS ≤ n

nc
min

 of cycle structures cannot be generated.

In the following, we develop another algorithm for network structure generation. The
contraction method first constructs cycle structures which are then inserted in an acyclic
network. Thus, any feasible number of cycle structures can be generated. On the other
hand, the control of the restrictiveness must be limited to the generation of the acyclic
skeleton of the isolated cycle structures in Step 1 and the construction of the aggregated
network (including nodes corresponding to contracted cycle strucutures) in Step 4.

32

Algorithm A8. Generation of the structure of a cyclic network: Contraction method

Determine randomly the number t of backward arcs corresponding to maximal time lags

which will be inserted in
r
G :

t ∈ E MTLmin ,... , E MTLmax { }.

Determine randomly the number CS of cycle structures which are to be generated in
r
G :

CS ∈ CSmin ,... ,min t,CSmax{ }{ }.

(1) Generation of CS acyclic digraphs

Determine a random partitioning X := Vν ν = 1,... ,CS{ } of a subset V ' of the set V of nodes

(

V ' ∈ nc

minCS,... ,nc
maxCS{ }) such that X = CS and

Vν ∈ nc

min ,... ,nc
max{ } ∀ν = 1,... ,CS.

Construct CS acyclic digraphs
r
Gν =< Vν ,Eν > by performing Steps 1, 2, and 3 of Algorithm

A4. Let Rν be the set of sources and let Sν be the set of sinks of digraph
r
Gν .

(2) Transformation of the CS acyclic digraphs into strongly connected digraphs

Compute the number t
min of arcs required for the transformation of any digraph

r
Gν =< Vν ,Eν > to a strongly connected digraph

r
G'ν =< Vν ,E'ν > (ν = 1,... ,CS):

tmin:= max Rν , Sν{ }

ν=1

CS

∑ .

t:= max t,tmin{ }. Determine a random vector t:= (t1,t2 ,... ,tCS) with tν ≥ max Rν , Sν{ }

 ∀ν = 1,... ,CS and

tν
ν=1

CS

∑ = t .

FOR ν = 1,... ,CS DO

 tν,d := tν − max Rν , Sν{ }
Transform

r
Gν =< Vν ,Eν > to a strongly connected digraph

r
G'ν =< Vν ,E'ν > by ap-

plying Algorithm A9.
Perform Step 4 of Algorithm A4 and Algorithm A5.
Insert tν,d further arcs by densifying

r
G'ν using Step 3 of Algorithm A6. Instead of

V, set P has to be initialized with P:= Vν and the formula for the determination of

set Ti has to be replaced by

Ti := j ∈Vν aji = 0{ }.

END (* FOR *).

33

(3) Contraction of all cycle structures

Set

C :=

r
G'ν

ν=1,...,CS
U . Replace the nodes of all cycle structures

r
G'ν by the corresponding con-

tracted cycle structure cν :

V:= V \ V(

r
G' ν

ν=1,...,CS
U) ∪ cν{ }

ν=1,...,CS
U .

(4) Construction of an acyclic multidigraph

Construct an acyclic digraph
r
G =< V ,E > based on the (new) node set V using algorithms

A4 and A5. Since the contracted cycle structures actually consist of several nodes, an arc

 < i, j > being incident with a node cν can be in parallel up to

V(

r
G'ν) times.

(5) Expansion of cycle structures

FOR ν = 1,... ,CS DO
Set Eν:= < i, j >∈E i = cν ∨ j = cν{ }.

Expand cycle structure
r
G'ν by replacing node cν in the node set V of

r
G by V(

r
G'ν) .

Update E: E:= E \ Eν ∪ E'ν.

Determine a random assignment of arcs < i, j >∈Eν to nodes i ∈V(
r
G'ν) or

 j ∈V(
r
G'ν), respectively:

WHILE Eν ≠ ∅DO
Select an arc < i, j >∈Eν .

 Eν:= Eν \ < i, j >{ }.
IF i = cν THEN

Select randomly a node k ∈V(
r
G'ν).

Insert arc < k, j > in
r
G : E:= E ∪ < k, j >{ } .

 akj := 1.
ELSE

Select randomly a node l ∈V(
r
G'ν) .

Insert arc < i, l > in
r
G : E:= E ∪ < i, l >{ } .

 ail := 1.
END (* IF *).

END (* WHILE *).
END (* FOR *).

(6) Addition of supersource 0 and supersink n+1

Add supersource 0 and supersink n+1 applying Algorithm A7. ❏

34

The following algorithm which is used in Step 2 of the contraction method transforms a
digraph into a strong component inserting a minimal number of additional arcs.

Algorithm A9. Generation of a strong component
r
G' =< V ,E' > based on a given subdi-

graph
r
G =< V ,E >

(1) Generation of an acyclic weak component

r
G' :=

r
G.

Compute the set C of all cycle structures of
r
G' with an algorithm which can be found in

Even (1979):

C :=

r
C(i) i ∈V{ }.

Contract all cycle structures
r
C(i) ∈C .

Let R be the set of sources of
r
G' and S be the set of sinks of

r
G' .

Let SC and SG be empty stacks.

Let

r
G1,

r
G2 ,... ,

r
GWC{ } be the set of weak components of

r
G' .

FOR ν = 1,... ,WC − 1 DO
Let s be a sink of

r
Gν and let r be a source of

r
Gν+1 .

Insert arc < s,r > .

 R:= R \ r{ },S:= S\ s{ } .
END (* FOR *).

(2) Elimination of sources and sinks

WHILE S > 0 and R ∩ S = ∅ DO
IF R = 1

Select an arbitrary sink s ∈S and the unique source r ∈R .
Insert arc < s,r > .

R:= R \ r{ } ∪

r
C(r){ },S:= S\ s{ }.

IF S = 0

S:= S ∪

r
C(r){ } .

END (*IF*).
ELSIF S = 1

Select the unique sink s ∈S and an arbitrary source r ∈R .
Insert arc < s,r > .

R:= R \ r{ },S:= S\ s{ } ∪

r
C(r){ }.

ELSE
Select a sink s ∈S with R (s) ∩ R ≥ 2 .
Determine a source r ∈R with s ∈R (r) and R (r) ∩ S ≥ 2.
Insert arc < s,r > .

 R:= R \ r{ },S:= S\ s{ } .
END (* IF *).

35

 SC:= SC ∪ C(r).

SG:= SG ∪

r
G'{ }.

Contract cycle structure
r
C(r) .

END (* WHILE *).

(3) Expansion of the cycle structures

WHILE SC ≠ ∅ DO

r
C(r) := Head(SC).

r
G' ' := Head(SG).
Expand

r
C(r) in

r
G' with respect to

r
G' ' in analogy to step 5 of Algorithm A8.

SC:= SC \

r
C(r){ }.

SG:= SG \

r
G' '{ }.

END (* WHILE *). ❑

Remark 12.

Applying Algorithm A9 in the contraction method, the algorithm for the identification of
cycle structures can be skipped since

r
G is acyclic.

Theorem 9.

(a) Algorithm A9 is correct (that is, it generates a strong component
r
G' with subdigraph

r
G in a finite number of steps).

(b) Among all strong components with subdigraph
r
G , the strongly connected digraph

r
G' generated contains the minimum number of arcs.

Proof.

(a) The contraction of the cycle structures in Step 1 yields an acyclic digraph
r
G' consist-

ing of W C weak components, each having at least one source and one sink. The
insertion of W C –1 arcs which weakly connect subdigraphs

r
Gν and

r
Gν+1

 (ν = 1,... ,WC − 1) obviously makes digraph
r
G' a weak component. Like any acyclic

digraph,
r
G' has at least one source and one sink.

If R ∩ S ≠ ∅,
r
G' consists of only one node and we skip to Step 3.

Since s ∈R (s) for each of the three cases, we generate a new cycle structure in every
pass of Step 2 which is contracted in

r
G' , that is, each digraph

r
G' obtained at the end

of Step 2 is acyclic and weakly connected, too. Due to Theorem 5, there can always be
selected a source r ∈R and a sink s ∈S satisfying the conditions specified in Step 2.

36

At any pass of Step 2, the number of nodes is reduced by at least one. The algorithm
passes to Step 3, if there remains only one sink which represents a source at the same
time. This is, due to the weak connectivity of all intermediate digraphs

r
G' , true ex-

actly if there remains only one node. Since V is finite, this will be achieved after a fi-
nite number of passes of Step 2.
The successive expansion of contracted cycle structures in Step 3 finally yields a
strong component which constitutes a subdigraph of the underlying digraph

r
G .

(b) The contraction of all cycle structures of digraph
r
G leads to an acyclic digraph

r
G'

with set of sources R and set of sinks S. The number of arcs required for the trans-
formation of

r
G' into a strong component will be the same as the number of arcs

required for the transformation of
r
G into a strong component.

The insertion of an arc < i, j > (i, j ∈V) can at most eliminate one source and one sink.
Obviously, the node set of a strong component does not contain sources or sinks.
Therefore, the minimum number of arcs which are required to make

r
G strongly

connected is max R , S{ }.
In Step 1, in each insertion of an arc < s,r > exactly one source and one sink are elim-
inated without creating a new cycle structure in

r
G' (s ∉R (r) , since r and s are nodes

which initially belong to two different weak components of
r
G').

Considering Step 2, we have to distinguish between four cases.

(i) R = 1, S ≥ 2

By the insertion of < s,r > and the subsequent contraction of
r
C(r) to node c, we elimi-

nate source r and sink s, obtaining an additional source c.

(ii) R ≥ 2, S = 1

By the insertion of < s,r > and the subsequent contraction of
r
C(r) to node c, we elimi-

nate source r and sink s, obtaining an additional sink c.

(iii) R ≥ 2, S ≥ 2

By Theorem 6, the insertion of < s,r > and the subsequent contraction of
r
C(r) to node

c reduces both the number of sources and the number of sinks by one.

(iv) R = 1, S = 1

By the insertion of < s,r > and the subsequent contraction of
r
C(r) to node c, we elimi-

nate source r and sink s, obtaining an additional source c which constitutes a sink at
the same time, that is, R = 1, S = 1 and R ∩ S ≠ ∅.

r
G' consists of the single node c.

37

All in all, the algorithm inserts

WC − 1
Step 1
1 2 3 + R − S

Case 1, 2
1 2 3

+ min R , S{ } − (WC − 1) − 1
Case 3

1 24 4 4 4 34 4 4 4
+ 1

Case4
123

Step 2
1 24 4 4 4 4 4 4 4 34 4 4 4 4 4 4 4

= max R , S{ }

arcs in
r
G , which represents, as seen above, the minimum number required to achieve

the strong connectivity of
r
G' . ❏

Remark 13. Time complexity of Algorithm A9

The time complexity of Step 1 of Algorithm A9 is O(E), since O(E) represents the time
required for the identification of cycle structures.
Let R be the set of sources and S be the set of sinks in the acyclic digraph

r
G' obtained at

the end of Step 1. Then, the time complexity of Step 2 is O(min R , S{ }(R + S)).

The time complexity of Step 3 is O(E') = O(E + max R , S{ }), since the expansion of cycle

structure
r
C(r) can be done in

O(E(

r
C(r)) and

E(
r
C(r)

r
C(r)∈C
U) ⊆ E' .

Hence, the time complexity of Algorithm A9 is O(E + min R , S{ }(R + S)) .

3.3 Activity Durations and Arc weights

Let
r
G =< V ,E > be the weakly connected digraph generated in Subsection 3.2. (Forward)

arcs generated in Subsection 3.2.1 belong to minimal time lags, (backward) arcs generated
in Subsection 3.2.2 belong to maximal time lags. For the representation of precedence and
time constraints by the project network

r
N =< V ,E;b > we have to determine a weight bij

for any arc < i, j >∈E .
In this subsection we generate activity durations Djm (j ∈V ,m ∈Mj). Based on these dura-
tions, minimal and maximal time lags (arc weights bij) are calculated for < i, j >∈E .

The following input data have to be specified by the user of ProGen/max:

 D
min ,Dmax integer-valued minimal and maximal duration of an activity

 εd ∈[0,∞) maximal relative deviation of minimal time lags from activity durations

 CST ∈[0,1] cycle structure tightness
 SF ∈[0,∞) slack factor
 PDT ∈[0,1] project duration tightness

Activity durations Djm (j ∈V \ 0,n + 1{ },m ∈Mj) are generated randomly out of the set

Dmin ,... ,Dmax{ }:

Djm:= rand Dmin ,... ,Dmax{ } .

38

In contrast to the problem generator of Kolisch et al. (1995), the minimal time lags Tijm
min

between two activities i, j may be different from the duration Dim of activity i. This way,
overlappings and waiting times between activities can be modeled. We introduce an index

 εd ∈[0,∞) such that the minimal time lag Tijm
min between the start of activity i and the start

of activity j depending on the execution mode m ∈Mi of activity i lies in the interval

 [(1 − εd)Dim ,(1 + εd)Dim]. As mentioned in Section 2, Tijm
min < 0 can be viewed as a positive

maximal time lag Tjim
max := −Tijm

min > 0 between activities j and i.

The maximal time lag Tij
max between the start of activity i and the start of activity j is de-

termined randomly in interval (cf. Figure 3)

(3.1)

b(i, j) − (b(i, j) − a(i, j))CST2 , [b(i, j) − 2(b(i, j) − a(i, j))CST + (b(i, j) − a(i, j))CST2](1 + SF)[].

Tij
max

a(i, j)

1

CST

b(i,j)(1+SF)
b(i,j)

a(i,j)(1+SF)

Fig. 3. Interval for maximal time lags depending on the cycle structure tightness CST

 a(i, j) represents the minimum time lag between the start of activity i and the start of
activity j induced by the precedence constraints. b(i, j) corresponds to a maximal time lag
which can always be met (observing precedence and resource constraints).

Let
r

N ' =< V ,E' ;b' > be the weakly connected acyclic network with

b'kl := max

m∈Mk

Tklm
min{ }

 (< k, l >∈E'), where E' is the subset of E which contains all arcs corresponding to minimal
time lags. S ' (i) denotes the set of direct successors of node i in

r
N ' . a(i,j) and b(i,j) can be

computed as follows:

(3.2)
 a(i, j):= L r

N (i, j) := length of a longest (directed) path from i to j in
r

N ' .

(3.3)

b(i, j):= max

m∈Mkk∈R (i)∩R (j)\ j{ }
∑ max Dkm , max

l∈S' (k)∩R (j)
Tklm

min

.

Note that R (i) and R (j) denote the corresponding sets in (the cyclic network)
r

N .

If the problem instances to be generated are of type MRLP/max or MRIP/max, we have to
determine an appropriate value for the project duration T. A lower bound Tmin on the
project duration is given by

 T
min:= L r

N ' (0,n + 1).

39

For each cycle structure
r
C ∈C in

r
N we determine earliest start times ESTj and latest finish

times LFTj of activities j ∈V(
r
C). An upper bound Tmax on the project duration is then

given by

Tmax := max
j∈V(

r
C)

LFTjr
C∈C
∑ + max

m∈Mjj∈V\ V(
r
C)

r
C∈C
U
∑ Tijm

min .

The project duration T is determined as follows: T:= Tmin + int(PDT(Tmax − Tmin)).

4. Resource Demand and Availability Generation

The third kind of restrictions besides precedence and time constraints given by the project
network are limitations due to scarce resources. The relationship between resource
demand and resource availability strongly influences the set of feasible subsets (cf.
Mingozzi at al. 1994). A feasible subset F is defined to be a subset of the set of activities
such that all activities of F can be executed at the same time taking precedence, time, and
resource constraints into account (evidently, F depends on the modes in which the
activities are performed).
Numerous resource characteristics for resource-constrained scheduling problems can be
found in literature, for example in Kurtulus and Davis (1975), Patterson (1976), Davis
(1982), Kurtulus and Narula (1985), and Kolisch et al. (1995).
Generalizing and normalizing measures which have been used before, Kolisch et al. (1995)
developed a new set of control parameters which have a strong impact on the hardness of
problem instances. ProGen/max employs the same set of resource measures for the prob-
lem generation. In the following, we briefly sketch the generation of resource require-
ments and resource availability proposed by Kolisch et al. (1995).

4.1 Resource demand

The processing of an activity consumes or uses a certain amount of one or several nonre-
newable, renewable or doubly-constrained resources. After the generation of a certain
number of resources, the generation of resource consumption and resource usage is
performed in two steps: First, for any given activity-mode combination (j,m) with

 j ∈V ,m ∈Mj we have to determine a set Rjm of resources required for the processing of
activity j in mode m. Then, for all resources i ∈Rjm we fix the (integer-valued) number of
units which will be consumed or used for the processing of activity j in mode m

 (j ∈V ,m ∈Mj).

The generalized resource factor RF for multi-mode problems which has been introduced
by Kolisch et al. (1995) indicates the mean percentage of resources which are affected by
the execution of an activity:

40

(4.1)

RFρ:= 1
V − 2

1

Rρ \ Rν
1

Mjj∈V\ 0,n+1{ }
∑ δ(rijm

ρ)
i∈Rρ\Rν

∑
m∈Mj

∑ for renewable resources,

RFν:= 1
V − 2

1

Rν \ Rρ
1

Mjj∈V\ 0,n+1{ }
∑ δ(rijm

ν)
i∈Rν\Rρ

∑
m∈Mj

∑ for nonrenewable resources,

RFδ := 1
V − 2

1

Rρ ∩ Rν
1

Mjj∈V\ 0,n+1{ }
∑ δ(rijm

ρ)
i∈Rρ ∩Rν

∑
m∈Mj

∑ for doubly-constrained re-

sources

with

δ(x):=

1, if x > 0
0, otherwise

.

ProGen/max employs the following input data for the resource demand generation:

 Qτ
min ,Qτ

max (τ ∈ ρ, ν,δ{ }) minimal and maximal number of renewable, nonrenewable,
and doubly-constrained resources used by an activity ("re-
quest")

 RFτ
min ,RFτ

max (τ ∈ ρ, ν,δ{ }) minimal and maximal resource factor of renewable, nonre-
newable, and doubly-constrained resources

 Uτ
min ,Uτ

max (τ ∈ ρ, ν{ }) minimal and maximal number of units of renewable, nonre-
newable, and doubly-constrained resources required for the
processing of an activity ("level of demand")

For the first step, the algorithmic generation of the three-dimensional resource-activity-

mode-array R Q :=

δ(rijm

τ)()i∈Rρ ∪Rν , j∈V ,m∈Mj
, based on Qτ

min ,Qτ
max and RFτ

min ,RFτ
max

 (τ ∈ ρ, ν,δ{ }) we refer to Kolisch et al. (1995).

In the second step, we assign a demand level to any triplet (i, j,m) with δ(rijm
τ) = 1:

rijm

τ := rand Uτ
min ,... ,Uτ

max{ } (i ∈Rρ ∪ Rν , j ∈V ,m ∈Mj ,δ(rijm
τ) = 1). In contrast to ProGen, for a

given activity j and a given resource i, the resource requirements rijm
τ can vary with modes

 m ∈Mj , if the respective option (mode-varying resource demand levels) has been selected.
The generation of inefficient modes in the second step (that is, modes m ∈Mj :

(∃ m ∈Mj : Djm ≤ Djm ,rijm

ρ ≤ rijm
ρ ∀i ∈Rρ ,rijm

ν ≤ rijm
ν ∀i ∈Rν)) may necessitate several passes of

the algorithm.

41

4.2 Resource Availability

Let

Ri ,ρ

min:= max
j∈V

min
m∈Mj

rijm
ρ be the minimal availability of renewable or doubly-constrained

resource i ∈Rρ required to perform all activities of the project and let

Ri ,ν

min:= min
m∈Mj

rijm
ν

j∈V
∑

be the minimal availability of nonrenewable or doubly-constrained resource i ∈Rν re-
quired to perform all activities of the project.
In case of resources i ∈Rν , an upper bound on the maximal availability required to per-
form all activities of the project can be calculated as follows:

Ri ,ν

max := max
m∈Mjj∈V

∑ rijm
ν . For re-

sources i ∈Rρ we perform a resource-unconstrained temporal analysis in network

r

N ' (i):=< V ,E' ,b' (i) > , where E' is the subset of the project network arc set E including all
(forward) arcs which correspond to minimal time lags. Arcs < j, l >∈E' are weighted with

b' jl (i):= min T

jlmij
*

min mij
* = arg max

m∈Mj

rijm
ρ

. Let

Vi(t):= j ∈V t − D

jmij
* < ESTj ≤ t

 be the set of

activities in progress at time t based on earliest start times ESTj (j ∈V) determined by the

temporal analysis in
r

N ' (i). Then,

Ri ,ρ

max := max
t=0,...,T −1

r
ijmij

*
ρ

j∈V(t)
∑ represents an upper bound on

the maximal availability of a resource i ∈Rρ required to perform all activities of the pro-
ject.

The [0,1]-normalized resource strength RSi ,τ of resource i introduced by Kolisch et al.
(1995) is defined as follows:

(4.2)

RSi ,τ :=

Ri
τ − Ri ,τ

min

Ri ,τ
max − Ri ,τ

min (i ∈Rτ ,τ ∈ ρ, ν{ }).

The following input data is required for the generation of resource availability:

 RSτ
min ,RSτ

max (τ ∈ ρ, ν{ }) minimal and maximal resource strength of renewable, non-
renewable, and doubly-constrained resources.

The resource strength is randomly determined as follows: RSi ,τ := rand[RSτ
min ,RSτ

max].
Hence, in contrast to ProGen, the resource strength of resources belonging to the same
type τ ∈ ρ, ν{ } may be different if RSτ

min < RSτ
max .

With Ri
τ := Ri ,τ

min + int(RSi ,τ(Ri ,τ
max − Ri ,τ

min)) (i ∈Rτ ,τ ∈ ρ, ν{ }) we obtain the availability of re-
newable, nonrenewable, and doubly-constrained resources.

42

5. Computational Results

5.1 Accuracy of Thesen's Restrictiveness Estimator RT

In contrast to the problem generator ProGen by Kolisch et al. (1995), ProGen/max mea-
sures the complexity of the acyclic network structure by the estimator RT for the restric-
tiveness of a network (cf. Section 2.3). Since the hardness of many combinatorial optimiza-
tion problems depends heavily on the underlying network structure, the parameters con-
trolling the network generation should be chosen with care. In order to assess the quality
of estimator RT, we have generated 330 acyclic networks with 10 activities and RT values
between 0.2 and 1.0. For each network the exact restrictiveness Ρ has been determined by
complete enumeration. Figure 4 plots the relationship between values of the complexity
measures RT and CNC and the restrictiveness resulting for the 330 networks.

RT vs. CN

0

0,5

1

1,5

2

2,5

3

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

P

R
T
,
C
N
C

RT
CNC
Linear (CN

Linear (RT

Fig. 4. RT(Ρ) and CNC(Ρ)

We have performed a linear regression relating RT and CNC to Ρ . The results are as
follows (r2 denotes the squared correlation coefficient):

 Ρ = 0.072 + 0.85RT (r2 = 0.923)

 Ρ = 1.092 − 0.346CNC (r2 = 0.485)

The estimator RT accounts for more than 92% of the restrictiveness' variance. For small
values, RT tends to overestimate Ρ , whereas a large restrictiveness is generally under-
rated. These results coincide with the results obtained by Thesen (1977).

43

The behaviour of the CNC coefficient of network complexity explains the poor perfor-
mance of this control parameter in predicting the computational effort of enumerative
algorithms in project scheduling. The explanatory power of CNC in the linear regression
model is less than 50%. Moreover, CNC is negatively correlated with Ρ . This can be moti-
vated as follows. The insertion of an additional arc always results in an increasing CNC,
even if the arc is redundant. Redundant arcs, however, do affect neither the restrictiveness
of the project network nor the hardness of corresponding project scheduling problems.
This explains results obtained by Kolisch et al. (1995) which establishe a (slight) reduction
in computation time with increasing CNC.

5.2 Hardness of RCPSP/max Instances

Problem generators should allow for a parameter-driven generation of easy and hard
problem instances. In order to assess the impact of ProGen/max control parameters on the
hardness of resource-constrained project scheduling problems we have generated 810 in-
stances of the single mode problem RCPSP/max with the direct method of ProGen/max.
We used a full factorial design for four parameters, which have proven to be closely re-
lated to the computational effort required for the (exact) solution of RCPSP instances (cf.
Kolisch et al. 1995 and de Reyck 1995). Table 2 provides the constant parameter values.
Table 3 shows the variable parameter values of the full factorial design experiment.

 R
min

 R
max

 S0
min

 S0
max

 Pn+1
min

 Pn+1
max

 P
max

 S
max

5 5 1 5 1 5 3 3

ρ
 MTLmin

 MTLmax
 CSmin

 CSmax
 nc

min
 nc

max δ
0.05 0.05 0.25 1 5 2 5 0.5

 D
min

 D
max

 εd CST SF
 Q

min
 Q

max
 U

min
 U

max

5 15 2.0 0.5 0.0 1 5 1 3

Table 2. Constant parameter values

n RT RF RS
10 0.25 0.5 0.0
15 0.5 0.75 0.25
20 0.75 1.0 0.5

Table 3. Variable parameter values

For every combination of n, RT, RF, and RS we have generated 10 problem instances. 524
of the 810 problem instances turned out to have a feasible solution. Each problem instance
has been treated by the branch-and-bound algorithm of de Reyck & Herroelen (1996)
which currently has to be considered as the most advanced procedure for RCPSP/max.
We used a version of the algorithm which has been recoded in the object-oriented

44

language Smalltalk-80. First, we determined the computation time for the generation of an
optimal (or best) solution and the computation time for the verification of optimality,
where we imposed a time limit of 600 seconds. Second, the deviation of the first generated
solution from the optimal (or best) solution and the deviation of the latter solution from
the tightest of several time-based and resource-based lower bounds has been calculated.

97 out of the 524 solvable problem instances could not be solved to optimality (i.e.,
verification of optimality) within the time limit. For all 524 solvable problem instances,
however, a feasible solution could be determined. A first feasible solution could be
determined in 2.326 s on the average. This first solution had a mean deviation of 3.37%
from the best solution found, whereas the deviation of the best solution found from the
tightest lower bound has been 6.99%. The best solution has been determined within 5.543 s
on the average. The verification of optimality, however, required a much larger mean
computation time of 92.314 s.

Table 4 shows the effect of increasing number n of activities on the computation times

 µCPU
ver and µCPU

fd for the verification and the determination of an optimal solution in sec-
onds, respectively. punsolved denotes the percentage of problem instances for which the
best solution found could not be verified to be an optimum. DevFSBS represents the mean
percentage deviation of the first generated solution from the best solution. DevBSLB de-
notes the mean percentage deviation of the best solution from the tightest lower bound.
Since for 81.5% of the best solutions the optimality could be proven, DevBSLB can be inter-
preted as a tightness measure of lower bounds.

n
 µCPU

ver
 µCPU

fd punsolved DevFSBS DevBSLB

10 16.005 3.924 1.09% 3.60% 7.32%
15 100.198 28.154 12.35% 3.77% 7.02%
20 164.022 45.517 22.47% 2.79% 6.61%

Table 4. Effects of number of activities n on problem hardness

Since RCPSP/max constitutes a combinatorial optimization problem which is known to be
NP-hard in the strong sense, the increase in the number of activities may lead to computa-
tion times which cannot be bounded by a polynomial in n. The relatively small increase of

 µCPU
ver and µCPU

fd when n is enlarged from 15 to 20 is mainly due to the imposed time limit.
Nevertheless, the implicit enumeration algorithm of de Reyck & Herroelen (1996) seems to
perform the better the larger the problems are. The deviation of the first solution from the
best solution decreases from 3.60% to 2.79% which can be partially explained by the
increasing quality of the first solution and the lower bounds (note that DevBSLB decreases
although the percentage punsolved of not necessarily optimal solutions increases!).

The impact of varying the restrictiveness of the project network can be seen in Table 5.

45

 RT ∈
 µCPU

ver
 µCPU

fd punsolved DevFSOPT DevOPTLB

[0,0.3] 183.958 53.458 26.76% 5.66% 10.31%
(0.3,0.6] 94.073 24.049 10.68% 3.55% 6.38%
(0.6,1] 16.318 4.773 1.14% 1.33% 5.02%

Table 5. Effects of the restrictiveness RT on problem hardness

The restrictiveness of the underlying project network turns out to have even a stronger
impact on the hardness of RCPSP/max instances than the number n of project activities.
Computation times increase heavily with growing parallelity of the project networks.
Moreover, the quality of first solutions and lower bounds decreases for harder problems.

Table 6 depicts the impact of increasing the resource factor.

RF
 µCPU

ver
 µCPU

fd punsolved DevFSOPT DevOPTLB

0.5 52.476 21.204 7.33% 2.26% 5.33%
0.75 92.162 19.197 10.98% 3.71% 7.61%
1.0 140.038 37.588 18.13% 4.35% 8.29%

Table 6. Effects of the resource factor RF on problem hardness

It is quite intuitive that larger resource factors result in an increase in resource conflicts.
Each resource conflict generates several enumeration nodes in the enumeration tree of the
de Reyck algorithm. Moreover, the poor quality of the first solution and lower bounds for
high values of RF enlarges the gap between the (first) upper bound and the lower bounds.

The effects of varying the resource strength are summarized in Table 7.

RS
 µCPU

ver
 µCPU

fd punsolved DevFSOPT DevOPTLB

0.0 106.148 41.784 11.36% 5.31% 10.20%
0.25 138.930 33.643 20.00% 4.24% 9.95%
0.5 53.108 13.880 5.98% 2.06% 3.68%

Table 7. Effects of the resource strength RS on problem hardness

Table 7 shows an interesting relationship between computation times and scarcity of
(renewable) resources. In the interval [0.25,1], a decrease in resource availability makes
the problems much more harder, since the number of resource conflicts increases heaviliy

in the number of resource conflicts. The behaviour of µCPU
ver , µCPU

fd , and punsolved for values
of the resource strength between 0 and 0.25 seems to confirm the conjecture by
Elmaghraby and Herroelen (1980) of a bell-shaped function µCPU

ver (RS) which had not been
confirmed by Kolisch et al. (1995). Moreover, the suitability of RS (which has been consid-

46

ered in the past as the parameter with the strongest impact on computation times) for the
distiction of hard and intractable problem instances is clearly outperformed by the restric-
tiveness estimator RT of the underlying project network.

47

Conclusions

We have developed a problem generator ProGen/max for the resource-constrained
minimum project duration problem MRCPSP/max, the resource leveling problem
MRLP/max, and the resource investment problem MRIP/max. The emphasis has been
put on the efficient and parameter-driven generation of cyclic network structures, which
occur if maximal time lags have to be taken into consideration.
Two different approaches to the generating cyclic networks have been proposed: the direct
and the contraction method. The direct method focuses on the parameter-driven
generation of the (entire) project network, whereas the contraction method emphasizes the
structure of strong components (cycle structures) and the contracted network.
The impact of the selected control parameter configuration on the hardness of resource-
constrained project scheduling problems has been evaluated by a full factorial design ex-
periment. It turns out that the computational effort for the solution of problem instances
heavily depends on both the degree of scarcity of resources and the restrictiveness of the
underlying project network.

48

Appendix: Functional Description of ProGen/max

ProGen/max has been coded in the object-oriented programming language Smalltalk-80.
The image file is portable to any platform supported by VisualWorks® Smalltalk (UNIX,
Microsoft Windows, OS/2, and Macintosh platforms). To start ProGen/max the image file
has to be executed with the platform-dependent object engine which runs Smalltalk on the
respective platform.

The control menue of ProGen/max is shown in Figure 4.

Fig. 4. ProGen/max control menue

First, the type of project scheduling problem (project duration problem RCPSP or general-
ization, resource leveling problem RLP or generalization, or resource investment problem
RIP or generalization) has to be specified. Second, several options can be chosen: genera-
tion of maximal time lags, generation of several execution modes per activity (possibly
varying w.r.t. resource demand levels), and fixing of all minimal time lags to the duration
of the positive incident activity in the project network (CPM case). In case of maximal time
lags, the direct or the contraction method for the creation of cycle structures can be chosen.
The generated problems are filed out in the Patterson, the ProGen, or the ProGen/max
format. The control parameters defined in Section 3 can be set using an automatic or a
manual value editor for the selected parameter. Finally, the number of problem instances
with identical parameter combination has to be specified.

The following actions can be performed:

49

Go: Starts the generation of all problem instances corresponding to the specified
parameter configuration. The instances are labeled consecutively beginning
with 1.

Check: Checks several consistency conditions for the parameter values.

Load: Sets the values in the control menue to a previously saved parameter configura-
tion.

Save: Saves the current parameter configuration in an ASCII file (cf. Figure 5).

Quit: Exits ProGen/max.

7 November 1996, 10:35:17 am

Problem type: #RCPSP
Maximal time lags: true
Multi mode: false
Mode-varying resource demand: false
CPM-case: true
Cycle creation: #direct
Output format: #ProGenMax
Number: 1
Minimal number of activities: 100
Maximal number of activities: 100
Minimal duration of activity: 5
Maximal duration of activity: 15
Minimal number of initial activities: 3
Maximal number of initial activities: 7
Minimal number of terminal activities: 3
Maximal number of terminal activities: 7
Maximal number of predecessor activities: 5
Maximal number of successor activities: 5
Restrictiveness of Thesen: 0.35 0.5 0.65
Degree of redundancy: 0
Minimal percentage of maximal time lags: 0.05
Maximal percentage of maximal time lags: 0.15
Minimal number of cycle structures: 2 6
Maximal number of cycle structures: 5 9
Minimal number of nodes per cycle structure: 2
Maximal number of nodes per cycle structure: 15
Coefficient of cycle structure density: 0.3
Tightness of maximal time lags: 0.5
Slack factor: 0.0
Minimal number of resources: 5
Maximal number of resources: 5
Minimal number of resources used per activity: 1
Maximal number of resources used per activity: 5
Minimal demand of resources per activity: 1
Maximal demand of resources per activity: 3
Minimal resource factor: 0.5 0.75 1
Maximal resource factor: 0.5 0.75 1
Minimal resource strength: 0.2 0.5 0.7
Maximal resource strength: 0.2 0.5 0.7

Fig. 5. ProGen/max control parameters file

50

During the generation of problem instances, ProGen/max generates three type of files.

*.rcp, *.pro, *.pgm: problem instance in the Patterson, the ProGen, and the ProGen/max
format, respectively (cf. Figure 6)

Protocol.txt: protocol file which reports on deviations of the generated instances
from the given control parameters (cf. Figure 7)

Stat.txt: statistics file which contains a large number of instance characteris-
tics like control parameters, lower bounds, and ex-post parameters

The files listed above are described in more detail in the readme.txt file which comes along
with the ProGen/max image.

10 5 0 0
0 1 4 3 4 2 1 [0] [0] [0] [0]
1 1 2 11 6 [15] [21]
2 1 2 11 9 [15] [24]
3 1 2 8 7 [-11] [13]
4 1 3 8 10 7 [-2] [0] [10]
5 1 2 1 10 [-26] [12]
6 1 1 5 [1]
7 1 1 11 [11]
8 1 1 11 [14]
9 1 2 11 2 [13] [-24]
10 1 1 11 [14]
11 1 0
0 1 0 0 0 0 0 0
1 1 15 0 0 0 3 0
2 1 15 3 1 3 0 0
3 1 12 3 1 0 0 0
4 1 5 3 0 0 3 0
5 1 11 0 0 2 0 2
6 1 14 0 1 0 0 3
7 1 11 3 0 2 0 3
8 1 14 2 1 0 2 3
9 1 13 0 3 0 1 0
10 1 14 0 2 3 0 2
11 1 0 0 0 0 0 0
3 4 3 5 3

Fig. 6. RCPSP/max instance file in ProGen/max format

51

:TestSetSOR96:PSP1: OK

:TestSetSOR96:PSP2: OK

:TestSetSOR96:PSP3: OK

:TestSetSOR96:PSP4: OK

:TestSetSOR96:PSP5
Restrictiveness more than 10.0 % too large: 0.311111 > 0.25

:TestSetSOR96:PSP6: OK

:TestSetSOR96:PSP7: OK

:TestSetSOR96:PSP8: OK

:TestSetSOR96:PSP9: OK

:TestSetSOR96:PSP10: OK

Fig. 7. ProGen/max protocol file

52

References

Agrawal, M., Elmaghraby, S., Herroelen, W. (1994): DAGEN: A Generator of Testsets for
Project Activity Nets; Working Paper, North Carolina State University, USA

Bein, W., Kamburowski, J., Stallmann, M. (1992): Optimal reduction of two-terminal
directed acyclic graphs; SIAM J. Comput. 21, 1112 – 1129

Berge, C. (1985): Graphs; 2nd rev. ed., North-Holland, Amsterdam

Bondy, J.A., Murty, U.S.R. (1976): Graph Theory with Applications; The MacMillan Press,
London

Davis, E.W. (1969): An Exact Algorithm for the Multiple Constrained-Resource Project
Scheduling Problem; Ph.D. Thesis; Yale University

Davis, E.W. (1975): Project Network Summary Measures Constrained-Resource Schedul-
ing; AIIE Trans. 7, 132 – 142

Davis, E.W., Patterson, J.H. (1975): A comparison of heuristic and optimum solutions in
resource-constrained project scheduling; Mgmt Sci. 21, 944 – 955

Demeulemeester, E.L. (1992): Optimal Algorithms for Various Classes of Multiple
Resource-Constrained Project Scheduling Problems; Ph.D. Thesis, University of
Leuven

Demeulemeester, E.L., Dodin, B., Herroelen, W.S. (1993): A random activity network gen-
erator; Oper. Res. 41, 972 – 980

de Reyck, B. (1995): On the Use of the Restrictiveness as a Measure of Complexity for
Resource-Constrained Project Scheduling; Onderzoeksrapport Nr. 9535; Department of
Applied Economics, Katholieke Universiteit Leuven

de Reyck, B., Herroelen, W.S. (1994): On the Use of the Complexity Index as a Measure of
Complexity in Activity Networks; Onderzoeksrapport; Department of Applied
Economics, Katholieke Universiteit Leuven

de Reyck, B., Herroelen, W.S. (1996): A Branch-and-Bound Procedure for the Resource-
Constrained Project Scheduling Problem with Generalized Precedence Constraints;
Onderzoeksrapport Nr. 9613; Department of Applied Economics, Katholieke
Universiteit Leuven

Elmaghraby, E., Herroelen, W.S. (1980): On the measurement of complexity in activity
networks; EJOR 5, 223 – 234

Even, S. (1979): Graph Algorithms. Pitman, London

53

Franck, B., Schwindt, C. (1996): Different Resource-Constrained Project Scheduling Prob-
lems - Models and Practical Applications; Report WIOR-450, Institut für Wirtschafts-
theorie und Operations Research, University of Karlsruhe

Kaimann, R.A. (1974): Coefficient of network complexity; Mgmt Sci. 21, 172 – 177

Kolisch, R., Sprecher, A., Drexl, A. (1995): Characterization and Generation of a General
Class of Resource-Constrained Project Scheduling Problems; Mgmt Sci. 41, 1693 –
1703

Kurtulus, I., Davis, E.W. (1982): Multi-project scheduling: Categorization of heuristic rules
performance; Mgmt Sci. 28, 161 – 172

Kurtulus, I.S., Narula, S. (1985): Multi-project scheduling: Analysis of project performance;
IIE Trans. 17, 58 – 65

Mingozzi, A., Maniezzo, V., Ricciardelli, S., Bianco, L. (1994): An Exact Algorithm for Pro-
ject Scheduling with Resource Constraints Based on a New Mathematical Formula-
tion; Working Paper, University of Bologna, Italy

Neumann, K., Morlock, M. (1993): Operations Research; Hanser, München

Neumann, K., Schwindt, C. (1995): Projects with Minimal and Maximal Time Lags: Con-
struction of Activity-on-Node Networks and Applications; Report WIOR-447, Institut
für Wirtschaftstheorie und Operations Research, University of Karlsruhe

Patterson, J.H. (1976): Project scheduling: The effects of problem structure on heuristic per-
formance; Nav. Res. Log. Quart. 23; 95 – 123

Patterson, J.H. (1984): A comparison of exact approaches for solving the multiple con-
strained resource, project scheduling problem; Mgmt Sci. 30, 854 – 867

Patterson, J.H., Huber, W.D. (1974): A horizon-varying, zero-one approach to project
scheduling; Mgmt Sci. 20, 990-998

Schrage, L. (1979): A more portable FORTRAN random number generator; ACM Transact.
Math. Software 5, 132 – 138

Talbot, F.B., Patterson, J.H. (1978): An efficient integer-programming algorithm with
network cuts for solving resource-constrained scheduling problems; Mgmt Sci. 24,
1163 – 1174

Thesen, A. (1977): Measures of the restrictiveness of project networks; Networks 7, 193 – 208

