Semantic Tableaux with Ordering Restrictions

Stefan Klingenbeck™ and Reiner Hahnle

University of Karlsruhe
Institute for Logic, Complexity and Deduction Systems
76128 Karlsruhe, Germany
{klingenb,reiner}@ira.uka.de +49-721-608-{3978,4329}

Abstract. The aim of this paper is to make restriction strategies based
on orderings of the Herbrand universe available for semantic tableau-like
calculi as well. A marriage of tableaux and ordering restriction strategies
seems to be most promising in applications where generation of counter
examples is required. In this paper, starting out from semantic trees,
we develop a formal tool called refutation graphs, which (i) serves as a
basis for completeness proofs of both resolution and tableaux, and (ii)
is compatible with so-called A-ordering restrictions. The main result is
a first-order ground tableau procedure complete for A-ordering restricti-
ons.

Introduction

In recent years one could observe a kind of renaissance of tableau-related methods
in automated theorem proving after the field has been dominated by resolution
approaches for many years?. Tableaux are easy to adjust to nonclassical logics,
and they have already a number of advantages for classical first-order logic that
have not been paid great attention to for some time, notably: (i) they have a
higher ground speed than resolution; (ii) it is easy to incorporate theories [10];
(iii) there are many refinements to remove redundancy from proofs [13, 12]; (iv)
lemmaizing and caching can be naturally defined and implemented [1]. All these
techniques can be efficiently implemented using Prolog technology [13]. Finally,
(v) tableaux are suitable for human interaction. This is a major advantage in
program verification, where frequently very large or not valid formulas occur.
In the latter case also the use of specialised decision procedures e.g. for certain
arithmetical theories is very helpful.

The basic idea of order restricted resolution is as follows:® assume we are
given a partial ordering < on first-order terms. Now admit only resolution steps
wherein the resolved literal is <-maximal in the resolvent clause. For certain

* Supported by BMFT within the project KORSO.

2 We assume the reader is familiar with basic expositions of semantic tableaux like [8]
and of resolution like [6].

? In order to gain familarity with ordering restricted resolution we recommend [7] as
an up-to-date account.

orderings this restriction turn out to be still complete for first-order logic. Mo-
reover, resolution with (variants of) ordering restrictions can be used to decide
certain classes of first-order logic [7] and to enhance the performance of basic
resolution [18]. Hence, in the light of applications such as program verification
it is extremely desirable to make ordering refinements available for tableaux as
well, thus bringing together paradigms that have already been proven successful
separately.

The part of resolution that corresponds to the selection of a closure substi-
tution in tableau is the selection of a pair of parent clauses and complementary
literals therein. A wrong choice does not require backtracking, since resolution
is proof confluent, but an unnecessary clause can in turn produce many useless
clauses, and if resolution proofs are unsuccessful, then usually because the system
gets choked with useless clauses.

Every reasonable tableau procedure with free variables and unification must
employ backtracking over the possible substitutions that close a branch. For
complex problems the resulting number of proofs becomes simply too large even
if techniques like caching [1], anti-lemmata or regularity conditions [13] are used
to reduce the number of choices. For this reason ordering restrictions are obvious
candidates for further enhancement of tableaux, as they are well understood in
the case of resolution.

The paper is organized as follows: in Section 1 for convenience of reading
we repeat some basic definitions; in Section 2 we introduce refutation graphs
which constitute the central link between semantic trees and semantic tableaux,
and prove some basic properties. In Section 3 we use refutation graphs to give a
completeness proof of (order-restricted) binary resolution, while in Section 4 we
do the same for (unrestricted) ground tableaux. Finally, in Section 5 we prove
our main result, namely that a straightforward and natural ordering restriction
of first-order ground tableau is a complete proof procedure for first-order logic.

Due to space restrictions most proofs had to be omitted. A long version of
this paper with full proofs of all theorems can be obtained from the authors on
request or via anonymous ftp to 129.13.31.2 (switch to binary mode and get
the file pub/haehnle/Ordered-Tableaux-Long.ps.Z).

1 Semantic Trees

Throughout the paper we use a standard first-order CNF clause language wi-
thout equality.

The proof of completeness of resolution via semantic trees is well known.
Unfortunately, it is not easy to adapt this proof to (clausal) tableau procedures.
The first obstacle is to identify the exact counterpart of clauses and resolvents in
a tableau. The propositional resolution rule can be seen as a cut rule restricted
to atomic formulas and clausal tableau proofs corresponds to cut free sequent
proofs. Cut elimination, however, results in additional copies of certain subfor-
mulas which are spread around the proof. Hence, more than one formula in a

tableau corresponds to one generated clause in a resolution proof and one has
to keep track of these formulas.

Erample 1.

In Figure 1 the closure of the rightmost branch
corresponds to an application of the resolution 0
rule with parent clauses AV —BV C'V D and ,
AV EV —D. The resolvent AV—BVCVAVE oc- ‘\
curs as the union of the framed nodes. The parent -D
clauses may be spread over several nodes in the g
tableau. The only restriction 1s that the nodes of
the literals resolved upon are labelled with a single Fig. 1. The tableau is sym-
literal. Note that the parent clauses are not avai- | jized by a labelled tree.
lable any longer. Otherwise, a node can belong to O Jenotes the closing of a
different clauses and cause problems, especially in
the case of free variable first-order tableaux.

branch.

The classic completeness proof for resolution [11] is based on two presupposi-
tions: (i) Only subsumed clauses and tautological clauses are discarded; (ii) The
resolvent belonging to an inference node retains all interesting ground instances
of the parents. As we just have seen we have to discard also clauses in a tableau
procedure that are not subsumed. Thus we have to modify the proof idea for
completeness based on semantic trees.

We assume the reader 1s familiar with the basic notions and results of compu-
tational logic, in particular with Herbrand bases and Herbrand’s theorem (see,
for instance [14]). In the following let By be the Herbrand base of our first-order
language, and let By = Ag, A1, ... be an arbitrary, but fixed, enumeration; ~ L
denotes the complementary of a literal L; sometimes we will treat clauses as
sets without mentioning it. C\L means, that each occurrence of the literal L
is deleted from the clause C'. Most of the following definitions may be found
in [14, 7].

Definition1. Let ag,aq, ... be a fixed enumeration of a set of atoms B. The la-
belled, binary tree ST', which is defined as the smallest tree obeying the following
conditions, is called semantic tree for B.

1. The root node of ST is unlabelled; its left child is labelled with ag, its right
child 1s labelled with —ag.

2. If a node is labelled with a; or —a;, then its left child is labelled with a;41,
and its right child is labelled with —a; 1.

The semantic tree for By 1s denoted with STy . Two nodes in ST with the same
parent node are called siblings. A path in ST is a (finite or infinite) sequence
of node labels {({;,;41,. ..}, such that the node belonging to [;41 is the child of
the node belonging to {; for all j > ¢. An maximal path in ST is a branch of
ST. Two paths pi, ps are called sibling-paths wrt a pair of sibling nodes ny,
no iff py and py are both of the form ({1,103, ..., li_1,ln;, lit1,...), where [, is

the label of n; for j = 1,2. With each node n of a semantic tree ST" we associate
its refutation set which consists of the labels on the path from the root to n.

Definition2. A clause C fails at a node n of a semantic tree ST iff there is a
substitution ¢ such that for each literal L in C'o, ~ L is in the refutation set of
n. A node n is a failure node for a set of clauses M iff some clause from M fails
at n, but no clause from M fails at a node above n. A node n is an inference
node iff both of its children are failure nodes. A semantic tree ST is closed by
M iff every branch of ST contains a failure node for M.

See Figure 2 for an example illustrating these definitions.

Definition3. An A-ordering on a set of atoms B is a binary relation <4 such
that for all a,b,c € B

Irreflexivity a £4 a.
Transitivity a <4 b and b <4 ¢ imply a <4 c.
Substitutivity a <4 b implies ao <4 bo for all substitutions o.

Fig.2. The failure nodes in a semantic tree for {A, B,C, D} for the clause set
{-Av —-B, —AV B, AV—-B, AV BV —-C, Av BV C}. The paths (A, B,C, D)
and (A,—B,C, D) going from the node labelled with A to the nodes marked with o
are sibling-paths the sequences of their labels differing only in the second position. The
failure nodes are marked with e. The node labelled with A is an inference node (among
others). Since all branches contain a failure node, the tree is closed.

2 Refutation Graphst

Our goal is to adapt completeness proofs via semantic trees to tableau procedu-
res. In the resolution case, completeness proofs via semantic trees are based on

4 This should not be confused with a concept bearing the same name introduced
by Shostak [16] in the context of clause graph resolution. Since we feel that the
phrase ‘refutation graph’ catches exactly our intention we decided to keep the name
nevertheless. Independently, Bibel [4] recently developed the concept of a so-called
w-regular graph which is somewhat related to our refutation graphs.

the successive elimination of failure nodes, yielding smaller and smaller closed
semantic trees for an inconsistent clause set. At the end the tree consisting solely
of the root node is left. Since the only clause that fails at the root node 1s the
empty clause, it must have been inferred by that time.

Unfortunately, this argument does not work in the case of tableaux. Instead of
reducing the size of the whole closed semantic tree one has to have a closer look on
the nodes of a semantic tree that establish the closure of the tree. We will collect
such nodes according to their mutual relationship into more complicated graphs
on the node set of the semantic tree. If such a graph meets certain requirements,
it can be seen as refutation of a corresponding set of clauses. The number of
nodes in this graph will play a similar role in our completeness proof as the size
of the semantic tree in the classic proof.

Definition4. Let M be a set of clauses, and GG be a ground instance of a clause

C € M. We call a set ch of nodes of STy a chain of GG (or of (') iff

— all nodes in ch are on the same path in S7Tg, and
— Lis alabel of a nodein chiff ~ L € GG.

We denote the set of all chains of M in STy by C'H(M), and the set of all
nodes occurring in a set C'H of chains by C'H. The empty chain by definition
corresponds to the empty clause.

Informally speaking, a chain is a minimal subset of a path that refutes a
clause. We define chains not as sequences but as sets, because we will mainly
use them accordingly.

Fzample 2. Let M = {—-AvV -BvV -C,—-AvC,—-B,Av-C,AvC —AV B}
The chains in Figure 3 marked with 1, ..., 7, respectively, belong to the following
clauses: 1 belongs to —AV —BV —C', 2 and 3 belong to —A V (', 4 belongs to
—B, 5 belongs to AV —C', 6 belongs to AV €, and 7 belongs to —A V B. Note
that different chains can belong to the same clause, because different nodes can
have the same labels.

Fig. 3. Chains that belong to various clauses in the semantic tree for the clause set
from Example 2.

Since all nodes of a chain are contained in the same path of a semantic
tree they are ordered in a natural way. The successor relation together with the
relation of being sibling nodes is used to define the graphs mentioned above.

Definition5. We write ny > ns, if ns is closer to the root. Moreover, a node
ny of a chain ch is called a successor node of ny € ch, if n; > ns and there 1s
no node n3 € ch such that ny > n3z > ns. A node without a successor node 1s
called an end node of that chain.

Definition6. For an arbitrary set of chains CH in STy, we define a binary
relation <¢ g on the nodes of STy: n1 <cg ne iff ny and ny are sibling nodes
or belong to the same chain in C'H and ns is a successor of n.

A set C'H of chains closes a subtree ST of STy iff it contains the empty
chain or each path of STy through the root of ST contains a chain of C'H whose
end node is in ST

Note that for each clause set M the semantic tree STy is closed by CH(M)
iff STy is closed by M in the sense of Definition 2.

Definition7. Given a non-empty set of chains C'H and a subtree ST of STj,
the graph defined by ST and CH is G(CH,ST) = (CH N ST, <cp). A graph
G(CH,ST) is called a refutation graph iff it is finite and for all nodes ny €
G(CH,ST), na € STy we have that ny <cpg no implies no € G(CH,ST). A
graph G(CH, ST) is a semi refutation graph iff it is finite and for each node,
but the root node of ST, also its sibling is contained in G(CH,ST). A (semi)
refutation graph G(CH,ST) is minimal iff for no CH, C CH G(CH,,ST)
is a (semi) refutation graph. A refutation graph G(CH,ST) is connected if
there are no § # CH,,CHy G CH, CHy # CH, such that G(CH;,ST) and
G(CHy,ST) are both refutation graphs.

Note that the empty graph that corresponds to the set of chains consisting
only of the empty chain is a refutation graph, and is called the empty refuta-
tion graph.

Ezample 3. Let M be as in Example 2. The chains of Example 2 do not establish
a refutation graph, since sibling nodes for nodes in the chains 3 and 4 are missing.
However, consider the subgraph consisting of the chains CH; = {1,2,5,6,7}.
The corresponding refutation graph G(C Hy, STy) is shown on top in Figure 4.
Note that the clauses corresponding to chains 3,4 are not necessary for a re-
futation by resolution or tableau. We get a much simpler refutation graph
G(CH,STy) (depicted on bottom in Figure 4), if we take the chains 5,6,7
and 8 as a chain set C'Hy with the new chain 8 stemming from the clause —B.
One can consider chain 8 as a copy of chain 4 placed in the left subtree of STy
instead of the right. The next definition will deal with this copy operation more
rigorously.

Fig.4. The refutation graphs G(CHy, 5Tp) and G(CHs, STy) from Example 3.

Definition 8. Let ch be a chain on a path p in the tree ST, with end node n. Let
¢ ¢ ch be a node with ¢ < n and let ¢ be the sibling-path of p with respect to ¢
and its sibling. We denote with copy(ch, ¢) the unique chain situated on ¢, whose
nodes have the same labels as ch. The extension of the definition copy(CH, ¢)
to sets of chains C'H is obvious.

Frample 4. Using the numbering of the previous examples, copy(4, n4)=8, where
n4 1s the node labelled with A.

Theorem 9. Let M be a clause set.

1. M s unsatisfiable iff STy s closed by M.

2. If STy is closed by M, then there is a set of chains CH C CH(M) such that
G(CH,STy) is a refutation graph.

3. If CH is a set of chains belonging to clauses in M, and G(CH,STy) is a
refutation graph, then STy is closed by M.

Proof. 1. Proved in [7].

2. The semi refutation graph G(CH,STp) constructed in Lemma 10 is suffi-
cient, because STy contains all nodes.

3. Proved in Lemma 11 for arbitrary subtrees ST of STj.

Lemma10. Let M be a set of clauses and ST a subtree of STy closed by
CH(M). There is a set of chains CH C CH(M) such that

— CH closes ST
— CH contains only chains that have end nodes in ST
— no node in C'H is end node of different chains

— G(CH,ST) is a semi refutation graph

Proof. The proof is by induction over the maximal distance d between any infe-
rence node and the root node ng of ST

If d = 0 (that is, the root node of ST is an inference node), then both
its successors are failure nodes with corresponding chains chy, chy. Let CH =
{chy, chs}; all conditions are fulfilled trivially.

If d # 0 several cases must be distinguished. Consider the successors ni, ng
of ng. We proof only the semi refutation graph property, all others are trivial.
If n; is the end node of a chain ch;, then set K; = {ch;}. Otherwise, if n; is the
root of a closed subtree, then let K; be the set of chains obtained by applying
the induction hypothesis.

Case 1: n; € K; fori=1,2 or n; Qr}fori: 1,2. Set CH = K1 U K,.

Case 2: nq € K1, but ny ¢ K. This time we cannot take the union of K; and
Ky as CH, because, by ny € K7, its sibling ns would have to be in C'H which
is not the case. We remedy this situation by discarding all chains ending in
the subtree rooted at ni, and use instead the semi refutation graph we have
already below ns. Formally, let K, := copy(Kq,ns). Set CH = Ky UK, All
chains in A;l have their end nodes in the subtree rooted in n; and neither n;
nor ng is in G(CH,ST). Hence, by the induction hypothesis, for all nodes
of G(C'H,ST), with the exception of ng, also its sibling is in G(CH, ST).

Case 3: ny € Ko, but nq ¢ K. Analogous to case 2.

Lemma11. If ST is a subtree of STy, CH C CH(M), and G(CH,ST) is a
refutation graph, then STy is closed by M.

Proof. By definition, C'H is non-empty. If CH contains the empty chain, the
result is trivial. Assume p is a branch of S7; that has no failure node. Then
there is also no chain ¢ch € CH(M) with ch C p. We will construct such a chain
ch’ C p and thus find a contradiction. We find ch’ by successively decreasing the
number of chains in C'H until only ch’ is left.

With each node n; of p we associate its sibling node ~ n; and the subtrees
ST;,~ ST; rooted in ny, respectively, in ~ n;. For each n; we recursively define
a set of chains C'H; and a semi refutation graph G(C'H;, ST;):

CHO =CH

{ChECHZ'_ﬂSTZ'ﬂCh;&@} CHi_lﬁSTZ’7£®
{copy(ch,~ n;)|ch € CH;_1,~ ST, Nch #0} CH;_1NST; =0 and

CH,_1N~ ST, #0
CH;_4 otherwise

CHZ' =

By this definition all those chains are removed from C'H;_; that are surely
no candidates for ch’. The copy operation in the above definition is well defined,
provided G(C'H;_1,5T;_1) is a semi refutation graph. For in this case neither the

node n; nor the node ~ n; are contained in any chain of CH;_1 if CH;_1NST; =
0.

Fach G(CH;, ST;) is either empty or it is a semi refutation graph, because
for all semi refutation graphs G(C'H,ST) and every subtree ST’ of ST the
following holds: G(C'H,ST") either is a semi refutation graph or it is empty.
If it is not empty and C'H does not contain the root node ng of ST’, then
G(copy(CH,ng), ST') is a semi refutation graph. Recall that copied chains be-
long to the same clauses as their originals.

The case when G(CH;, ST;) is empty gives rise to CH; := CH;_; for all
j > . Now it is easy to see, that for all 7 the following properties hold:

1. CH; # 0 (although CH; N ST; may be empty).
2. CH; C pUST; (all chains in C'H; are on the path p at least up to the node

Since C'Hy is finite (by definition of a semi refutation graph), it has a node
with maximal distance to the root node. Let n,,4; be this node on p. Because
of STyar NCH; = 0 for all i, we know that ch’ C p for any ch’ € CHyr.

3 Refutation Graphs and Resolution

We intend to use refutation graphs for completeness proofs. In the present section
we outline how this is done in the case of resolution. If we can prove that a
refutation procedure finds and recognizes a refutation graph of an unsatisfiable
clause set, as a consequence of Theorem 9, it is refutation complete. First we
will redefine some notions related to semantic trees in the context of refutation
graphs.

Definition12. Let M be a clause set, C'H asubset of its chains, and G(C'H, ST)
a refutation graph. A node n € C'H is a failure node of G(CH, ST), iff it is
an end node of a chain ch € C'H and no other chain of C'H than ch contains a
node ny > n.

We call the parent node of two sibling nodes that are failure nodes® an infe-
rence node of G(C'H,ST) and any two chains having siblings as failure nodes
inference chains. If chq, chy are a pair of inference chains with failure nodes
ny and ng, then the chain with nodes (chy U cha)\{n1, na} is called resolvent
chain of ch; and chs.

The next lemma shows that each minimal, non-empty refutation graph con-
tains at least one inference node.

Lemma13. Let G(CH,ST) be a minimal semi refutation graph, ST a subtree of
STy, and n the end node of a chain ch € CH. There is no chain ch # chy € CH
containing a node ny > n.

® Recall that by definition for each node in a refutation graph also its sibling node
must be present.

Proof. The proof is by induction over the maximal distance d between any end
node and the root node ng of ST.

If d = 0, then the root node of ST must be an end node (hence, STy # ST).
The semi refutation graph G(C'H,ST) is minimal, so it consists exactly of the
chain ending in the root node of ST.

If d > 0 the root node is no end node, otherwise G(C'H, ST') would not be
minimal. Let CHy, CHs C C'H be the sets of chains having their end nodes in
the left subtree ST} of ST, respectively, in the right subtree S7T5 of ST. We are
done if we can ensure that G(C H;, ST;) is a minimal semi refutation graph for
i=1,2.

This claim is proved by contradiction: let, for example, G(CHy,ST1) be
not minimal and let G(CH{,STy) be a semi refutation graph with CH] C
CH,,CH{ # CH;. Since G(CH,ST) is minimal, G((CH\CH,) U CH{,ST)
is no semi refutation graph. (CH{, ST1) being a semi refutation graph implies
that the root node of STj is not contained in (CH\C'H;)UCH], but its sibling
is. The contradiction comes with the fact that G(C'H{, ST) already establishes
a semi refutation graph and, therefore, G(C'H, ST) would not be minimal.

In a refutation graph the sibling of a failure node is also contained in the
graph. Since each refutation graph is finite, a minimal, non-empty refutation
graph contains at least one inference node.

Theorem 14. Let G(CH, ST) be a minimal refutation graph, let ST be a subtree
of STy, and e the resolvent chain of a pair c,d of inference chains. Then the
graph G((CH\{c,d}) U{e}, ST) is a refutation graph and it has lesser nodes
than G(CH,ST).

Proof. We abbreviate (CH\{e,d})U {e} with CH’'. We have to prove that for
all nodes ny € G(CH',ST),na € STy nl <cp n2 implies ny € G(CH', ST).

Since we did not add nodes to C'H, all nodes of C'H’ are still nodes of ST" and
each chain is completely contained in S7T. We deleted a pair of failure nodes.
Since G(C'H,ST) is minimal, by the previous lemma we know that no other
nodes loose their siblings.

To each chain there belongs a unique ground clause (the empty clause to the
empty chain). Thus the well-known lifting lemma (see [14] for the versions for
basic resolution and for ordered resolution) tells us that resolving of chains can
be lifted to basic resolution (with factorisation). Moreover, since in our setting
only maximal nodes (literals) are involved in a resolution step, the restrictions
imposed by any A-ordering are obeyed, provided the ordering is compatible with
the enumeration of the Herbrand base chosen for S7j.

FEzample 5. Consider the set of chains C'Hs used in the lower part of Figure 4.
Chains b and 6 constitute a pair of inference chains with failure nodes labelled
with €' and —C'. G(C'Hz, STp) is a minimal refutation graph. If we resolve on
chains 5 and 6 we obtain the minimal refutation graph G(CHs, STy) depicted
in Figure 5, where CHs = (CH\{{—A,C},{—-A,—-C}})U{{—A}}. Note that

C' Hs corresponds to the set of clauses {—B,—AV B, AV —C, AV C}, and the
application of Theorem 14 corresponds to resolving the last two clauses on C'.

C
D -D
Fig.5. The minimal refutation graph G(CHs, STp) from Example 5.

Robinson resolution or A-resolution can recognize a refutation graph that
consists of a pair of sibling nodes (that are resolved to the empty clause). The
search strategies of these procedures enrich the set of clauses. Let us think about
adding all resolvents of factors of parents in a clause set S; yielding the new clause
set S;y1 as a single step. We know that S;;; contains a refutation graph with
lesser nodes. For an unsatisfiable clause set Sy the well-founded order on sets
of clauses S < T iff «(S) < «(T), where «(S) = min{|G(CH',ST)| : CH' C
CH(S),ST C STy, G(CH',ST) a is a refutation graph} garuantees termination
since under this ordering S; > S;41 for all ¢ > 0.

Resolution takes care of all graphs at each step and uses the fact that certain
resolution steps decrease the number of nodes of a refutation graph. A-resolution
employs that these resolution steps are among the A-resolvents. Therefore, in-
stead of resolving each possible pair of parent clauses, A-resolution looks for
certain patterns, namely for inference nodes. The corresponding pair of clauses
i1s A-resolvable.

4 Refutation Graphs for Tableaux

We will deal with tableaux for ground clauses in a enumeration strategy for
first-order logic. Thus it 1s convenient to modify our notion of tableaux in order
to reflect the clausal form (cf. also [12] for clausal tableauz). The reader, who
is familiar with Fitting’s [8] conception of tableaux, can consider our tableaux
as generated by a single extension rule that, at the same time, generalizes the
3 extension rule to any finite number of disjuncts, and combines it with the
substitution rule.

Definition15. Let M be a clause set. We call a finitely branching tree 7' a
tableau for a clause set M, if

— the root node is labelled with T, all other nodes are labelled with a literal,
and

—if D=1LyV---V L, where {Ly,...,L,} are the literals labelling the set
of direct successor nodes of some node, then there is a substitution ¢ and a
clause C' € M, such that D = Co.

T is a ground tableau iff all its labels are ground. A ground tableau is
closed iff every branch contains two complementary literals. A subtableau is
a proper subtree of a tableau (hence, the root of a subtableau is labelled with a
literal).

We use the following notation for tableaux: T'= (L, Ty,...,T,), where L is
the label of the root of T', and T, ...,T, are immediate subtableaux.

Tableau procedures for clause sets regard the chains of each clause as a part
of a possible refutation graph. To find a refutation graph they look for a chain
that contains a sibling node of a node of a chain already present in the tableau.
If a suitable chain 1s found, a corresponding clause can be used to extend the
current tableau and close a branch of the extended tableau. If some siblings
of the used chain (clause) are not yet on the extended branch one has to find
counterparts for these nodes also. One can consider constructing a tableau as
walking through graphs. The next definition makes this idea precise.

Definition16. Let seq be a finite sequence (ny, na, ..., ny) of nodes of a graph
G(CH,ST), m > 1. We call seq a connection in G(CH, ST) iff n; # n; for
i # j (i.e. seq is repetition free), all n;, n;41 are siblings for odd ¢, and all n;, n;41
are members of the same chain in C'H for even i. We say that n,, is connected
to ny. If n,, 1s connected to ny, then obviously there is a chain that contains
nm and all of whose nodes are also connected to ny. We call the set cc(C'H,ny)
of chains in G(C'H, ST) all of whose nodes are connected to n; the connected
component of nj.

Frample 6. Consider the graph G(CH, ST) in Figure 6 with chains as indicated,
without the shaded chain. The nodes (ny, na, ng, nq, n7) form a connection from
ny to n7. All chains in CH but {n;} are connected to ny, hence cc(CH,ny) =
CH\{{n1}} . On the other hand, none of the nodes in {ny,...,n7} is connected
to ny, thus ce(CH,n7) = 0. Hence, we see immediately that the connectedness
relation is irreflexive and not symmetric.

Lemmal7. Let ny,na,...,n, be a connection in G(CH,ST) and let n], be the
sibling of ny,. If there is a path of ST through both ny and nl,, then nl, = ny,_1.

Proof. By induction over the length of the connection. The base case m = 2 is
clear, because n; and n» are siblings by definition.

For m > 2 let STy be the tree rooted in ns. No node of STy but ny is a
sibling to any node that shares a path with ny, therefore, n,, is not in S75. If ch
is a chain including ns, then all nodes of the chain are in S7% or predecessors of
n1. Let n; be the first node in ns, ..., ny, not in ST5. There is such a node since
Ny, 18 not in S75. Then j is odd, because the sibling of every node, but the root

Fig. 6. Connections in a graph.

node, in S75 is again in S75, hence the node in the connection before n; cannot
be a sibling of n;. In addition, n; and n; must have a path of 57 in common
and n; is a predecessor of ny. Thus there is a path through both n; and n], and
the lemma follows after the induction hypothesis is applied to nj, ..., ny.

Let us adopt the convention ~ O =T.

Definition18. Let C'H be an arbitrary set of chains, 7" a ground (sub)tableau
and L a label. We say that T' represents the pair (C H, L) iff the following holds:
If CH is empty, then 7' = (~ L), else T = (~ L,T1,...,T,) with subtableaux
T; representing (C'H;, L;), where the L; are the labels of the nodes n; of a chain
ch € CH and the CH; = cc(CH\{ch}, n;) are connected components of the
roots of the subtrees (each of the C'H; has less chains than C'H provided C'H is
finite).

If we fix a rule telling us how to choose the next chain ch € C'H, when there
are several, we obtain a unique tableau representant of a given pair (C'H, L). This
is the case, for example, when there is an enumeration of the ground instances
of a given clause set M. If the chains of C'H belong to ground instances of M,
one can take the chain with the lowest index.

Frample 7. Assume that the graph of Figure 6 is extended to a refutation graph
G(CH,ST) by the shaded chain. In order to construct a tableau that represents
(CH,D), we begin by taking an arbitrary chain from C'H, say {n4,ns}, and
extend the root tableau node with the complements of its labels, see Figure 7(a).
We number the branches, so that we can identify them more easily.

The next chain that is used to extend branch (1) must be taken from the set
ce(CH\{{n4,ns5}},n4) = {{n1}, {no,ns}}. We take {n1} and extend (1) with
C'. After that only one chain, namely {ns, ns}, is left, and we obtain the tableau
in Figure 7(b).

Now consider branch (3) in Figure 7(b). Observe that node ng is connected
to every chain in C'H\{{n4,ns}}. Hence, CH() := cc(CH\{{n4,n5}}, ns) =
CH\{{n4,ns}} is the next connected component. We choose {na, nz} and extend
the tableau with the corresponding labels in Figure 7(c).

A A A
1) (2 L) & A/B hYG
oy FATEORY)
(2) 1 (@) (1)
(b) (c)
_A/T\B —A/T\B
& /A< ~_¢ & /A< ~_c
A 2o a7 B2 (6 A Yo a7 e &
1 2) @ 6 1 2 B3 @ (é) (6)
5
(d)
(e)

Fig. 7. Constructing a closed tableau that represents a refutation graph.

We focus on branch (3) in Figure 7(c). The leaf A is the label of nz. We must
look for the chains in C'H sy := cc(CH1)\{{n2, n3}} that are connected with ns.
These are {{n4, ne,n7}, {ns}}. We expand the tableau with the labels correspon-
ding to {n4, ne, n7}, and obtain Figure 7(d). The node corresponding to the leaf
of (3) is n4. If we look for the chains in C'H sy := cc(C H2)\{{n4, n¢,n7}}, na) we
see that this is the empty set, therefore, we cannot expand the branch anymore.
Indeed, branch (3) in Figure 7(d) is closed with (—A, A). The same is true for
branches (1), (2), and (4). In each case the connected component is empty.

The node corresponding to the leaf of (5) is n7. The connected component for
n7 in CHgy := cc(CH)\{{na, ns,n7}}, n7) is {ns}, and we extend (5) with C.
The situation in branch (6) is similar, and we finally obtain the closed tableau
shown in Figure 7(e).

The following lemma states that it was not by coincidence that the tableau
in the example was closed.

Lemma 19. If T represents (CH,0) and G(CH, ST) is a refutation graph, then
T is closed. Moreover, if a subtableau T' of T represents a pair (CH', L), then
for each node n in CH' the following holds:

(*) Either the sibling of n is in CH’ or the literal that labels n is already on the
branch.

Proof. By definition, no leaf (~ L) of T can be expanded, because the corre-
sponding connected component CHy = cc(CH'"\{ch},nr) is empty, where CH"
is the set of chains that (L) must represent. If (*) holds for CH" and CHp is
empty, then the sibling of ny is not in C'H”, and L is already on the branch,

which is the complementary literal to the leaf (~ L). So the closedness of T
indeed follows from (*).

Now to the proof of (*). It holds for CH, because G(C'H, ST) is a refutation
graph and thus for each node in C'H also its sibling is present.

Otherwise consider the subtableau T; representing (C'Hy, L;), where L; is the
label of the node n; € ch and CH; = ce(CH'\{ch}, n;) Provided (*) holds for
each node of C'H’, then it also holds for those nodes ny,, of CH"\{ch} whose
siblings n! are not in ch. The remaining case is when ny, is connected to n; and
the sibling n/, in ch, but then we can apply Lemma 17. With n,, # n; also its
sibling node is in C'H; = ce(CH\{ch},n;). With n; also the literal labelling its
sibling is on the branch.

In the light of the previous lemma and Theorem 9 it is sufficient for a tableau
procedure in order to be complete to ensure that, if there is a refutation graph
for a clause set, a tableau representing it is found. One can guruantee this, for
example, by backtracking over all possible tableaux, or by successively bringing
all ground instances of all clauses on each branch. In the latter case there is
a tableau for each refutation graph compatible with the chosen enumeration
strategy. If unnecessary literals are put onto a branch the closing steps have to
be repeated in each superfluous resulting branch. Of course, there is no need to
bring the same ground instance of a literal more than once on a branch. One
can easily construct a closed tableau without multiple occurrences of ground
instances on a single branch if a closed tableau without this restriction is given.
For the sake of simplicity we did not address this problem in Lemma 19.

A tableau with free variables as in [8] deals simultaneously with all ground
instance tableaux that are obtained by the application of a ground substitution
to the variables of the tableau. One has to ensure then that it can be closed, if one
of its instances can be closed. This problem will be addressed in a forthcoming

paper.

5 Tableaux with A-Ordering

In this section we explain how to incorporate A-orderings into a tableau refuta-
tion procedure for clause sets.

Definition 20. Let 7" be a ground (sub)tableau representing (CH, L) and d(n)
the distance of a node n from the root node. We say T is ordered iff either

— T 1s a leaf or

— all immediate subtableaux 77, ...,7T}, of T are ordered, and there i1s no node
d(n) > d(nl,,,) in CH, where n’_ . is the sibling of the maximal node of the

chain ch € C'H that determines Ty, ..., 7,.

Frample 8. The tableau in Figure 7(e) is not ordered, because d(ns) is not ma-
ximal in the set CH of Example 7. On the other hand, both subtrees below the
root node are ordered.

The following theorem is a consequence of Lemma 19.

Theorem 21. If T is ordered, represents (CH, D), and G(CH,ST) is a refuta-
tion graph, then T is closed.

Proof. Each subtableau 7" of T represents a pair (C'H', L). The theorem is a
consequence of Lemma 19, provided that C'H’ contains a chain that obeys the
restriction of Definition 20. In each chain set there are chains whose end nodes
have maximal distance from the root. Every such chain is suitable.

One can combine this strategy with enumeration, if one selects the chain with
the lowest index if several candidates are present.

Definition22. Let <4 be an A-ordering on a clause set M. An A-ordered
ground instance enumeration tableau is a tableau constructed by the fol-
lowing restricted expansion rule:

Tableau branches are expanded solely by ground instances of clauses in M
not already on the branch

1. that have a maximal literal complementary to a literal already on the branch
or
2. to a maximal literal of another ground instance of a clause in M

Theorem 23. If M is an unsatisfiable clause set, then there s a closed A-
ordered ground instance enumeration tableau.

Proof. If M is an unsatisfiable clause set, then let CH C CH(M), and 7"
an ordered tableau representing (C'H,O) such that G(CH, STy) is a refutation
graph. This is possible by Theorem 9. By Theorem 21, T” is closed.

The property (*) of Lemma 19 holds for 7". By definition of ordered tableaux,
the sibling of the maximal literal of an expansion is either complementary to the
maximal literal of a ground instance or not in the corresponding connected com-
ponent. In the latter case, by (*), the complement of the maximal literal is
already on the branch. Thus all the instances in 7" are permitted by the restric-
tion imposed in the A-ordered ground instance enumeration tableau procedure.

6 Conclusions and Related Work

In this paper we can only lay the ground for further investigations. We provided
a technique for proving completeness of first-order enumeration ground tableaux
and Robinson resolution in a uniform way. The completeness proofs can be
adapted to ordering refinements for resolution and tableau as well. The outlined
ground tableau procedure can be immediately implemented in tableau provers
like HARP [15] or Tatzelwurm [10].

In future work we intend to investigate the combination of ordering restricti-
ons with free variable tableaux, tableaux with equality, and tableaux as decision
procedures.

There have been several approaches to involve ordering restrictions into
first-order theorem proving. Soon after the introduction of basic resolution by
J. A. Robinson a wide variety of refinements for resolution followed. Ordering
restrictions and semantic clash were first investigated by Slagle [17]. Kowalski
and Hayes [11] combined ordering restrictions with a completeness proof using
semantic trees. Joyner used this refinement as a decision procedure for a certain
class of first-order formulas [9]. His results, however, were not widely discussed
until recently Fermiiller et al. [7] revived the ideas of Joyner. Another approach
to decidability stems from the inverse method due to Maslov, and was further
developed by Zamov [19] and Tammet [18] in a very similar way as resolution in
the work of Joyner. Both approaches contribute to [7]. Further, we mention the
work of Bachmaier and Ganzinger [2]. They generalize completion procedures
similar to the well known Knuth-Bendix completion to refutational first-order
theorem proving with equality. A different approach to using tableaux as a de-
cision procedure for certain first-order problems is due to Caferra [5]. It is not
based on ordering restrictions, but on keeping track of models with a decidable
equality language.

References

1. O. Astrachan and M. Stickel. Caching and lemmaizing in model elimination theo-
rem provers. In D. Kapur, editor, Proc. 11th Conference on Automated Deduction,
Albany/NY, USA, pages 224-238. Springer LNAT 607, 1992.

2. L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with
selection and simplification. Technical Report MPI-1-9-1-208, Max-Planck-
Institut fur Informatik, MPI at Saarbricken, Germany, 1991.

3. W. Bibel. Automated Theorem Proving. Vieweg, Braunschweig, second revised
edition, 1987.

4. W. Bibel and E. Eder. Decomposition of tautologies into regular formulas and
strong completeness of connection graph resolution. Technical Report ATDA-94-
07, FG Intellektik, FB Informatik, TH Darmstadt, Mar. 1994.

5. R. Caferra and N. Zabel. A tableaux method for systematic simultaneous search
for refutations and models using equational problems. Journal of Logic and Com-
putation, 3(1):3-26, 1993.

6. C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, London, 1973.

7. C. Fermiller, A. Leitsch, T. Tammet, and N. Zamov. Resolution Methods for the
Decision Problem. Springer LNAI 679, 1993.

8. M. C. Fitting. First-Order Logic and Automated Theorem Proving. Springer, New
York, 1990.

9. W. H. Joyner. Resolution strategies as decision procedures. Journal of the Asso-
ciation for Computing Machinery, 23(3):398-417, 1976.

10. T. Kaufl and N. Zabel. Cooperation of decision procedures in a tableau-based
theorem prover. Revue d’Intelligence Artificielle, 4(3):99-126, 1990.

11. R. Kowalski and P. Hayes. Semantic trees in automatic theorem-proving. Machine
Intelligence, 4:87-101, 1969.

12. R. Letz. First-Order Calculi and Proof Procedures for Automated Deduction. PhD
thesis, TH Darmstadt, June 1993.

13.

14.

15.

16.
17.

18.

19.

R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A high-perfomance
theorem prover. Technical report, Forschungsgruppe Kinstliche Intelligenz, TU
Minchen, 1991.

D. W. Loveland. Automated Theorem Proving. A Logical Basis, volume 6 of Fun-
damental Studies in Computer Science. North-Holland, 1978.

F. Oppacher and E. Suen. HARP: A tableau-based theorem prover. Journal of
Automated Reasoning, 4:69-100, 1988.

R. E. Shostak. Refutation graphs. Artificial Intelligence, 7:51-64, 1976.

J. R. Slagle. Automatic theorem proving with renamable and semantic resolution.
Journal of the Association for Computing Machinery, 14(4):687-697, 1967.

T. Tammet. The resolution program, able to decide some solvable classes. In
Proceedings COLOG-88, Talinn, pages 300-312. Springer, LNCS 417, 1990.

N. Zamov. Maslov’s inverse method and decidable classes. Annals of Pure and
Applied Logic, 42:165-194, 1989.

