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Abstract� The aim of this paper is to make restriction strategies based
on orderings of the Herbrand universe available for semantic tableau	like
calculi as well
 A marriage of tableaux and ordering restriction strategies
seems to be most promising in applications where generation of counter
examples is required
 In this paper� starting out from semantic trees�
we develop a formal tool called refutation graphs� which �i� serves as a
basis for completeness proofs of both resolution and tableaux� and �ii�
is compatible with so	called A	ordering restrictions
 The main result is
a rst	order ground tableau procedure complete for A	ordering restricti	
ons


Introduction

In recent years one could observe a kind of renaissance of tableau�related methods
in automated theorem proving after the �eld has been dominated by resolution
approaches for many years�� Tableaux are easy to adjust to nonclassical logics�
and they have already a number of advantages for classical �rst�order logic that
have not been paid great attention to for some time� notably� �i	 they have a
higher ground speed than resolution
 �ii	 it is easy to incorporate theories ���

�iii	 there are many re�nements to remove redundancy from proofs ���� ���
 �iv	
lemmaizing and caching can be naturally de�ned and implemented ���� All these
techniques can be e�ciently implemented using Prolog technology ����� Finally�
�v	 tableaux are suitable for human interaction� This is a major advantage in
program veri�cation� where frequently very large or not valid formulas occur�
In the latter case also the use of specialised decision procedures e�g� for certain
arithmetical theories is very helpful�

The basic idea of order restricted resolution is as follows�� assume we are
given a partial ordering � on �rst�order terms� Now admit only resolution steps
wherein the resolved literal is ��maximal in the resolvent clause� For certain
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� We assume the reader is familiar with basic expositions of semantic tableaux like ���
and of resolution like ���


� In order to gain familarity with ordering restricted resolution we recommend ��� as
an up	to	date account




orderings this restriction turn out to be still complete for �rst�order logic� Mo�
reover� resolution with �variants of	 ordering restrictions can be used to decide
certain classes of �rst�order logic ��� and to enhance the performance of basic
resolution ����� Hence� in the light of applications such as program veri�cation
it is extremely desirable to make ordering re�nements available for tableaux as
well� thus bringing together paradigms that have already been proven successful
separately�

The part of resolution that corresponds to the selection of a closure substi�
tution in tableau is the selection of a pair of parent clauses and complementary
literals therein� A wrong choice does not require backtracking� since resolution
is proof con�uent � but an unnecessary clause can in turn produce many useless
clauses� and if resolution proofs are unsuccessful� then usually because the system
gets choked with useless clauses�

Every reasonable tableau procedure with free variables and uni�cation must
employ backtracking over the possible substitutions that close a branch� For
complex problems the resulting number of proofs becomes simply too large even
if techniques like caching ���� anti�lemmata or regularity conditions ���� are used
to reduce the number of choices� For this reason ordering restrictions are obvious
candidates for further enhancement of tableaux� as they are well understood in
the case of resolution�

The paper is organized as follows� in Section � for convenience of reading
we repeat some basic de�nitions
 in Section � we introduce refutation graphs
which constitute the central link between semantic trees and semantic tableaux�
and prove some basic properties� In Section � we use refutation graphs to give a
completeness proof of �order�restricted	 binary resolution� while in Section � we
do the same for �unrestricted	 ground tableaux� Finally� in Section � we prove
our main result� namely that a straightforward and natural ordering restriction
of �rst�order ground tableau is a complete proof procedure for �rst�order logic�

Due to space restrictions most proofs had to be omitted� A long version of
this paper with full proofs of all theorems can be obtained from the authors on
request or via anonymous ftp to ����������� �switch to binary mode and get
the �le pub�haehnle�Ordered�Tableaux�Long�ps�Z	�

� Semantic Trees

Throughout the paper we use a standard �rst�order CNF clause language wi�
thout equality�

The proof of completeness of resolution via semantic trees is well known�
Unfortunately� it is not easy to adapt this proof to �clausal	 tableau procedures�
The �rst obstacle is to identify the exact counterpart of clauses and resolvents in
a tableau� The propositional resolution rule can be seen as a cut rule restricted
to atomic formulas and clausal tableau proofs corresponds to cut free sequent
proofs� Cut elimination� however� results in additional copies of certain subfor�
mulas which are spread around the proof� Hence� more than one formula in a



tableau corresponds to one generated clause in a resolution proof and one has
to keep track of these formulas�

Example ��
In Figure � the closure of the rightmost branch

A ��B �C D

A �E �D

�

Fig� �� The tableau is sym�
bolized by a labelled tree�
� denotes the closing of a
branch�

corresponds to an application of the resolution
rule with parent clauses A � �B � C � D and
A�E��D� The resolvent A��B�C�A�E oc�
curs as the union of the framed nodes� The parent
clauses may be spread over several nodes in the
tableau� The only restriction is that the nodes of
the literals resolved upon are labelled with a single
literal� Note that the parent clauses are not avai�
lable any longer� Otherwise� a node can belong to
di�erent clauses and cause problems� especially in
the case of free variable �rst�order tableaux�

The classic completeness proof for resolution ���� is based on two presupposi�
tions� �i	 Only subsumed clauses and tautological clauses are discarded
 �ii	 The
resolvent belonging to an inference node retains all interesting ground instances
of the parents� As we just have seen we have to discard also clauses in a tableau
procedure that are not subsumed� Thus we have to modify the proof idea for
completeness based on semantic trees�

We assume the reader is familiar with the basic notions and results of compu�
tational logic� in particular with Herbrand bases and Herbrand�s theorem �see�
for instance ����	� In the following let B� be the Herbrand base of our �rst�order
language� and let B� � A�� A�� � � � be an arbitrary� but �xed� enumeration
 � L

denotes the complementary of a literal L
 sometimes we will treat clauses as
sets without mentioning it� CnL means� that each occurrence of the literal L
is deleted from the clause C� Most of the following de�nitions may be found
in ���� ���

De�nition�� Let a�� a�� � � � be a �xed enumeration of a set of atoms B� The la�
belled� binary tree ST � which is de�ned as the smallest tree obeying the following
conditions� is called semantic tree for B�

�� The root node of ST is unlabelled
 its left child is labelled with a�� its right
child is labelled with �a��

�� If a node is labelled with ai or �ai� then its left child is labelled with ai���
and its right child is labelled with �ai���

The semantic tree for B� is denoted with ST�� Two nodes in ST with the same
parent node are called siblings� A path in ST is a ��nite or in�nite	 sequence
of node labels hli� li��� � � �i� such that the node belonging to lj�� is the child of
the node belonging to lj for all j � i� An maximal path in ST is a branch of
ST � Two paths p�� p� are called sibling�paths wrt a pair of sibling nodes n��
n� i� p� and p� are both of the form hl�� l�� � � � � li��� lnj

� li��� � � �i� where lnj
is



the label of nj for j � �� �� With each node n of a semantic tree ST we associate
its refutation set which consists of the labels on the path from the root to n�

De�nition�� A clause C fails at a node n of a semantic tree ST i� there is a
substitution � such that for each literal L in C�� � L is in the refutation set of
n� A node n is a failure node for a set of clauses M i� some clause fromM fails
at n� but no clause from M fails at a node above n� A node n is an inference

node i� both of its children are failure nodes� A semantic tree ST is closed by
M i� every branch of ST contains a failure node for M �

See Figure � for an example illustrating these de�nitions�

De�nition�� An A�ordering on a set of atoms B is a binary relation �A such
that for all a� b� c � B

Irre�exivity a ��A a�
Transitivity a �A b and b �A c imply a �A c�
Substitutivity a �A b implies a� �A b� for all substitutions ��
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Fig� �� The failure nodes in a semantic tree for fA�B�C�Dg for the clause set
f�A � �B� �A � B� A � �B� A � B � �C� A � B � Cg
 The paths hA�B�C�Di
and hA��B�C�Di going from the node labelled with A to the nodes marked with �
are sibling	paths the sequences of their labels di�ering only in the second position
 The
failure nodes are marked with �
 The node labelled with A is an inference node �among
others�
 Since all branches contain a failure node� the tree is closed


� Refutation Graphs�

Our goal is to adapt completeness proofs via semantic trees to tableau procedu�
res� In the resolution case� completeness proofs via semantic trees are based on

� This should not be confused with a concept bearing the same name introduced
by Shostak ���� in the context of clause graph resolution
 Since we feel that the
phrase �refutation graph� catches exactly our intention we decided to keep the name
nevertheless
 Independently� Bibel ��� recently developed the concept of a so	called
�	regular graph which is somewhat related to our refutation graphs




the successive elimination of failure nodes� yielding smaller and smaller closed
semantic trees for an inconsistent clause set� At the end the tree consisting solely
of the root node is left� Since the only clause that fails at the root node is the
empty clause� it must have been inferred by that time�

Unfortunately� this argument does not work in the case of tableaux� Instead of
reducing the size of the whole closed semantic tree one has to have a closer look on
the nodes of a semantic tree that establish the closure of the tree� We will collect
such nodes according to their mutual relationship into more complicated graphs
on the node set of the semantic tree� If such a graph meets certain requirements�
it can be seen as refutation of a corresponding set of clauses� The number of
nodes in this graph will play a similar role in our completeness proof as the size
of the semantic tree in the classic proof�

De�nition	� Let M be a set of clauses� and G be a ground instance of a clause
C �M � We call a set ch of nodes of ST� a chain of G �or of C	 i�


 all nodes in ch are on the same path in ST�� and

 L is a label of a node in ch i� � L � G�

We denote the set of all chains of M in ST� by CH�M 	� and the set of all
nodes occurring in a set CH of chains by CH� The empty chain by de�nition
corresponds to the empty clause�

Informally speaking� a chain is a minimal subset of a path that refutes a
clause� We de�ne chains not as sequences but as sets� because we will mainly
use them accordingly�

Example �� Let M � f�A � �B � �C��A � C��B�A � �C�A � C��A � Bg
The chains in Figure � marked with �� � � � � �� respectively� belong to the following
clauses� � belongs to �A � �B � �C� � and � belong to �A � C� � belongs to
�B� � belongs to A ��C� � belongs to A �C� and � belongs to �A �B� Note
that di�erent chains can belong to the same clause� because di�erent nodes can
have the same labels�
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Fig� �� Chains that belong to various clauses in the semantic tree for the clause set
from Example �




Since all nodes of a chain are contained in the same path of a semantic
tree they are ordered in a natural way� The successor relation together with the
relation of being sibling nodes is used to de�ne the graphs mentioned above�

De�nition�� We write n� � n�� if n� is closer to the root� Moreover� a node
n� of a chain ch is called a successor node of n� � ch� if n� � n� and there is
no node n� � ch such that n� � n� � n�� A node without a successor node is
called an end node of that chain�

De�nition�� For an arbitrary set of chains CH in ST�� we de�ne a binary
relation �CH on the nodes of ST�� n� �CH n� i� n� and n� are sibling nodes
or belong to the same chain in CH and n� is a successor of n��

A set CH of chains closes a subtree ST of ST� i� it contains the empty
chain or each path of ST� through the root of ST contains a chain of CH whose
end node is in ST �

Note that for each clause set M the semantic tree ST� is closed by CH�M 	
i� ST� is closed by M in the sense of De�nition ��

De�nition� Given a non�empty set of chains CH and a subtree ST of ST��
the graph de�ned by ST and CH is G�CH�ST 	 � hCH � ST��CH i� A graph
G�CH�ST 	 is called a refutation graph i� it is �nite and for all nodes n� �
G�CH�ST 	� n� � ST� we have that n� �CH n� implies n� � G�CH�ST 	� A
graph G�CH�ST 	 is a semi refutation graph i� it is �nite and for each node�
but the root node of ST � also its sibling is contained in G�CH�ST 	� A �semi	
refutation graph G�CH�ST 	 is minimal i� for no CH� � CH G�CH�� ST 	
is a �semi	 refutation graph� A refutation graph G�CH�ST 	 is connected if
there are no 	 �� CH�� CH� � CH� CH� �� CH� such that G�CH�� ST 	 and
G�CH�� ST 	 are both refutation graphs�

Note that the empty graph that corresponds to the set of chains consisting
only of the empty chain is a refutation graph� and is called the empty refuta�

tion graph�

Example �� LetM be as in Example �� The chains of Example � do not establish
a refutation graph� since sibling nodes for nodes in the chains � and � are missing�
However� consider the subgraph consisting of the chains CH� � f�� �� �� ���g�
The corresponding refutation graph G�CH�� ST�	 is shown on top in Figure ��
Note that the clauses corresponding to chains �� � are not necessary for a re�
futation by resolution or tableau� We get a much simpler refutation graph
G�CH�� ST�	 �depicted on bottom in Figure �	� if we take the chains �� �� �
and � as a chain set CH� with the new chain � stemming from the clause �B�
One can consider chain � as a copy of chain � placed in the left subtree of ST�
instead of the right� The next de�nition will deal with this copy operation more
rigorously�
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Fig� �� The refutation graphs G�CH�� ST�� and G�CH�� ST�� from Example �


De�nition�� Let ch be a chain on a path p in the tree ST� with end node n� Let
c �� ch be a node with c � n and let q be the sibling�path of p with respect to c
and its sibling� We denote with copy�ch� c	 the unique chain situated on q� whose
nodes have the same labels as ch� The extension of the de�nition copy�CH� c	
to sets of chains CH is obvious�

Example �� Using the numbering of the previous examples� copy��� nA	��� where
nA is the node labelled with A�

Theorem�� Let M be a clause set�

�� M is unsatis�able i	 ST� is closed by M �
�� If ST� is closed by M 
 then there is a set of chains CH 
 CH�M 	 such that

G�CH�ST�	 is a refutation graph�
�� If CH is a set of chains belonging to clauses in M 
 and G�CH�ST�	 is a

refutation graph
 then ST� is closed by M �

Proof� �� Proved in ����
�� The semi refutation graph G�CH�ST�	 constructed in Lemma � is su��

cient� because ST� contains all nodes�
�� Proved in Lemma �� for arbitrary subtrees ST of ST��

Lemma��� Let M be a set of clauses and ST a subtree of ST� closed by
CH�M 	� There is a set of chains CH 
 CH�M 	 such that


 CH closes ST

 CH contains only chains that have end nodes in ST


 no node in CH is end node of di	erent chains




 G�CH�ST 	 is a semi refutation graph

Proof� The proof is by induction over the maximal distance d between any infe�
rence node and the root node n� of ST �

If d �  �that is� the root node of ST is an inference node	� then both
its successors are failure nodes with corresponding chains ch�� ch�� Let CH �
fch�� ch�g
 all conditions are ful�lled trivially�

If d ��  several cases must be distinguished� Consider the successors n�� n�
of n�� We proof only the semi refutation graph property� all others are trivial�
If ni is the end node of a chain chi� then set Ki � fchig� Otherwise� if ni is the
root of a closed subtree� then let Ki be the set of chains obtained by applying
the induction hypothesis�

Case �� ni � Ki for i � �� � or ni �� Ki for i � �� �� Set CH � K� �K��
Case �� n� � K�� but n� �� K�� This time we cannot take the union of K� and

K� as CH� because� by n� � K�� its sibling n� would have to be in CH which
is not the case� We remedy this situation by discarding all chains ending in
the subtree rooted at n�� and use instead the semi refutation graph we have
already below n�� Formally� let �K� �� copy�K�� n�	� Set CH � �K� �K�� All
chains in �K� have their end nodes in the subtree rooted in n� and neither n�
nor n� is in G�CH�ST 	� Hence� by the induction hypothesis� for all nodes
of G�CH�ST 	� with the exception of n�� also its sibling is in G�CH�ST 	�

Case �� n� � K�� but n� �� K�� Analogous to case ��

Lemma��� If ST is a subtree of ST�
 CH 
 CH�M 	
 and G�CH�ST 	 is a
refutation graph
 then ST� is closed by M �

Proof� By de�nition� CH is non�empty� If CH contains the empty chain� the
result is trivial� Assume p is a branch of ST� that has no failure node� Then
there is also no chain ch � CH�M 	 with ch 
 p� We will construct such a chain
ch� 
 p and thus �nd a contradiction� We �nd ch� by successively decreasing the
number of chains in CH until only ch� is left�

With each node ni of p we associate its sibling node � ni and the subtrees
STi�� STi rooted in ni� respectively� in � ni� For each ni we recursively de�ne
a set of chains CHi and a semi refutation graph G�CHi� STi	�

CH� �� CH

CHi ��

����
���

fch � CHi��j STi � ch �� 	g CHi�� � STi �� 	
fcopy�ch�� ni	j ch � CHi���� STi � ch �� 	g CHi�� � STi � 	 and

CHi��� � STi �� 	
CHi�� otherwise

By this de�nition all those chains are removed from CHi�� that are surely
no candidates for ch�� The copy operation in the above de�nition is well de�ned�
provided G�CHi��� STi��	 is a semi refutation graph� For in this case neither the



node ni nor the node � ni are contained in any chain of CHi�� if CHi���STi �
	�

Each G�CHi� STi	 is either empty or it is a semi refutation graph� because
for all semi refutation graphs G�CH�ST 	 and every subtree ST � of ST the
following holds� G�CH�ST �	 either is a semi refutation graph or it is empty�
If it is not empty and CH does not contain the root node n� of ST �� then
G�copy�CH�n�	� ST

�	 is a semi refutation graph� Recall that copied chains be�
long to the same clauses as their originals�

The case when G�CHi� STi	 is empty gives rise to CHj �� CHj�� for all
j � i� Now it is easy to see� that for all i the following properties hold�

�� CHi �� 	 �although CHi � STi may be empty	�
�� CHi 
 p� STi �all chains in CHi are on the path p at least up to the node

ni	�

Since CH� is �nite �by de�nition of a semi refutation graph	� it has a node
with maximal distance to the root node� Let nmax be this node on p� Because
of STmax �CHi � 	 for all i� we know that ch� 
 p for any ch� � CHmax�

� Refutation Graphs and Resolution

We intend to use refutation graphs for completeness proofs� In the present section
we outline how this is done in the case of resolution� If we can prove that a
refutation procedure �nds and recognizes a refutation graph of an unsatis�able
clause set� as a consequence of Theorem �� it is refutation complete� First we
will rede�ne some notions related to semantic trees in the context of refutation
graphs�

De�nition��� LetM be a clause set� CH a subset of its chains� andG�CH�ST 	
a refutation graph� A node n � CH is a failure node of G�CH�ST 	� i� it is
an end node of a chain ch � CH and no other chain of CH than ch contains a
node n� � n�

We call the parent node of two sibling nodes that are failure nodes� an infe�
rence node of G�CH�ST 	 and any two chains having siblings as failure nodes
inference chains� If ch�� ch� are a pair of inference chains with failure nodes
n� and n�� then the chain with nodes �ch� � ch�	nfn�� n�g is called resolvent

chain of ch� and ch��

The next lemma shows that each minimal� non�empty refutation graph con�
tains at least one inference node�

Lemma��� Let G�CH�ST 	 be a minimal semi refutation graph
 ST a subtree of
ST�
 and n the end node of a chain ch � CH� There is no chain ch �� ch� � CH

containing a node n� � n�

� Recall that by denition for each node in a refutation graph also its sibling node
must be present




Proof� The proof is by induction over the maximal distance d between any end
node and the root node n� of ST �

If d � � then the root node of ST must be an end node �hence� ST� �� ST 	�
The semi refutation graph G�CH�ST 	 is minimal� so it consists exactly of the
chain ending in the root node of ST �

If d �  the root node is no end node� otherwise G�CH�ST 	 would not be
minimal� Let CH�� CH� 
 CH be the sets of chains having their end nodes in
the left subtree ST� of ST � respectively� in the right subtree ST� of ST � We are
done if we can ensure that G�CHi� STi	 is a minimal semi refutation graph for
i � �� ��

This claim is proved by contradiction� let� for example� G�CH�� ST�	 be
not minimal and let G�CH�

�� ST�	 be a semi refutation graph with CH�

� �

CH�� CH
�

� �� CH�� Since G�CH�ST 	 is minimal� G��CHnCH�	 � CH �

�� ST 	
is no semi refutation graph� �CH�

�� ST�	 being a semi refutation graph implies
that the root node of ST� is not contained in �CHnCH�	�CH�

�� but its sibling
is� The contradiction comes with the fact that G�CH�

�� ST 	 already establishes
a semi refutation graph and� therefore� G�CH�ST 	 would not be minimal�

In a refutation graph the sibling of a failure node is also contained in the
graph� Since each refutation graph is �nite� a minimal� non�empty refutation
graph contains at least one inference node�

Theorem�	� Let G�CH�ST 	 be a minimal refutation graph
 let ST be a subtree
of ST�
 and e the resolvent chain of a pair c� d of inference chains� Then the
graph G��CHnfc� dg	 � feg� ST 	 is a refutation graph and it has lesser nodes
than G�CH�ST 	�

Proof� We abbreviate �CHnfc� dg	� feg with CH�� We have to prove that for
all nodes n� � G�CH�� ST 	� n� � ST� n� �CH� n� implies n� � G�CH�� ST 	�

Since we did not add nodes to CH� all nodes of CH� are still nodes of ST and
each chain is completely contained in ST � We deleted a pair of failure nodes�
Since G�CH�ST 	 is minimal� by the previous lemma we know that no other
nodes loose their siblings�

To each chain there belongs a unique ground clause �the empty clause to the
empty chain	� Thus the well�known lifting lemma �see ���� for the versions for
basic resolution and for ordered resolution	 tells us that resolving of chains can
be lifted to basic resolution �with factorisation	� Moreover� since in our setting
only maximal nodes �literals	 are involved in a resolution step� the restrictions
imposed by any A�ordering are obeyed� provided the ordering is compatible with
the enumeration of the Herbrand base chosen for ST��

Example �� Consider the set of chains CH� used in the lower part of Figure ��
Chains � and � constitute a pair of inference chains with failure nodes labelled
with C and �C� G�CH�� ST�	 is a minimal refutation graph� If we resolve on
chains � and � we obtain the minimal refutation graph G�CH�� ST�	 depicted
in Figure �� where CH� � �CH�nff�A�Cg� f�A��Cgg	� ff�Agg� Note that



CH� corresponds to the set of clauses f�B��A � B�A � �C�A � Cg� and the
application of Theorem �� corresponds to resolving the last two clauses on C�
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Fig� �� The minimal refutation graph G�CH�� ST�� from Example �


Robinson resolution or A�resolution can recognize a refutation graph that
consists of a pair of sibling nodes �that are resolved to the empty clause	� The
search strategies of these procedures enrich the set of clauses� Let us think about
adding all resolvents of factors of parents in a clause set Si yielding the new clause
set Si�� as a single step� We know that Si�� contains a refutation graph with
lesser nodes� For an unsatis�able clause set S� the well�founded order on sets
of clauses S � T i� ��S	 � ��T 	� where ��S	 � minfjG�CH�� ST 	j � CH � 

CH�S	� ST 
 ST�� G�CH�� ST 	 a is a refutation graphg garuantees termination
since under this ordering Si � Si�� for all i � �

Resolution takes care of all graphs at each step and uses the fact that certain
resolution steps decrease the number of nodes of a refutation graph� A�resolution
employs that these resolution steps are among the A�resolvents� Therefore� in�
stead of resolving each possible pair of parent clauses� A�resolution looks for
certain patterns� namely for inference nodes� The corresponding pair of clauses
is A�resolvable�

� Refutation Graphs for Tableaux

We will deal with tableaux for ground clauses in a enumeration strategy for
�rst�order logic� Thus it is convenient to modify our notion of tableaux in order
to re�ect the clausal form �cf� also ���� for clausal tableaux 	� The reader� who
is familiar with Fitting�s ��� conception of tableaux� can consider our tableaux
as generated by a single extension rule that� at the same time� generalizes the
� extension rule to any �nite number of disjuncts� and combines it with the
substitution rule�

De�nition��� Let M be a clause set� We call a �nitely branching tree T a
tableau for a clause set M � if


 the root node is labelled with T� all other nodes are labelled with a literal�
and




 if D � L� � � � � � Ln� where fL�� � � � � Lng are the literals labelling the set
of direct successor nodes of some node� then there is a substitution � and a
clause C �M � such that D � C��

T is a ground tableau i� all its labels are ground� A ground tableau is
closed i� every branch contains two complementary literals� A subtableau is
a proper subtree of a tableau �hence� the root of a subtableau is labelled with a
literal	�

We use the following notation for tableaux� T � �L� T�� � � � � Tn	� where L is
the label of the root of T � and T�� � � � � Tn are immediate subtableaux�

Tableau procedures for clause sets regard the chains of each clause as a part
of a possible refutation graph� To �nd a refutation graph they look for a chain
that contains a sibling node of a node of a chain already present in the tableau�
If a suitable chain is found� a corresponding clause can be used to extend the
current tableau and close a branch of the extended tableau� If some siblings
of the used chain �clause	 are not yet on the extended branch one has to �nd
counterparts for these nodes also� One can consider constructing a tableau as
walking through graphs� The next de�nition makes this idea precise�

De�nition��� Let seq be a �nite sequence hn�� n�� � � � � nmi of nodes of a graph
G�CH�ST 	� m � �� We call seq a connection in G�CH�ST 	 i� ni �� nj for
i �� j �i�e� seq is repetition free	� all ni� ni�� are siblings for odd i� and all ni� ni��
are members of the same chain in CH for even i� We say that nm is connected
to n�� If nm is connected to n�� then obviously there is a chain that contains
nm and all of whose nodes are also connected to n�� We call the set cc�CH�n�	
of chains in G�CH�ST 	 all of whose nodes are connected to n� the connected
component of n��

Example �� Consider the graph G�CH�ST 	 in Figure � with chains as indicated�
without the shaded chain� The nodes hn�� n�� n�� n�� n�i form a connection from
n� to n�� All chains in CH but fn�g are connected to n�� hence cc�CH�n�	 �
CHnffn�gg � On the other hand� none of the nodes in fn�� � � � � n�g is connected
to n�� thus cc�CH�n�	 � 	� Hence� we see immediately that the connectedness
relation is irre�exive and not symmetric�

Lemma�� Let n�� n�� � � � � nm be a connection in G�CH�ST 	 and let n�m be the
sibling of nm� If there is a path of ST through both n� and n�m
 then n�m � nm���

Proof� By induction over the length of the connection� The base case m � � is
clear� because n� and n� are siblings by de�nition�

For m � � let ST� be the tree rooted in n�� No node of ST� but n� is a
sibling to any node that shares a path with n�� therefore� nm is not in ST�� If ch
is a chain including n�� then all nodes of the chain are in ST� or predecessors of
n�� Let nj be the �rst node in n�� � � � � nm not in ST�� There is such a node since
nm is not in ST�� Then j is odd� because the sibling of every node� but the root
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node� in ST� is again in ST�� hence the node in the connection before nj cannot
be a sibling of nj � In addition� nj and n� must have a path of ST in common
and nj is a predecessor of n�� Thus there is a path through both nj and n�m and
the lemma follows after the induction hypothesis is applied to nj� � � � � nm�

Let us adopt the convention � � �T�

De�nition��� Let CH be an arbitrary set of chains� T a ground �sub	tableau
and L a label� We say that T represents the pair �CH�L	 i� the following holds�
If CH is empty� then T � �� L	� else T � �� L� T�� � � � � Tn	 with subtableaux
Ti representing �CHi� Li	� where the Li are the labels of the nodes ni of a chain
ch � CH and the CHi � cc�CHnfchg� ni	 are connected components of the
roots of the subtrees �each of the CHi has less chains than CH provided CH is
�nite	�

If we �x a rule telling us how to choose the next chain ch � CH� when there
are several� we obtain a unique tableau representant of a given pair �CH�L	� This
is the case� for example� when there is an enumeration of the ground instances
of a given clause set M � If the chains of CH belong to ground instances of M �
one can take the chain with the lowest index�

Example � Assume that the graph of Figure � is extended to a refutation graph
G�CH�ST 	 by the shaded chain� In order to construct a tableau that represents
�CH��	� we begin by taking an arbitrary chain from CH� say fn�� n�g� and
extend the root tableau node with the complements of its labels� see Figure ��a	�
We number the branches� so that we can identify them more easily�

The next chain that is used to extend branch ��	 must be taken from the set
cc�CHnffn�� n�gg� n�	 � ffn�g� fn�� n�gg� We take fn�g and extend ��	 with
C� After that only one chain� namely fn�� n�g� is left� and we obtain the tableau
in Figure ��b	�

Now consider branch ��	 in Figure ��b	� Observe that node n� is connected
to every chain in CHnffn�� n�gg� Hence� CH	�
 �� cc�CHnffn�� n�gg� n�	 �
CHnffn�� n�gg is the next connected component� We choose fn�� n�g and extend
the tableau with the corresponding labels in Figure ��c	�
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We focus on branch ��	 in Figure ��c	� The leaf A is the label of n�� We must
look for the chains in CH	�
 �� cc�CH	�
nffn�� n�gg that are connected with n��
These are ffn�� n�� n�g� fn�gg� We expand the tableau with the labels correspon�
ding to fn�� n�� n�g� and obtain Figure ��d	� The node corresponding to the leaf
of ��	 is n�� If we look for the chains in CH	�
 �� cc�CH	�
nffn�� n�� n�gg� n�	 we
see that this is the empty set� therefore� we cannot expand the branch anymore�
Indeed� branch ��	 in Figure ��d	 is closed with ��A�A	� The same is true for
branches ��	� ��	� and ��	� In each case the connected component is empty�

The node corresponding to the leaf of ��	 is n�� The connected component for
n� in CH	�
 �� cc�CH	�
nffn�� n�� n�gg� n�	 is fn�g� and we extend ��	 with C�
The situation in branch ��	 is similar� and we �nally obtain the closed tableau
shown in Figure ��e	�

The following lemma states that it was not by coincidence that the tableau
in the example was closed�

Lemma��� If T represents �CH��	 and G�CH�ST 	 is a refutation graph
 then
T is closed� Moreover
 if a subtableau T � of T represents a pair �CH�� L	
 then
for each node n in CH� the following holds�

��� Either the sibling of n is in CH� or the literal that labels n is already on the
branch�

Proof� By de�nition� no leaf �� L	 of T can be expanded� because the corre�
sponding connected component CHL � cc�CH��nfchg� nL	 is empty� where CH��

is the set of chains that �L	 must represent� If ��	 holds for CH�� and CHL is
empty� then the sibling of nL is not in CH��� and L is already on the branch�



which is the complementary literal to the leaf �� L	� So the closedness of T
indeed follows from ��	�

Now to the proof of ��	� It holds for CH� because G�CH�ST 	 is a refutation
graph and thus for each node in CH also its sibling is present�

Otherwise consider the subtableau Ti representing �CHi� Li	� where Li is the
label of the node ni � ch and CHi � cc�CH�nfchg� ni	 Provided ��	 holds for
each node of CH�� then it also holds for those nodes nm of CH �nfchg whose
siblings n�m are not in ch� The remaining case is when nm is connected to ni and
the sibling n�m in ch� but then we can apply Lemma ��� With nm �� ni also its
sibling node is in CHi � cc�CHnfchg� ni	� With ni also the literal labelling its
sibling is on the branch�

In the light of the previous lemma and Theorem � it is su�cient for a tableau
procedure in order to be complete to ensure that� if there is a refutation graph
for a clause set� a tableau representing it is found� One can guruantee this� for
example� by backtracking over all possible tableaux� or by successively bringing
all ground instances of all clauses on each branch� In the latter case there is
a tableau for each refutation graph compatible with the chosen enumeration
strategy� If unnecessary literals are put onto a branch the closing steps have to
be repeated in each super�uous resulting branch� Of course� there is no need to
bring the same ground instance of a literal more than once on a branch� One
can easily construct a closed tableau without multiple occurrences of ground
instances on a single branch if a closed tableau without this restriction is given�
For the sake of simplicity we did not address this problem in Lemma ���

A tableau with free variables as in ��� deals simultaneously with all ground
instance tableaux that are obtained by the application of a ground substitution
to the variables of the tableau� One has to ensure then that it can be closed� if one
of its instances can be closed� This problem will be addressed in a forthcoming
paper�

� Tableaux with A�Ordering

In this section we explain how to incorporate A�orderings into a tableau refuta�
tion procedure for clause sets�

De�nition��� Let T be a ground �sub	tableau representing �CH�L	 and d�n	
the distance of a node n from the root node� We say T is ordered i� either


 T is a leaf or

 all immediate subtableaux T�� � � � � Tn of T are ordered� and there is no node
d�n	 � d�n�max	 in CH� where n�max is the sibling of the maximal node of the
chain ch � CH that determines T�� � � � � Tn�

Example �� The tableau in Figure ��e	 is not ordered� because d�n�	 is not ma�
ximal in the set CH of Example �� On the other hand� both subtrees below the
root node are ordered�



The following theorem is a consequence of Lemma ���

Theorem��� If T is ordered
 represents �CH��	
 and G�CH�ST 	 is a refuta�
tion graph
 then T is closed�

Proof� Each subtableau T � of T represents a pair �CH�� L	� The theorem is a
consequence of Lemma ��� provided that CH� contains a chain that obeys the
restriction of De�nition �� In each chain set there are chains whose end nodes
have maximal distance from the root� Every such chain is suitable�

One can combine this strategy with enumeration� if one selects the chain with
the lowest index if several candidates are present�

De�nition��� Let �A be an A�ordering on a clause set M � An A�ordered

ground instance enumeration tableau is a tableau constructed by the fol�
lowing restricted expansion rule�

Tableau branches are expanded solely by ground instances of clauses in M

not already on the branch

�� that have a maximal literal complementary to a literal already on the branch
or

�� to a maximal literal of another ground instance of a clause in M

Theorem��� If M is an unsatis�able clause set
 then there is a closed A�
ordered ground instance enumeration tableau�

Proof� If M is an unsatis�able clause set� then let CH 
 CH�M 	� and T �

an ordered tableau representing �CH��	 such that G�CH�ST�	 is a refutation
graph� This is possible by Theorem �� By Theorem ��� T � is closed�

The property ��	 of Lemma �� holds for T �� By de�nition of ordered tableaux�
the sibling of the maximal literal of an expansion is either complementary to the
maximal literal of a ground instance or not in the corresponding connected com�
ponent� In the latter case� by ��	� the complement of the maximal literal is
already on the branch� Thus all the instances in T � are permitted by the restric�
tion imposed in the A�ordered ground instance enumeration tableau procedure�

� Conclusions and Related Work

In this paper we can only lay the ground for further investigations� We provided
a technique for proving completeness of �rst�order enumeration ground tableaux
and Robinson resolution in a uniform way� The completeness proofs can be
adapted to ordering re�nements for resolution and tableau as well� The outlined
ground tableau procedure can be immediately implemented in tableau provers
like HARP ���� or Tatzelwurm ����

In future work we intend to investigate the combination of ordering restricti�
ons with free variable tableaux� tableaux with equality� and tableaux as decision
procedures�



There have been several approaches to involve ordering restrictions into
�rst�order theorem proving� Soon after the introduction of basic resolution by
J� A� Robinson a wide variety of re�nements for resolution followed� Ordering
restrictions and semantic clash were �rst investigated by Slagle ����� Kowalski
and Hayes ���� combined ordering restrictions with a completeness proof using
semantic trees� Joyner used this re�nement as a decision procedure for a certain
class of �rst�order formulas ���� His results� however� were not widely discussed
until recently Ferm�uller et al� ��� revived the ideas of Joyner� Another approach
to decidability stems from the inverse method due to Maslov� and was further
developed by Zamov ���� and Tammet ���� in a very similar way as resolution in
the work of Joyner� Both approaches contribute to ���� Further� we mention the
work of Bachmaier and Ganzinger ���� They generalize completion procedures
similar to the well known Knuth�Bendix completion to refutational �rst�order
theorem proving with equality� A di�erent approach to using tableaux as a de�
cision procedure for certain �rst�order problems is due to Caferra ���� It is not
based on ordering restrictions� but on keeping track of models with a decidable
equality language�
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