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Abstract

This paper studies two classes of tests for exponentiality against the
nonparametric class £ of life distributions introduced by Klefsj6 (1983a).
The test statistics are integrals of the suitably weighted difference be-
tween the empirical Laplace transform of given data and the Laplace
transform of a fitted exponential distribution. Both classes of tests are
related to the first nonzero component of Neyman’s smooth test for
exponentiality. We derive the limit distributions of the test statistics
in case of a general underlying distribution and the local approximate
Bahadur efficiency of the tests against several parametric families of
alternatives to exponentiality. The results of a simulation study cor-

roborate the theoretical findings.

Key words: Exponential distribution, life distribution, Laplace trans-
form, L-class, goodness-of-fit test, local approximate Bahadur effi-

ciency.

AMS 1991 Subject Classifications: Primary 62G10; Secondary: 62N05

1 Introduction

A distribution function F' with support [0, 00) and finite mean p = [5° F(z)dx,
where F = 1—F, is said to belong to the £-class of life distributions (F € £)
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R > for all s > 0. 1
/0 e (x)dx > Ty orall s >0 (1)

The class £ was introduced by Klefsjo (1983a). By means of the Laplace

transform Ly(s) = Epe %, (1) can be restated as
Lr(s) < L(s,1/p) forall s >0, (2)

where L(s,A\) = A/(A + s) denotes the Laplace transform of the exponential
distribution with distribution function F(t,A\) = 1 — exp(—At) for t > 0
(see, e.g., Lin (1998), Theorem 2). From (2), a distribution belongs to the
L-class if it dominates the exponential distribution with the same mean in
the Laplace transform order (Stoyan (1983), p. 22). If the reversed inequal-
ity holds in (1) then F belongs to the so-called L-class of distributions (see
Klefsjo (1983a)). The L-class is strictly larger than the harmonic new bet-
ter than used in expectation (HNBUE) class of life distributions , satisfying

[ F(x)dr < pexp(—t/u) for every t > 0 (Rolski (1975)).

Klefsjo (1983b) seems to be the first who considered tests of exponentiality
against HNBUE alternatives; for further tests see Klar (2000) and the ref-
erences cited therein. Chaudhuri (1997) proposed a test of exponentiality

against the L-class of distributions. Defining

—sx M —1
Pe F / F(x)dx — 0<s<F 1-— )
( ) Sllp{ 0 (& ([L’) X 1 sil SS S ( 6)}

where 0 < € < 1 is a (small) fixed number, he used D, = nl/QY;lgoe(Fn)
as a test statistic. Here X, = n~'Y7_; X is the mean of a random sam-
ple Xi,..., X, of size n from F, and F,(z) = n™' 37, 1{X; < z} is the

J=1
empirical distribution function. An alternative expression for D, . is

— 1 1 1 1<
Dne = n'?X'sup {S (1+$X?1 — n;exp(—sz)) 0<s< X(m)} ;

where m = [n(1 — €)] is the smallest integer exceeding n(1 —€), and Xy <
. < X(n) are the order statistics of X;,...,X,. Note that the compu-
tational formula (2.3) in Chaudhuri (1997) seems to be in doubt since it
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contains F~1(1 — ¢), which is unknown.

A disadvantage of this approach is that a test of exponentiality based on D,,
is not consistent against each alternative from the class £ since the test statis-
tic does not consider the upper tail of the Laplace transforms. Moreover, only
rough approximations of the quantiles of the asymptotic null distribution of
D,, . are available. Finally, there is only very limited empirical evidence on

the power of the test.

This paper proposes tests for exponentiality against the class £ that do not
share these deficiencies. To this end, let

La(t) = /0 X AF, (x 126

denote the empirical Laplace transform of Xi,...,X,. In view of (2), it

seems natural to base a test of
Hy: Fe&={F(,\), >0}
against the alternative
Hi: Fel and F¢¢&

on the empirical counterpart L, (z) — L(x,1/X,,) of Lr(x) — L(z,1/p). A

first class of test statistics proposed is (1}, 4)a>0, Where
T,. = X, / (La(t) = L(t,1/X..)) exp(—aX,t) dt, (3)
0

and a is a positive constant. Since L(x) — L(x,1/u) is nonpositive for al-
ternatives from the class £, Hy is rejected for large negative values of T, ,.
Similarly, a test of exponentiality against £-class alternatives has an upper
rejection region. Using the formula [;° exp(—at)/(1+t) dt = e*F1(a), where
Ei(a) = [;° exp(—t)/tdt is the exponential integral, T), , takes the form

1 n
n

aEl(a); (4)

j= 1



where V; = X;/X,, 1 <j<n.

A second class of test statistics is (T n.a)a>0, Where

The = X, /Om (La(t) = L(t,1/X)) (1 + Xt) exp(—aX,t) dt (5)

1 & 1 1

- ﬁz:: (Y +a (Y}—l—a)2> a
Note that the only distinction between T;, , and Tn,a is the different weight
function, which is X, exp(—aX,t) in (3) and X, (1 + X,t) exp(—aX,t) in
(5). Variants of T}, and T}, o, which result from (3) and (5) by squaring the
difference L, (t) — L(t,1/X,), have been studied in Henze (1993) and Henze

and Meintanis (2000), respectively, as omnibus tests for exponentiality.

<

The paper is organized as follows. In Section 2 we state the asymptotic
behavior of the statistics 1), , and Tn,a as a — oo and derive their limit
distributions in case of a general underlying distribution. A test for expo-
nentiality rejecting Hy for large negative values of T,, , or T, n.a 1S seen to be
consistent against each fixed alternative from the class £. Moreover, we give
an example of a non-exponential continuous distribution that belongs to the
class £ but is not HNBUE. Section 3 is devoted to the calculation of lo-
cal approximate Bahadur efficiencies of the proposed tests of exponentiality
with respect to five families of alternative distributions from the class £. In
Section 4 we present the results of a simulation study that corroborates the

theoretical findings.

2 Asymptotic distributions, Consistency

Our first result shows that, letting the parameter a figuring in (3) and (5) tend
to infinity, both T, , and Tma, when suitably scaled, approach the same limit,

which is connected with some well-known statistics for testing exponentiality.
2.1 Proposition For fixed n, we have

Thoo = lim o® Thae = lim a®T, —ZYQ

a—00 a—00 n J



PROOF. The proof follows the same lines as the proof of Theorem 2.1 in
Baringhaus et al. (2000) and will thus be omitted. H

Notice that /n T, /2 is the first nonzero component of Neyman’s smooth
test of fit for exponentiality (see, e.g., Koziol (1987)); it is asymptotically
most powerful for testing Hy against the linear failure rate distribution (Dok-
sum and Yandell (1984)). Up to one-to-one transformations, T, ., coin-
cides with Greenwood’s statistic G, = 1/n*37_ Y (Greenwood (1946))

and with the sample coefficient of variation C'V,, = S,/X,,, where S? =

-1 n
j=1

n (X; — X,,)? denotes the sample variance.

It is well-known that /n T}, /2 has a limiting unit normal distribution un-
der Hp; hence, the asymptotic null distribution of \/n T, « is N (0,4). The
next theorem gives the asymptotic distribution of 7, , for 0 < a < co. Since
the representation of T, , in (4) shows that T, , is scale-invariant, we assume

1 =1 in the following.

2.2 Theorem Assume X, ..., X, is a random sample of a nonnegative non-

degenerate random variable X with finite second moment. Then, as n — oo,

Vi (Tho = E Toa) == N(0,0%), (6)
where
1 2
o2 = E(/ﬁ(x—1)+m—m> (7)
and
Kl:E[(Xi(aP]’ ’“:E{Xia} (®)
Under H,, we have
Vi Tha — N(0,03), 9)
where
02 — (2a+1)e"Ey(a) — (a? + 2a + )2 EX(a) + - ; ¢ (0



PROOF: Notice that

Vn(To—ET,.) = \}ﬁji(}/j:-a a E{Ylia])

- Un,l + Un,2 + Un,37

where

Un,3 =

A Taylor expansion of the function g(¢) = 1/(t + a) around t = X yields
1 n
Un71 = — (X — 1)/11 -+ Op(l),
v jzl ’

whence, by the Central limit theorem and Slutsky’s lemma, U, 1 + U, 2 D,
N(0,0?), where o2 is given in (7). To complete the proof of (6) and (9), we
show that the nonrandom sequence U, 3 tends to zero. To this end, observe
that

1 1
Yita Xi+a Hnt = R,
where
R, - (X, —-1)X, = (X, — 1)2aX17 _
’ (X1+4a)?’ ’ (X1 4+ a)?(X;1 +aX,)
Now,
o - 5 (e[S o))

which tends to zero as n — oo since the first expectation on the right-hand
side vanishes. To show lim \/nE[R,, 2] = 0, note that

(Va(X, -

. 1))2 a X1
(Va(X,

(X1 +a)? X +aX,
2 1
_1)) bl

a

0 S \/ﬁRnQ -
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and F (\/ﬁ(yn - 1))2 =Var(X) < co.
The formula (10) for 02 in case of Hy follows from straightforward calculations.

The next result states the asymptotic distribution of Tn,a. The proof follows

the reasoning given above and will thus be omitted.

2.3 Theorem Assume X, ..., X, is a random sample of a nonnegative non-

degenerate random variable X with finite second moment. Then, as n — 0o,
\/ﬁ (Tn,a —F Tn,a) L N(Oa &2)a

where

2
1 1
2 = B X1
7 Xra T e FetE - Dltm) )

where, in addition to uy and k, defined in (8),

= laeap) el

Under Hy,, we have

Vi T 2 N(0,62),
where

6o = (2/a—1/6)e"Ey(a) — e* Ej(a) + (a® — Ta+2)/(6a”). (11)

Regarding consistency of the tests that reject the hypothesis of exponential-

ity for large negative values of 7;, , or fn,a, we have the following result.

2.4 Theorem Let 0 < a < oo, a € (0,1), and let z,(a) denote the a-
quantile of T,, , under Hy. Under a fixed alternative distribution from H,

we have

lim P(T,, < z,(a)) = 1,

n—oo
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i.e., a one-sided test (lower rejection region) based on T, ,, 0 < a < 00, Is
consistent against each alternative from the class L. Likewise, a test for
exponentiality rejecting Hy for large negative values of T, n.a 1S consistent

against each alternative from the class L.

PrROOF. Tt follows from Theorem 2.2 and its proof that z,(a) = O(1/y/n).
Moreover, Theorem 2.2 implies

1
X1+(l

Tpo — E[ } — ¢“Fy(a) (12)

as n — oo. Since the function t — 1/(t 4 a) is completely monotone (see
Stoyan (1983)), the stochastic limit in (12) is negative under each alternative
distribution from the class £ (see Theorem 2.1 of Bhattacharjee (1999)),
proving the assertion for 7}, ,. Regarding consistency of the test of H, based

on Tn,a, Theorem 2.3 implies

X, +a (X1 +a)? a
as n — oo. Since the function ¢ — 1/(t + a) + 1/(t + a)? is completely

monotone, the rest of the argument follows the lines above.

Klefsjo (1986) pointed out that a test based on C'V,, (or, equivalently, on T}, »)
is consistent against HNBUE alternatives, since the exponential distribution
is characterised within the HNBUE class by the fact that the coefficient
of variation (C'V) equals 1. Bhattacharjee and Sengupta (1996) gave an
example of a two-point distribution with C'V = 1 that belongs to the L-
class. Hence, a test based on CV,, (or on T}, «) is not consistent for testing
Hy against the wider L£-class. The following proposition provides an example
of a continuous distribution different from the exponential distribution which
is in the L-class and satisfies CV =1 (and, hence, is not HNBUE).

2.5 Proposition Let IG(u, \) denote the inverse Gaussian distribution with
parameters (o > 0 and A > 0, which has the density

A Az — p)?
flz;p,N) = \/EZ‘ 3/2 exp(—(2’u2x)>, x> 0.



a) If A\ > p, then IG(u,\) € L.

b) For A < p, IG(p, \) belongs neither to £ nor to L.

ProOOF: The Laplace transform of IG(u, \) is

A 212
Lig(s) = exp [ (1— 1+ ,us)]’ s> 0.
1 A

Writing v(s) = (1 + 2u%s/\)Y/2, we have L;z(s) = exp (A(v(s) —1)/u). For
A2,

(Ld(s)) = M/(s)/mexp (A(v(s) —1)/p)

)
= o' (s) exp (A(v(s) — 1)/n)
(s) = 1))

> pwH(s) exp (v
The inequality exp(u) > 1 4+ u (u # 0) yields (L;GI(S)) > p for s > 0. Using
L;4(0) = 1, one obtains L;&(s) — 1 > us for s > 0; hence
1
1+ ps

Lic(s) < for s >0,

which is assertion a). To prove b), note that expectation and variance of
IG(u, \) are p and p?/A, respectively. If A < p then C'V = m > 1, and
consequently IG(u, A) ¢ L (see Bhattacharjee and Sengupta (1996)). On the
other hand, IG(u, \) ¢ L, since Lig(s) < 1/(1 + ps) for s large enough. W

By Proposition 2.5 a), the inverse Gaussian distribution IG(u, ), g > 0,
having Laplace transform exp (1 - \/m) for s > 0, is a continuous
distribution with C'V' = 1 that belongs to the L-class. Chhikara and Folks
(1989) show that the hazard rate of IG(u,\) increases from zero at time
t = 0 until it attains a maximum at some critical time and then decreases to

the non-zero asymptotic value /2.

3 Local approximate Bahadur efficiency

In this section, we investigate the efficiency of the test for exponentiality that

rejects Hy for large negative values of T}, , against several one-parametric
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families of distributions from the class £. In each case, the parameter space,
denoted by O, is some subinterval of (0,00). To stress the dependence of
probabilities and expectations on the true underlying parameter ¥ € O, we
write Py and Ey[-], respectively. Depending on the specific alternative family,
the unit exponential distribution corresponds either to the parameter value
Y9 = 1 or to the value ¥y = 0. For reasons of mathematical tractability,
our measure of efficiency is the local approximate Bahadur slope (see , e.g.,
Nikitin (1995), p. 10).

To this end, write S, , = — /nT,, /00, Where o2 is defined in (10), and let
d(t) = [* 1/v27 exp(—2?/2)dz be the standard normal distribution func-
tion. Putting F),(¢,9) = Py(Se < t), Theorem 2.2 yields lim,,_.o. F},(t,Yy) =
®(t), t € R. Letting L}, , =1 — ®(S,,4), we will prove that

1 1
—~logLt, 56*(19,61) > 0 under Py, (13)
n )

1 1 1
—!E —E( )
"0{ ﬁ(ﬁm*“) : X*“}

and p() = Ey[X]. The function ¢*(-,a) is called the approximate Bahadur
slope of the sequence (S, ,) of test statistics (see Nikitin (1995), p. 10).

where )

c(9,a) =

To prove (13), notice that, by (12),

Sna P 1 1 1
: - —!{E — E
Vvn —> Uo{ 19(lj(ﬁ)—l-CL) 19O(X—ira>}

under Py. Since this stochastic limit is positive for ¥ # ¥y, Sy — 00 Py-

stochastically (¥ # vg). Moreover, using 1 — ®(z) ~ ¢(z)/x as v — oo,
where ¢ is the density of the standard normal distribution, some algebra

gives

1 1 1
— ZlogL o~ —-—] S, ) —
Slog L, 0g<90( ,)S )




proving (13).

We now consider the local behavior of ¢*(¥,a) as ¥ — ¥y, assuming the
one-parametric family of alternative distributions to be sufficiently regular
to allow a Taylor expansion of order two of ¢*(¢, a) with respect to . More-
over, differentiation of Ey[1/(X/u(?)) + a] may be done under the integral
sign. These assumptions hold for each of the five families of distributions

considered later in this section. After straightforward calculations, one ob-

tains
* ZZ 2
c(0,a) ~ gw—ﬁo) as U — ¥y,
0
where
L = 1(9) (1+a)e"Ey(a) —1) + /OO L e
o T A ! o x+ad T

and o is given in (10).

Our measure of asymptotic local efficiency of 7, , is

€Fy (Tn,a) = %-

We conjecture that eg, (T, ,) is equal to the asymptotic Pitman efficiency

Mj 2 (ag)‘l . (14)

However, computing the limit figuring in (14) seems to be unfeasible.

n—oo

d
li —FEy(T.
im [dﬂ 9(Tha)

We have calculated ep (7}, ,) for linear failure rate, Makeham, Pareto, Weibull

and gamma alternatives. These are given by the distribution functions
() = 1—exp(—(a:+19m2/2)) forz > 0,9 >0,
() = 1—exp(—(x+19(x+e’z—1))) forxz > 0,9 >0,
FP2) = 1-Q+92)™" forz>0,9>0,
() = 1—exp(—xﬂ> forx > 0,9 > 0,
()

= F(ﬁ)’l/ t'“te7tdt forx > 0,9 >0,
0

11



respectively. For Fél), F1§2) and F§3), Hy corresponds to v = ¥y = 0, and for
Fé4) and FéS), we have ¥y = 1.

Calculations give the efficiencies

er)(Tha) = epe(Tha)
= ((@/2+2a+1)e" Bifa) — (a+3)/2) /o

for a > 0, where o2 (= 02(a)) is given in (10). Notice that epa) is an increas-

ing function of @ with maximum value epa) (7, ) = 1. This result is not
particularly surprising since, as mentioned above, the test based on T}, o is
asymptotically most powerful for testing H, against the linear failure rate

distribution.

Next, we have
2
ere(Tha) = ((a+3)e" Ei(a)/2 —2¢™ Ey(20) — 1/2) /o}

for a > 0. ep has a maximum value at a* = 1.51 with ez (7),,4+) = 0.083.
This value is approximately 1/12, which is the Pitman efficiency of the
asymptotically most powerful test of exponentiality against the Makeham
distribution (Doksum and Yandell (1984)).

For the modified statistic 7 n.a, one obtains the efficiencies

€F<1>(Tn,a) = eF(3>(Tn7a)
= ((a+2)e" Ey(a) — (a+1)/a)* /5]

and

ere(Tua) = (¢ Bi(a)/2 —26% Ei(20) +1/(20)) /7

for a > 0, where 63 is given in (11). Just like epa)(Tha), €pa)(Tha) is an
increasing function of a with maximum value eF<1>(Tnm) = 1. epe has a
maximum at a* = 1.95 with ep@ (TN,W*) = 0.082. Figure 1 shows the local

approximate Bahadur efficiencies of T}, , and T, n.a dgainst LFR and Makeham

12
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Figure 1: Local approximate Bahadur efficiency of T,, , (black) and Tma (grey)
against LFR (left) and Makeham alternatives (right)

alternatives.

Instead of giving the expressions for ey and epi) which are quite complex,
Figure 2 displays the efficiencies of T, , and T, n.a against Weibull and Gamma
alternatives for a € (0,3). The maximum value of epw) (T, ,) is 1.56 at
a = 0.38; epe) (Th,) attains its maximum value of 0.62 at a = 0.092. The

maximum value 1.55 of e (Th.q) is attained for a = 0.66; eps (Th.q) attains

its maximum value of 0.61 at a = 0.22.

4 Simulations

This section presents the results of two Monte Carlo studies. The first simu-
lation study was conducted in order to obtain critical points of the statistics
under discussion. Tables 1 to 4 show the p-quantiles of T , Tj{’a and T  un-
der exponentiality for several sample sizes and p = 0.05,0.10,0.90 and 0.95,
respectively. The asterisk indicates that the statistics have been scaled, that
is, we considered T}y , = v/nT.q/00, T;}a = /nTy.q/50 and Ty o = VT 00 /2.
Thus, each of the statistics has a limit standard normal distribution under
the hypothesis. The weight parameters for T and T;fa were chosen to be

n,a

a=0.1,0.5,1,3,5 and 10. The entries in Tables 1 to 4 are based on 100000

13



0.65
16 o.eé
1.4—? o.55€
] 0.5
1.2 ]
] 0.45 -
L 0.4
08 o5 1 15 3 a5 3 0.35 05 1 15 2 25 3
Figure 2: Local approximate Bahadur efficiency of 7,, , (black) and Tma (grey)
against Weibull (left) and gamma alternatives (right)
n Tha Ty, T o
01 05 1.0 30 50 100[01 05 10 30 50 100 -
10 |-1.55 -1.69 -1.67 -1.52 -1.44 -1.32|-1.33 -1.68 -1.68 -1.56 -1.46 -1.33|-1.09
20 |-1.60 -1.68 -1.68 -1.59 -1.51 -1.41|-1.48 -1.68 -1.69 -1.61 -1.53 -1.44|-1.22
50 |-1.63 -1.69 -1.68 -1.62 -1.58 -1.52|-1.55 -1.67 -1.68 -1.64 -1.59 -1.52|-1.35
100 |-1.64 -1.67 -1.66 -1.63 -1.60 -1.55|-1.59 -1.67 -1.67 -1.64 -1.62 -1.57|-1.44
200 |-1.63 -1.66 -1.66 -1.64 -1.62 -1.58|-1.61 -1.67 -1.67 -1.64 -1.63 -1.60]|-1.49
500 |-1.64 -1.66 -1.66 -1.64 -1.64 -1.61|-1.62 -1.65 -1.66 -1.65 -1.63 -1.61]|-1.55
1000 | -1.65 -1.66 -1.66 -1.65 -1.64 -1.63|-1.62 -1.64 -1.66 -1.64 -1.64 -1.62|-1.57

Table 1: Empirical 5%-quantiles of T} T;,a and T . based on 100000

n,a’

replications

replications; here, we always used \ = 1.
The speed of convergence to the asymptotic values is high for small values
of a; for larger values of the weight parameter and for the limiting case T}, ,

convergence is quite slow. The finite sample quantiles are not symmetric

around 0.

A second simulation study has been conducted to examine the dependence

of the power of the tests on the weight function. As alternative distributions
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n T;, T;, T;
01 05 10 30 50 100,01 05 10 30 50 100| -
10 |-1.34 -1.42 -1.41 -1.33 -1.26 -1.16 |-1.20 -1.42 -1.43 -1.35 -1.27 -1.18|-0.98
20 [-1.34 -1.40 -1.39 -1.33 -1.29 -1.22|-1.27 -1.38 -1.39 -1.35 -1.30 -1.23|-1.08
50 [-1.32 -1.36 -1.36 -1.33 -1.31 -1.27]-1.29 -1.34 -1.36 -1.35 -1.31 -1.27|-1.15
100 |-1.30 -1.33 -1.35 -1.33 -1.31 -1.28|-1.29 -1.33 -1.34 -1.33 -1.32 -1.28|-1.20
200 |-1.31 -1.32 -1.32 -1.32 -1.30 -1.29|-1.28 -1.32 -1.32 -1.31 -1.30 -1.29|-1.23
500 |-1.29 -1.30 -1.32 -1.31 -1.30 -1.29|-1.29 -1.30 -1.31 -1.31 -1.31 -1.30|-1.26
1000 (-1.29 -1.29 -1.30 -1.31 -1.29 -1.29|-1.29 -1.30 -1.31 -1.31 -1.30 -1.28|-1.27
Table 2: Empirical 10%-quantiles of T ,, T na and T based on 100000
replications
n T;, T;, T;
01 05 10 30 50 10001 05 1.0 3.0 5.0 100| -
10 |1.14 1.04 0.99 0.88 0.82 0.75]1.19 1.07 1.02 0.90 0.84 0.76| 0.58
20 [1.18 1.13 1.09 1.04 1.00 0.96|1.23 1.14 1.10 1.06 1.02 0.97| 0.82
50 [1.23 1.19 1.17 1.14 1.13 1.13|1.26 1.21 1.17 1.16 1.14 1.12| 1.04
100 |1.24 1.21 1.21 1.20 1.19 1.19|1.27 1.22 1.20 1.19 1.20 1.18]| 1.13
200 |1.25 1.23 1.23 1.23 1.23 1.22|11.28 1.24 1.24 1.23 1.24 1.23| 1.20
500 |1.26 1.26 1.26 1.26 1.25 1.24|1.27 1.26 1.26 1.25 1.25 1.24| 1.25
1000 | 1.27 1.26 1.26 1.26 1.26 1.26 |1.27 1.26 1.26 1.25 1.27 1.25]| 1.27

Table 3: Empirical 90%-quantiles of T'*

replications

7a’

Tr, and Ty based on 100000

from the L-class, we used the Weibull, Gamma and Linear failure rate dis-

tribution with scale parameter 1 and shape parameter 1, denoted by W (1),

['(¥) and LFR(?), respectively. Furthermore, the inverse Gaussian distri-
bution IG(1, ) with A\ = 1,1.2,1.5 and 2.0 was chosen; these values of A

correspond to a coefficient of variation of 1, 0.91, 0.82 and 0.71, respectively.

Finally, we took the Pareto distribution Par(1}) with scale parameter 1 and

shape parameter 9 as an alternative from the class L.
We used routines of the IMSL-library to obtain Weibull and Gamma

1
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* Tk *
n Tn,a Tma Tn,oo

01 05 10 30 50 10001 05 10 3.0 5.0 10.0| -

10 |1.58 1.45 1.42 1.33 1.27v 1.20|1.71 1.51 1.43 1.35 1.28 1.22| 1.02
20 [1.63 1.52 150 148 146 1.43|1.69 1.56 1.53 1.49 1.46 1.44| 1.34
50 [1.64 1.58 1.58 1.57 1.58 1.58|1.68 1.60 1.58 1.57 1.58 1.58| 1.56
100 |1.64 1.60 1.59 1.60 1.62 1.63|1.67 1.62 1.61 1.59 1.61 1.62| 1.63
200 |1.65 1.62 1.62 1.62 1.63 1.65|1.68 1.63 1.60 1.62 1.63 1.66| 1.68
500 |1.64 1.62 1.63 1.64 1.63 1.65|1.66 1.63 1.64 1.64 1.63 1.65| 1.70
1000 [{1.64 1.62 1.62 1.64 1.65 1.65|1.67 1.63 1.63 1.64 1.65 1.65| 1.68

Table 4: Empirical 95%-quantiles of T3 ,, T, na and T based on 100000

n,a’

replications

random numbers and the inversion method to generate random numbers from
the LFR and Pareto distribution. Inverse Gaussian random variates were
generated by the 'transformations with multiple roots method’ of Michael et
al. (1976).

The first six columns of Tables 5, 6 and 7 show power estimates of the
tests based on T, for a = 0.1,0.5,1,3,5,10 for n = 20,50 and n = 100,
respectively. The next six columns give the corresponding results of the tests
based on T, wa- The last column contains the results of 7). All entries are
the percentages of 10000 Monte Carlo samples that resulted in rejection of

Hy, rounded to the nearest integer. The nominal level of the test is a = 0.05.

The main conclusions that can be drawn from the simulation results are the

following:

1. The tests based on T}, and T?;a behave fairly similar, whereby the

power of the tests depends to a certain extent on a.

Against Weibull alternatives, T 5 and T;l perform best. Similarly,

n

1,01 and T 0.5 are most powerful against Gamma distributions. Large

values of a are best suited to safeguard against LFR and Pareto alter-
natives. T;,m outperforms all tests under consideration in case of an

inverse Gaussian distribution.
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Alternative Ty, T, T o
0.1 05 1.0 3.0 50 10.0{0.1 0.5 1.0 3.0 5.0 10.0| -
Exp(1) 5 5 5 5 5 5 5 5 5 5 5 5 )
W(1.2,1) |22 23 22 21 21 21 |20 23 23 22 21 21 20
W(1.5,1) | 62 67 67 65 64 63 |55 66 67 65 64 62 | 61
Wi(1.8,1) |89 93 93 93 92 92 |82 92 93 93 92 92 | 90
'(1.5,1) |34 33 31 29 28 28 |32 34 32 29 28 27 | 26
'2.0,1) |69 68 65 60 59 57 |65 69 67 61 59 57 | 54
r'2.5,1) |91 90 88 83 8 80 |87 91 89 84 82 80 | 77
LFR(0.5) |14 17 18 18 19 19 |13 16 17 18 18 18 18
LFR(1.0) |21 26 27 29 29 30 |18 24 27 28 29 29 29
LFR(2.0) {32 39 42 43 43 44 |26 37 41 43 43 43 43
LFR(3.0) |38 49 51 53 53 54 |32 45 50 53 53 53 | 53
IG(1,1.0) |49 32 26 20 18 17 |57 39 29 20 18 17 | 15
IG(1,1.2) |65 47 38 30 28 26 |73 54 42 31 28 25 | 23
IG(1,1.5) | 84 68 59 48 45 42 |89 75 64 49 45 41 | 38
IG(1,2.0) |97 90 83 73 70 67 |99 93 &7 75 T1 67 | 62
Par(0.25) |19 25 27 28 29 29 |15 23 26 28 29 28 | 28
Par(0.50) |43 53 56 56 56 56 |36 50 54 56 56 56 | 54
Par(0.75) |66 74 76 76 76 75 |58 72 75 76 76 75 | 73
Par(1.00) | 82 87 87 87 8 8 |75 8 87 87 87 85 | 84

Table 5: Empirical power of the tests based on T, '_f’;a and T, ., a=0.05,

n = 20, 10000 replications

2. The results for the ’local’ alternatives W (1.2,1),I'(1.5,1), LF'R(0.5)

and Par(0.25) are in good agreement with the local approximate Ba-

hadur efficiencies (see Figures 1 and 2). On the whole, the behaviour

is similar for 'distant’ alternatives; for example, the power of the tests

against LFR alternatives is always increasing in a.

3. Ty o = /T 00/2 rejects the IG(1, 1)-distribution in 15% of all cases,

irrespective of the sample size. Indeed, it follows from Theorem 4.2

in Henze and Klar (1996) that 7y _ has a limiting centered normal
distribution with variance 9/4 under an IG(1, 1)-distribution. Conse-

quently, the test for exponentiality based on T};  will reject Hp in 14%
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Alternative T, T, ma Tx

7,00

01 05 10 30 50 100j01 05 1.0 3.0 50 100| -

Exp(1) 5 5 5 5 5 5 5 5 5 5 D ) 6
W(1.2,1) | 42 44 44 42 41 39 | 37 44 44 42 41 39 | 38
W(1.5,1) | 95 97 97 97 96 95 |90 97 97 97 96 95 | 94
W(1.8,1) | 100 100 100 100 100 100 |100 100 100 100 100 100 | 100

I'(15,1) | 68 65 62 56 54 51 | 65 67 64 57 54 52 | 48
'2.0,1) |98 97 97 94 92 91 |97 98 97 94 93 91 | 87
I'(2.5,1) |100 100 100 100 99 99 |100 100 100 100 99 99 | 98

93 97 97 97 97 97 |8 96 97 97 97 97 | 96
99 100 100 100 100 100 | 97 99 100 100 100 100 | 99

LFR(0.5) |25 32 35 38 39 38 |20 30 34 38 39 39| 39
LFR(1.0) | 40 52 57 61 62 62 |31 49 55 61 62 62 | 62
LFR(2.0) | 58 74 79 82 83 83 |44 70 77 82 83 83 | 83
LFR(3.0) [ 69 8 8 91 91 91 |54 8 8 90 91 91 | 91
IG(1,1.0) | 87 54 40 25 21 18 |97 68 47 26 22 18 | 15
IG(1,1.2) | 97 79 65 46 40 35 [100 89 73 49 41 36 | 30
IG(1,1.5) |100 96 89 75 69 63 |100 99 93 78 70 64 | 56
IG(1,2.0) |100 100 99 96 94 90 |100 100 100 97 94 91 | 86
Par(0.25) | 32 43 46 49 50 50 |24 39 44 49 50 50 | 48
Par(0.50) | 73 83 85 8 8 8 |61 8 84 8 8 8 | 83

)

)

Table 6: Empirical power of the tests based on T} , T;,a and T, ., a = 0.05,
n = 50, 10000 replications

of all cases for large n, if the nominal level is 0.05 and the underlying
distribution is IG(1,1).

4. If nothing is known about the L-class (L-class) alternative, the tests
based on 777, or T;J can be recommended since they distribute their

power more evenly over the range of alternatives.

A basic drawback of omnibus goodness-of-fit tests is that their power is
fairly poor except for a rather small set of alternatives (see, e.g., Janssen

(1995)). Therefore, if one has some knowledge about the class of distribu-
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Alternative T* T T*

n,a n,a 7,00

01 05 10 30 50 100j01 05 1.0 3.0 50 100| -

Exp(1) 5 5 5 5 ) ) ) ) 5) ) ) ) )
w(1.2,1) | 68 72 71 68 67 65 |61 71 72 69 67 65 | 62
W(1.5,1) | 100 100 100 100 100 100 |100 100 100 100 100 100 | 100
W(1.8,1) | 100 100 100 100 100 100 |100 100 100 100 100 100 | 100

I(151) [ 93 91 8 8 8 77 |91 92 90 84 81 77 | T2
I'(2.0,1) |100 100 100 100 100 100 |100 100 100 100 100 100 | 99
I'(2.5,1) |100 100 100 100 100 100 |100 100 100 100 100 100 | 100

100 100 100 100 100 100 |99 100 100 100 100 100 | 100
100 100 100 100 100 100 100 100 100 100 100 100 | 100

LFR(0.5) | 39 54 59 64 65 65|29 49 56 63 64 65 | 65
LFR(1.0) | 63 8 8 8 8 90 |47 75 82 88 89 89 | 90
LFR(2.0) | 8 96 97 98 99 99 |69 93 97 98 98 99 | 99
LFR(3.0) | 92 99 99 100 100 100 | 79 98 99 100 100 100 | 100
IG(1,1.0) | 99 78 57 32 26 21 [100 90 68 35 27 21 15
IG(1,1.2) |100 97 88 64 56 48 |100 99 93 68 57 48 | 38
IG(1,1.5) |100 100 99 93 88 82 |100 100 100 95 89 83 | 72
IG(1,2.0) |100 100 100 100 100 99 |100 100 100 100 100 99 | 96
Par(0.25) | 48 64 68 72 73 72 |35 58 65 72 73 73| 71
Par(0.50) | 93 97 98 98 98 98 |8 96 98 98 98 98 | 97

)

)

Table 7: Empirical power of the tests based on T} , T;,a and T, ., a = 0.05,
n = 100, 10000 replications

tions which may occur, it is reasonable to use tests that are well adapted
to detect the possible alternatives. On the other hand, the example of the
IG(p, p)-distribution which may be a reasonable life distribution shows that
it may be even more dangerous to overly restrict the set of possible alterna-

tives.
In this respect, the proposed tests for exponentiality against the L-class,

which is the largest of the commonly used classes of life distributions, seem

to be a good compromise.
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