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Abstract

This paper studies two classes of tests for exponentiality against the
nonparametric class L of life distributions introduced by Klefsjö (1983a).
The test statistics are integrals of the suitably weighted difference be-
tween the empirical Laplace transform of given data and the Laplace
transform of a fitted exponential distribution. Both classes of tests are
related to the first nonzero component of Neyman’s smooth test for
exponentiality. We derive the limit distributions of the test statistics
in case of a general underlying distribution and the local approximate
Bahadur efficiency of the tests against several parametric families of
alternatives to exponentiality. The results of a simulation study cor-
roborate the theoretical findings.
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1 Introduction

A distribution function F with support [0,∞) and finite mean µ =
∫∞
0 F (x)dx,

where F = 1−F , is said to belong to the L-class of life distributions (F ∈ L)
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if
∫ ∞

0
e−sxF (x)dx ≥ µ

1 + sµ
for all s ≥ 0. (1)

The class L was introduced by Klefsjö (1983a). By means of the Laplace

transform LF (s) = EF e−sX , (1) can be restated as

LF (s) ≤ L(s, 1/µ) for all s ≥ 0, (2)

where L(s, λ) = λ/(λ + s) denotes the Laplace transform of the exponential

distribution with distribution function F (t, λ) = 1 − exp(−λ t) for t ≥ 0

(see, e.g., Lin (1998), Theorem 2). From (2), a distribution belongs to the

L-class if it dominates the exponential distribution with the same mean in

the Laplace transform order (Stoyan (1983), p. 22). If the reversed inequal-

ity holds in (1) then F belongs to the so-called L-class of distributions (see

Klefsjö (1983a)). The L-class is strictly larger than the harmonic new bet-

ter than used in expectation (HNBUE) class of life distributions , satisfying
∫∞
t F (x)dx ≤ µ exp(−t/µ) for every t ≥ 0 (Rolski (1975)).

Klefsjö (1983b) seems to be the first who considered tests of exponentiality

against HNBUE alternatives; for further tests see Klar (2000) and the ref-

erences cited therein. Chaudhuri (1997) proposed a test of exponentiality

against the L-class of distributions. Defining

ϕε(F ) = sup

{∫ ∞

0
e−sxF (x)dx− µ

1 + sµ
: 0 ≤ s ≤ F−1(1− ε)

}
,

where 0 < ε < 1 is a (small) fixed number, he used Dn,ε = n1/2X
−1
n ϕε(Fn)

as a test statistic. Here Xn = n−1 ∑n
j=1 Xj is the mean of a random sam-

ple X1, . . . , Xn of size n from F , and Fn(x) = n−1 ∑n
j=1 1{Xj ≤ x} is the

empirical distribution function. An alternative expression for Dn,ε is

Dn,ε = n1/2X
−1
n sup





1

s


 1

1 + sXn

− 1

n

n∑

j=1

exp(−sXj)


 : 0 ≤ s ≤ X(m)



 ,

where m = dn(1− ε)e is the smallest integer exceeding n(1− ε), and X(1) <

. . . < X(n) are the order statistics of X1, . . . , Xn. Note that the compu-

tational formula (2.3) in Chaudhuri (1997) seems to be in doubt since it
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contains F−1(1− ε), which is unknown.

A disadvantage of this approach is that a test of exponentiality based on Dn,ε

is not consistent against each alternative from the class L since the test statis-

tic does not consider the upper tail of the Laplace transforms. Moreover, only

rough approximations of the quantiles of the asymptotic null distribution of

Dn,ε are available. Finally, there is only very limited empirical evidence on

the power of the test.

This paper proposes tests for exponentiality against the class L that do not

share these deficiencies. To this end, let

Ln(t) =
∫ ∞

0
e−tXdFn(x) =

1

n

n∑

i=1

e−tXi

denote the empirical Laplace transform of X1, . . . , Xn. In view of (2), it

seems natural to base a test of

H0 : F ∈ E = {F (·, λ), λ > 0}

against the alternative

H1 : F ∈ L and F /∈ E

on the empirical counterpart Ln(x) − L(x, 1/Xn) of LF (x) − L(x, 1/µ). A

first class of test statistics proposed is (Tn,a)a>0, where

Tn,a = Xn

∫ ∞

0

(
Ln(t)− L(t, 1/Xn)

)
exp(−aXnt) dt, (3)

and a is a positive constant. Since L(x) − L(x, 1/µ) is nonpositive for al-

ternatives from the class L, H0 is rejected for large negative values of Tn,a.

Similarly, a test of exponentiality against L-class alternatives has an upper

rejection region. Using the formula
∫∞
0 exp(−at)/(1 + t) dt = eaE1(a), where

E1(a) =
∫∞
a exp(−t)/t dt is the exponential integral, Tn,a takes the form

Tn,a =
1

n

n∑

j=1

1

Yj + a
− eaE1(a), (4)
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where Yj = Xj/Xn, 1 ≤ j ≤ n.

A second class of test statistics is (T̃n,a)a>0, where

T̃n,a = Xn

∫ ∞

0

(
Ln(t)− L(t, 1/Xn)

)
(1 + Xnt) exp(−aXnt) dt (5)

=
1

n

n∑

j=1

(
1

Yj + a
+

1

(Yj + a)2

)
− 1

a
.

Note that the only distinction between Tn,a and T̃n,a is the different weight

function, which is Xn exp(−aXnt) in (3) and Xn(1 + Xnt) exp(−aXnt) in

(5). Variants of Tn,a and T̃n,a, which result from (3) and (5) by squaring the

difference Ln(t)− L(t, 1/Xn), have been studied in Henze (1993) and Henze

and Meintanis (2000), respectively, as omnibus tests for exponentiality.

The paper is organized as follows. In Section 2 we state the asymptotic

behavior of the statistics Tn,a and T̃n,a as a → ∞ and derive their limit

distributions in case of a general underlying distribution. A test for expo-

nentiality rejecting H0 for large negative values of Tn,a or T̃n,a is seen to be

consistent against each fixed alternative from the class L. Moreover, we give

an example of a non-exponential continuous distribution that belongs to the

class L but is not HNBUE. Section 3 is devoted to the calculation of lo-

cal approximate Bahadur efficiencies of the proposed tests of exponentiality

with respect to five families of alternative distributions from the class L. In

Section 4 we present the results of a simulation study that corroborates the

theoretical findings.

2 Asymptotic distributions, Consistency

Our first result shows that, letting the parameter a figuring in (3) and (5) tend

to infinity, both Tn,a and T̃n,a, when suitably scaled, approach the same limit,

which is connected with some well-known statistics for testing exponentiality.

2.1 Proposition For fixed n, we have

Tn,∞ ≡ lim
a→∞ a3 Tn,a = lim

a→∞ a3 T̃n,a =
1

n

n∑

j=1

Y 2
j − 2.
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Proof. The proof follows the same lines as the proof of Theorem 2.1 in

Baringhaus et al. (2000) and will thus be omitted.

Notice that
√

nTn,∞/2 is the first nonzero component of Neyman’s smooth

test of fit for exponentiality (see, e.g., Koziol (1987)); it is asymptotically

most powerful for testing H0 against the linear failure rate distribution (Dok-

sum and Yandell (1984)). Up to one-to-one transformations, Tn,∞ coin-

cides with Greenwood’s statistic Gn = 1/n2 ∑n
j=1 Y 2

j (Greenwood (1946))

and with the sample coefficient of variation CVn = Sn/Xn, where S2
n =

n−1 ∑n
j=1(Xj −Xn)2 denotes the sample variance.

It is well-known that
√

nTn,∞/2 has a limiting unit normal distribution un-

der H0; hence, the asymptotic null distribution of
√

nTn,∞ is N (0, 4). The

next theorem gives the asymptotic distribution of Tn,a for 0 < a < ∞. Since

the representation of Tn,a in (4) shows that Tn,a is scale-invariant, we assume

µ = 1 in the following.

2.2 Theorem Assume X1, . . . , Xn is a random sample of a nonnegative non-

degenerate random variable X with finite second moment. Then, as n →∞,

√
n (Tn,a − E Tn,a)

D−→ N (0, σ2), (6)

where

σ2 = E
(
κ1(X − 1) +

1

X + a
− µ1

)2

(7)

and

κ1 = E

[
X

(X + a)2

]
, µ1 = E

[
1

X + a

]
. (8)

Under H0, we have

√
n Tn,a

D−→ N (0, σ2
0), (9)

where

σ2
0 = (2a + 1)eaE1(a)− (a2 + 2a + 2)e2aE2

1(a) +
1− a

a
. (10)
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Proof: Notice that

√
n (Tn,a − E Tn,a) =

1√
n

n∑

j=1

(
1

Yj + a
− E

[
1

Y1 + a

])

= Un,1 + Un,2 + Un,3,

where

Un,1 =
1√
n

n∑

j=1

(
1

Yj + a
− 1

Xj + a

)
,

Un,2 =
1√
n

n∑

j=1

(
1

Xj + a
− µ1

)
,

Un,3 =
√

n
(
µ1 − E

[
1

Y1 + a

])
.

A Taylor expansion of the function g(t) = 1/(t + a) around t = Xj yields

Un,1 =
1√
n

n∑

j=1

(Xj − 1)κ1 + oP (1),

whence, by the Central limit theorem and Slutsky’s lemma, Un,1 + Un,2
D−→

N (0, σ2), where σ2 is given in (7). To complete the proof of (6) and (9), we

show that the nonrandom sequence Un,3 tends to zero. To this end, observe

that
1

Y1 + a
− 1

X1 + a
= Rn,1 −Rn,2,

where

Rn,1 =
(Xn − 1)X1

(X1 + a)2
, Rn,2 =

(Xn − 1)2aX1

(X1 + a)2(X1 + aXn)
.

Now,

√
n ERn,1 =

1√
n


E




(∑n
j=2 Xj − (n− 1)

)
X1

(X1 + a)2


 + E

[
(X1 − 1)X1

(X1 + a)2

]
 ,

which tends to zero as n → ∞ since the first expectation on the right-hand

side vanishes. To show lim
√

nE[Rn,2] = 0, note that

0 ≤ √
nRn,2 =

1√
n

(√
n(Xn − 1)

)2 a

(X1 + a)2

X1

X1 + aXn

≤ 1√
n

(√
n(Xn − 1)

)2 1

a
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and E
(√

n(Xn − 1)
)2

= V ar(X) < ∞.

The formula (10) for σ2 in case of H0 follows from straightforward calculations.

The next result states the asymptotic distribution of T̃n,a. The proof follows

the reasoning given above and will thus be omitted.

2.3 Theorem Assume X1, . . . , Xn is a random sample of a nonnegative non-

degenerate random variable X with finite second moment. Then, as n →∞,

√
n

(
T̃n,a − E T̃n,a

) D−→ N (0, σ̃2),

where

σ̃2 = E

(
1

X + a
− µ1 +

1

(X + a)2
− µ2 + (X − 1)(κ1 + κ2)

)2

,

where, in addition to µ1 and κ1 defined in (8),

µ2 = E

[
1

(X + a)2

]
, κ2 = 2E

[
X

(X + a)3

]
.

Under H0, we have

√
n T̃n,a

D−→ N (0, σ̃2
0),

where

σ̃2
0 = (2/a− 1/6)eaE1(a)− e2aE2

1(a) + (a2 − 7a + 2)/(6a3). (11)

Regarding consistency of the tests that reject the hypothesis of exponential-

ity for large negative values of Tn,a or T̃n,a, we have the following result.

2.4 Theorem Let 0 < a < ∞, α ∈ (0, 1), and let zn(α) denote the α-

quantile of Tn,a under H0. Under a fixed alternative distribution from H1,

we have

lim
n→∞P (Tn,a < zn(α)) = 1,
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i.e., a one-sided test (lower rejection region) based on Tn,a, 0 < a < ∞, is

consistent against each alternative from the class L. Likewise, a test for

exponentiality rejecting H0 for large negative values of T̃n,a is consistent

against each alternative from the class L.

Proof. It follows from Theorem 2.2 and its proof that zn(α) = O(1/
√

n).

Moreover, Theorem 2.2 implies

Tn,a
P−→ E

[
1

X1 + a

]
− eaE1(a) (12)

as n → ∞. Since the function t 7→ 1/(t + a) is completely monotone (see

Stoyan (1983)), the stochastic limit in (12) is negative under each alternative

distribution from the class L (see Theorem 2.1 of Bhattacharjee (1999)),

proving the assertion for Tn,a. Regarding consistency of the test of H0 based

on T̃n,a, Theorem 2.3 implies

T̃n,a
P−→ E

[
1

X1 + a

]
+ E

[
1

(X1 + a)2

]
− 1

a

as n → ∞. Since the function t 7→ 1/(t + a) + 1/(t + a)2 is completely

monotone, the rest of the argument follows the lines above.

Klefsjö (1986) pointed out that a test based on CVn (or, equivalently, on Tn,∞)

is consistent against HNBUE alternatives, since the exponential distribution

is characterised within the HNBUE class by the fact that the coefficient

of variation (CV ) equals 1. Bhattacharjee and Sengupta (1996) gave an

example of a two-point distribution with CV = 1 that belongs to the L-

class. Hence, a test based on CVn (or on Tn,∞) is not consistent for testing

H0 against the wider L-class. The following proposition provides an example

of a continuous distribution different from the exponential distribution which

is in the L-class and satisfies CV = 1 (and, hence, is not HNBUE).

2.5 Proposition Let IG(µ, λ) denote the inverse Gaussian distribution with

parameters µ > 0 and λ > 0, which has the density

f(x; µ, λ) =

√
λ

2π
x−3/2 exp

(
−λ(x− µ)2

2µ2x

)
, x > 0.
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a) If λ ≥ µ, then IG(µ, λ) ∈ L.

b) For λ < µ, IG(µ, λ) belongs neither to L nor to L.

Proof: The Laplace transform of IG(µ, λ) is

LIG(s) = exp


λ

µ


1−

√
1 +

2µ2s

λ





 , s ≥ 0.

Writing v(s) = (1 + 2µ2s/λ)1/2, we have L−1
IG(s) = exp (λ(v(s)− 1)/µ). For

λ ≥ µ,
(
L−1

IG(s)
)′

= λv′(s)/µ exp (λ(v(s)− 1)/µ)

= µv−1(s) exp (λ(v(s)− 1)/µ)

≥ µv−1(s) exp (v(s)− 1)) .

The inequality exp(u) > 1 + u (u 6= 0) yields
(
L−1

IG(s)
)′

> µ for s > 0. Using

L−1
IG(0) = 1, one obtains L−1

IG(s)− 1 > µs for s > 0; hence

LIG(s) <
1

1 + µs
for s > 0,

which is assertion a). To prove b), note that expectation and variance of

IG(µ, λ) are µ and µ3/λ, respectively. If λ < µ then CV =
√

µ/λ > 1, and

consequently IG(µ, λ) /∈ L (see Bhattacharjee and Sengupta (1996)). On the

other hand, IG(µ, λ) /∈ L, since LIG(s) < 1/(1 + µs) for s large enough.

By Proposition 2.5 a), the inverse Gaussian distribution IG(µ, µ), µ > 0,

having Laplace transform exp
(
1−√1 + 2µs

)
for s ≥ 0, is a continuous

distribution with CV = 1 that belongs to the L-class. Chhikara and Folks

(1989) show that the hazard rate of IG(µ, λ) increases from zero at time

t = 0 until it attains a maximum at some critical time and then decreases to

the non-zero asymptotic value λ/2µ2.

3 Local approximate Bahadur efficiency

In this section, we investigate the efficiency of the test for exponentiality that

rejects H0 for large negative values of Tn,a against several one-parametric
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families of distributions from the class L. In each case, the parameter space,

denoted by Θ, is some subinterval of (0,∞). To stress the dependence of

probabilities and expectations on the true underlying parameter ϑ ∈ Θ, we

write Pϑ and Eϑ[·], respectively. Depending on the specific alternative family,

the unit exponential distribution corresponds either to the parameter value

ϑ0 = 1 or to the value ϑ0 = 0. For reasons of mathematical tractability,

our measure of efficiency is the local approximate Bahadur slope (see , e.g.,

Nikitin (1995), p. 10).

To this end, write Sn,a = − √
nTn,a/σ0, where σ2

0 is defined in (10), and let

Φ(t) =
∫ t
−∞ 1/

√
2π exp(−x2/2)dx be the standard normal distribution func-

tion. Putting Fn(t, ϑ) = Pϑ(Sn,a ≤ t), Theorem 2.2 yields limn→∞ Fn(t, ϑ0) =

Φ(t), t ∈ IR. Letting L∗n,a = 1− Φ(Sn,a), we will prove that

− 1

n
log L∗n,a

P−→ 1

2
c∗(ϑ, a) > 0 under Pϑ, (13)

where

c∗(ϑ, a) =


 1

σ0



Eϑ


 1

X
µ(ϑ)

+ a


 − Eϑ0

(
1

X + a

)






2

and µ(ϑ) = Eϑ[X]. The function c∗(·, a) is called the approximate Bahadur

slope of the sequence (Sn,a) of test statistics (see Nikitin (1995), p. 10).

To prove (13), notice that, by (12),

Sn,a√
n

P−→ − 1

σ0



Eϑ


 1

X
µ(ϑ)

+ a


 − Eϑ0

(
1

X + a

)



under Pϑ. Since this stochastic limit is positive for ϑ 6= ϑ0, Sn,a → ∞ Pϑ-

stochastically (ϑ 6= ϑ0). Moreover, using 1 − Φ(x) ∼ ϕ(x)/x as x → ∞,

where ϕ is the density of the standard normal distribution, some algebra

gives

− 1

n
log L∗n,a ∼ − 1

n
log

(
ϕ(Sn,a)

1

Sn,a

)

=
1

2

S2
n,a

n
+ oPϑ

(1)

=
1

2
c∗(ϑ, a) + oPϑ

(1),
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proving (13).

We now consider the local behavior of c∗(ϑ, a) as ϑ → ϑ0, assuming the

one-parametric family of alternative distributions to be sufficiently regular

to allow a Taylor expansion of order two of c∗(ϑ, a) with respect to ϑ. More-

over, differentiation of Eϑ[1/(X/µ(ϑ)) + a] may be done under the integral

sign. These assumptions hold for each of the five families of distributions

considered later in this section. After straightforward calculations, one ob-

tains

c∗(ϑ, a) ∼ l2a
σ2

0

(ϑ− ϑ0)
2 as ϑ → ϑ0,

where

la = µ′(ϑ0) ((1 + a) eaE1(a)− 1) +
∫ ∞

0

1

x + a

∂

∂ϑ
f(x, ϑ)

∣∣∣∣∣
ϑ=ϑ0

dx,

and σ2
0 is given in (10).

Our measure of asymptotic local efficiency of Tn,a is

eFϑ
(Tn,a) =

l2a
σ2

0

.

We conjecture that eFϑ
(Tn,a) is equal to the asymptotic Pitman efficiency

lim
n→∞

[
d

dϑ
Eϑ(Tn,a)

∣∣∣∣∣
ϑ=ϑ0

]2 (
σ2

0

)−1
. (14)

However, computing the limit figuring in (14) seems to be unfeasible.

We have calculated eF (Tn,a) for linear failure rate, Makeham, Pareto, Weibull

and gamma alternatives. These are given by the distribution functions

F
(1)
ϑ (x) = 1− exp

(
−

(
x + ϑx2/2

))
for x ≥ 0, ϑ ≥ 0,

F
(2)
ϑ (x) = 1− exp

(
−

(
x + ϑ

(
x + e−x − 1

)))
for x ≥ 0, ϑ ≥ 0,

F
(3)
ϑ (x) = 1− (1 + ϑx)−1/ϑ for x ≥ 0, ϑ ≥ 0,

F
(4)
ϑ (x) = 1− exp

(
−xϑ

)
for x ≥ 0, ϑ > 0,

F
(5)
ϑ (x) = Γ(ϑ)−1

∫ x

0
tϑ−1e−t dt for x ≥ 0, ϑ > 0,
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respectively. For F
(1)
ϑ , F

(2)
ϑ and F

(3)
ϑ , H0 corresponds to ϑ = ϑ0 = 0, and for

F
(4)
ϑ and F

(5)
ϑ , we have ϑ0 = 1.

Calculations give the efficiencies

eF (1)(Tn,a) = eF (3)(Tn,a)

=
(
(a2/2 + 2a + 1) ea E1(a)− (a + 3)/2

)2
/σ2

0

for a > 0, where σ2
0 (= σ2

0(a)) is given in (10). Notice that eF (1) is an increas-

ing function of a with maximum value eF (1)(Tn,∞) = 1. This result is not

particularly surprising since, as mentioned above, the test based on Tn,∞ is

asymptotically most powerful for testing H0 against the linear failure rate

distribution.

Next, we have

eF (2)(Tn,a) =
(
(a + 3) ea E1(a)/2− 2 e2a E1(2a)− 1/2

)2
/σ2

0

for a > 0. eF (2) has a maximum value at a∗ = 1.51 with eF (2)(Tn,a∗) = 0.083.

This value is approximately 1/12, which is the Pitman efficiency of the

asymptotically most powerful test of exponentiality against the Makeham

distribution (Doksum and Yandell (1984)).

For the modified statistic T̃n,a, one obtains the efficiencies

eF (1)(T̃n,a) = eF (3)(T̃n,a)

= ((a + 2) ea E1(a)− (a + 1)/a)2 /σ̃2
0

and

eF (2)(T̃n,a) =
(
ea E1(a)/2− 2 e2a E1(2a) + 1/(2a)

)2
/σ̃2

0

for a > 0, where σ̃2
0 is given in (11). Just like eF (1)(Tn,a), eF (1)(T̃n,a) is an

increasing function of a with maximum value eF (1)(T̃n,∞) = 1. eF (2) has a

maximum at a∗ = 1.95 with eF (2)(T̃n,a∗) = 0.082. Figure 1 shows the local

approximate Bahadur efficiencies of Tn,a and T̃n,a against LFR and Makeham
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Figure 1: Local approximate Bahadur efficiency of Tn,a (black) and T̃n,a (grey)

against LFR (left) and Makeham alternatives (right)

alternatives.

Instead of giving the expressions for eF (4) and eF (5) which are quite complex,

Figure 2 displays the efficiencies of Tn,a and T̃n,a against Weibull and Gamma

alternatives for a ∈ (0, 3). The maximum value of eF (4)(Tn,a) is 1.56 at

a = 0.38; eF (5)(Tn,a) attains its maximum value of 0.62 at a = 0.092. The

maximum value 1.55 of eF (4)(T̃n,a) is attained for a = 0.66; eF (5)(T̃n,a) attains

its maximum value of 0.61 at a = 0.22.

4 Simulations

This section presents the results of two Monte Carlo studies. The first simu-

lation study was conducted in order to obtain critical points of the statistics

under discussion. Tables 1 to 4 show the p-quantiles of T ∗
n,a, T̃

∗
n,a and T ∗

n,∞ un-

der exponentiality for several sample sizes and p = 0.05, 0.10, 0.90 and 0.95,

respectively. The asterisk indicates that the statistics have been scaled, that

is, we considered T ∗
n,a =

√
nTn,a/σ0, T̃ ∗

n,a =
√

nT̃n,a/σ̃0 and T ∗
n,∞ =

√
nTn,∞/2.

Thus, each of the statistics has a limit standard normal distribution under

the hypothesis. The weight parameters for T ∗
n,a and T̃ ∗

n,a were chosen to be

a = 0.1, 0.5, 1, 3, 5 and 10. The entries in Tables 1 to 4 are based on 100000
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Figure 2: Local approximate Bahadur efficiency of Tn,a (black) and T̃n,a (grey)

against Weibull (left) and gamma alternatives (right)

n T ∗n,a T̃ ∗n,a T ∗n,∞
0.1 0.5 1.0 3.0 5.0 10.0 0.1 0.5 1.0 3.0 5.0 10.0 –

10 -1.55 -1.69 -1.67 -1.52 -1.44 -1.32 -1.33 -1.68 -1.68 -1.56 -1.46 -1.33 -1.09
20 -1.60 -1.68 -1.68 -1.59 -1.51 -1.41 -1.48 -1.68 -1.69 -1.61 -1.53 -1.44 -1.22
50 -1.63 -1.69 -1.68 -1.62 -1.58 -1.52 -1.55 -1.67 -1.68 -1.64 -1.59 -1.52 -1.35
100 -1.64 -1.67 -1.66 -1.63 -1.60 -1.55 -1.59 -1.67 -1.67 -1.64 -1.62 -1.57 -1.44
200 -1.63 -1.66 -1.66 -1.64 -1.62 -1.58 -1.61 -1.67 -1.67 -1.64 -1.63 -1.60 -1.49
500 -1.64 -1.66 -1.66 -1.64 -1.64 -1.61 -1.62 -1.65 -1.66 -1.65 -1.63 -1.61 -1.55
1000 -1.65 -1.66 -1.66 -1.65 -1.64 -1.63 -1.62 -1.64 -1.66 -1.64 -1.64 -1.62 -1.57

Table 1: Empirical 5%-quantiles of T ∗
n,a, T̃ ∗

n,a and T ∗
n,∞ based on 100000

replications

replications; here, we always used λ = 1.

The speed of convergence to the asymptotic values is high for small values

of a; for larger values of the weight parameter and for the limiting case T ∗
n,∞,

convergence is quite slow. The finite sample quantiles are not symmetric

around 0.

A second simulation study has been conducted to examine the dependence

of the power of the tests on the weight function. As alternative distributions
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n T ∗n,a T̃ ∗n,a T ∗n,∞
0.1 0.5 1.0 3.0 5.0 10.0 0.1 0.5 1.0 3.0 5.0 10.0 –

10 -1.34 -1.42 -1.41 -1.33 -1.26 -1.16 -1.20 -1.42 -1.43 -1.35 -1.27 -1.18 -0.98
20 -1.34 -1.40 -1.39 -1.33 -1.29 -1.22 -1.27 -1.38 -1.39 -1.35 -1.30 -1.23 -1.08
50 -1.32 -1.36 -1.36 -1.33 -1.31 -1.27 -1.29 -1.34 -1.36 -1.35 -1.31 -1.27 -1.15
100 -1.30 -1.33 -1.35 -1.33 -1.31 -1.28 -1.29 -1.33 -1.34 -1.33 -1.32 -1.28 -1.20
200 -1.31 -1.32 -1.32 -1.32 -1.30 -1.29 -1.28 -1.32 -1.32 -1.31 -1.30 -1.29 -1.23
500 -1.29 -1.30 -1.32 -1.31 -1.30 -1.29 -1.29 -1.30 -1.31 -1.31 -1.31 -1.30 -1.26
1000 -1.29 -1.29 -1.30 -1.31 -1.29 -1.29 -1.29 -1.30 -1.31 -1.31 -1.30 -1.28 -1.27

Table 2: Empirical 10%-quantiles of T ∗
n,a, T̃ ∗

n,a and T ∗
n,∞ based on 100000

replications

n T ∗n,a T̃ ∗n,a T ∗n,∞
0.1 0.5 1.0 3.0 5.0 10.0 0.1 0.5 1.0 3.0 5.0 10.0 –

10 1.14 1.04 0.99 0.88 0.82 0.75 1.19 1.07 1.02 0.90 0.84 0.76 0.58
20 1.18 1.13 1.09 1.04 1.00 0.96 1.23 1.14 1.10 1.06 1.02 0.97 0.82
50 1.23 1.19 1.17 1.14 1.13 1.13 1.26 1.21 1.17 1.16 1.14 1.12 1.04
100 1.24 1.21 1.21 1.20 1.19 1.19 1.27 1.22 1.20 1.19 1.20 1.18 1.13
200 1.25 1.23 1.23 1.23 1.23 1.22 1.28 1.24 1.24 1.23 1.24 1.23 1.20
500 1.26 1.26 1.26 1.26 1.25 1.24 1.27 1.26 1.26 1.25 1.25 1.24 1.25
1000 1.27 1.26 1.26 1.26 1.26 1.26 1.27 1.26 1.26 1.25 1.27 1.25 1.27

Table 3: Empirical 90%-quantiles of T ∗
n,a, T̃ ∗

n,a and T ∗
n,∞ based on 100000

replications

from the L-class, we used the Weibull, Gamma and Linear failure rate dis-

tribution with scale parameter 1 and shape parameter ϑ, denoted by W (ϑ),

Γ(ϑ) and LFR(ϑ), respectively. Furthermore, the inverse Gaussian distri-

bution IG(1, λ) with λ = 1, 1.2, 1.5 and 2.0 was chosen; these values of λ

correspond to a coefficient of variation of 1, 0.91, 0.82 and 0.71, respectively.

Finally, we took the Pareto distribution Par(ϑ) with scale parameter 1 and

shape parameter ϑ as an alternative from the class L.

We used routines of the IMSL-library to obtain Weibull and Gamma
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n T ∗n,a T̃ ∗n,a T ∗n,∞
0.1 0.5 1.0 3.0 5.0 10.0 0.1 0.5 1.0 3.0 5.0 10.0 –

10 1.58 1.45 1.42 1.33 1.27 1.20 1.71 1.51 1.43 1.35 1.28 1.22 1.02
20 1.63 1.52 1.50 1.48 1.46 1.43 1.69 1.56 1.53 1.49 1.46 1.44 1.34
50 1.64 1.58 1.58 1.57 1.58 1.58 1.68 1.60 1.58 1.57 1.58 1.58 1.56
100 1.64 1.60 1.59 1.60 1.62 1.63 1.67 1.62 1.61 1.59 1.61 1.62 1.63
200 1.65 1.62 1.62 1.62 1.63 1.65 1.68 1.63 1.60 1.62 1.63 1.66 1.68
500 1.64 1.62 1.63 1.64 1.63 1.65 1.66 1.63 1.64 1.64 1.63 1.65 1.70
1000 1.64 1.62 1.62 1.64 1.65 1.65 1.67 1.63 1.63 1.64 1.65 1.65 1.68

Table 4: Empirical 95%-quantiles of T ∗
n,a, T̃ ∗

n,a and T ∗
n,∞ based on 100000

replications

random numbers and the inversion method to generate random numbers from

the LFR and Pareto distribution. Inverse Gaussian random variates were

generated by the ’transformations with multiple roots method’ of Michael et

al. (1976).

The first six columns of Tables 5, 6 and 7 show power estimates of the

tests based on T ∗
n,a for a = 0.1, 0.5, 1, 3, 5, 10 for n = 20, 50 and n = 100,

respectively. The next six columns give the corresponding results of the tests

based on T̃ ∗
n,a. The last column contains the results of T ∗

n,∞. All entries are

the percentages of 10000 Monte Carlo samples that resulted in rejection of

H0, rounded to the nearest integer. The nominal level of the test is α = 0.05.

The main conclusions that can be drawn from the simulation results are the

following:

1. The tests based on T ∗
n,a and T̃ ∗

n,a behave fairly similar, whereby the

power of the tests depends to a certain extent on a.

Against Weibull alternatives, T ∗
n,0.5 and T̃ ∗

n,1 perform best. Similarly,

T ∗
n,0.1 and T̃ ∗

n,0.5 are most powerful against Gamma distributions. Large

values of a are best suited to safeguard against LFR and Pareto alter-

natives. T̃ ∗
n,0.1 outperforms all tests under consideration in case of an

inverse Gaussian distribution.
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Alternative T ∗n,a T̃ ∗n,a T ∗n,∞
0.1 0.5 1.0 3.0 5.0 10.0 0.1 0.5 1.0 3.0 5.0 10.0 –

Exp(1) 5 5 5 5 5 5 5 5 5 5 5 5 5
W (1.2, 1) 22 23 22 21 21 21 20 23 23 22 21 21 20
W (1.5, 1) 62 67 67 65 64 63 55 66 67 65 64 62 61
W (1.8, 1) 89 93 93 93 92 92 82 92 93 93 92 92 90

Γ(1.5, 1) 34 33 31 29 28 28 32 34 32 29 28 27 26
Γ(2.0, 1) 69 68 65 60 59 57 65 69 67 61 59 57 54
Γ(2.5, 1) 91 90 88 83 82 80 87 91 89 84 82 80 77

LFR(0.5) 14 17 18 18 19 19 13 16 17 18 18 18 18
LFR(1.0) 21 26 27 29 29 30 18 24 27 28 29 29 29
LFR(2.0) 32 39 42 43 43 44 26 37 41 43 43 43 43
LFR(3.0) 38 49 51 53 53 54 32 45 50 53 53 53 53

IG(1, 1.0) 49 32 26 20 18 17 57 39 29 20 18 17 15
IG(1, 1.2) 65 47 38 30 28 26 73 54 42 31 28 25 23
IG(1, 1.5) 84 68 59 48 45 42 89 75 64 49 45 41 38
IG(1, 2.0) 97 90 83 73 70 67 99 93 87 75 71 67 62

Par(0.25) 19 25 27 28 29 29 15 23 26 28 29 28 28
Par(0.50) 43 53 56 56 56 56 36 50 54 56 56 56 54
Par(0.75) 66 74 76 76 76 75 58 72 75 76 76 75 73
Par(1.00) 82 87 87 87 86 85 75 86 87 87 87 85 84

Table 5: Empirical power of the tests based on T ∗
n,a, T̃ ∗

n,a and T ∗
n,∞, α = 0.05,

n = 20, 10000 replications

2. The results for the ’local’ alternatives W (1.2, 1), Γ(1.5, 1), LFR(0.5)

and Par(0.25) are in good agreement with the local approximate Ba-

hadur efficiencies (see Figures 1 and 2). On the whole, the behaviour

is similar for ’distant’ alternatives; for example, the power of the tests

against LFR alternatives is always increasing in a.

3. T ∗
n,∞ =

√
nTn,∞/2 rejects the IG(1, 1)-distribution in 15% of all cases,

irrespective of the sample size. Indeed, it follows from Theorem 4.2

in Henze and Klar (1996) that T ∗
n,∞ has a limiting centered normal

distribution with variance 9/4 under an IG(1, 1)-distribution. Conse-

quently, the test for exponentiality based on T ∗
n,∞ will reject H0 in 14%
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Alternative T ∗n,a T̃ ∗n,a T ∗n,∞
0.1 0.5 1.0 3.0 5.0 10.0 0.1 0.5 1.0 3.0 5.0 10.0 –

Exp(1) 5 5 5 5 5 5 5 5 5 5 5 5 6
W (1.2, 1) 42 44 44 42 41 39 37 44 44 42 41 39 38
W (1.5, 1) 95 97 97 97 96 95 90 97 97 97 96 95 94
W (1.8, 1) 100 100 100 100 100 100 100 100 100 100 100 100 100

Γ(1.5, 1) 68 65 62 56 54 51 65 67 64 57 54 52 48
Γ(2.0, 1) 98 97 97 94 92 91 97 98 97 94 93 91 87
Γ(2.5, 1) 100 100 100 100 99 99 100 100 100 100 99 99 98

LFR(0.5) 25 32 35 38 39 38 20 30 34 38 39 39 39
LFR(1.0) 40 52 57 61 62 62 31 49 55 61 62 62 62
LFR(2.0) 58 74 79 82 83 83 44 70 77 82 83 83 83
LFR(3.0) 69 84 88 91 91 91 54 81 86 90 91 91 91

IG(1, 1.0) 87 54 40 25 21 18 97 68 47 26 22 18 15
IG(1, 1.2) 97 79 65 46 40 35 100 89 73 49 41 36 30
IG(1, 1.5) 100 96 89 75 69 63 100 99 93 78 70 64 56
IG(1, 2.0) 100 100 99 96 94 90 100 100 100 97 94 91 86

Par(0.25) 32 43 46 49 50 50 24 39 44 49 50 50 48
Par(0.50) 73 83 85 86 86 85 61 80 84 86 86 85 83
Par(0.75) 93 97 97 97 97 97 87 96 97 97 97 97 96
Par(1.00) 99 100 100 100 100 100 97 99 100 100 100 100 99

Table 6: Empirical power of the tests based on T ∗
n,a, T̃ ∗

n,a and T ∗
n,∞, α = 0.05,

n = 50, 10000 replications

of all cases for large n, if the nominal level is 0.05 and the underlying

distribution is IG(1, 1).

4. If nothing is known about the L-class (L-class) alternative, the tests

based on T ∗
n,1 or T̃ ∗

n,1 can be recommended since they distribute their

power more evenly over the range of alternatives.

A basic drawback of omnibus goodness-of-fit tests is that their power is

fairly poor except for a rather small set of alternatives (see, e.g., Janssen

(1995)). Therefore, if one has some knowledge about the class of distribu-
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Alternative T ∗n,a T̃ ∗n,a T ∗n,∞
0.1 0.5 1.0 3.0 5.0 10.0 0.1 0.5 1.0 3.0 5.0 10.0 –

Exp(1) 5 5 5 5 5 5 5 5 5 5 5 5 5
W (1.2, 1) 68 72 71 68 67 65 61 71 72 69 67 65 62
W (1.5, 1) 100 100 100 100 100 100 100 100 100 100 100 100 100
W (1.8, 1) 100 100 100 100 100 100 100 100 100 100 100 100 100

Γ(1.5, 1) 93 91 89 83 80 77 91 92 90 84 81 77 72
Γ(2.0, 1) 100 100 100 100 100 100 100 100 100 100 100 100 99
Γ(2.5, 1) 100 100 100 100 100 100 100 100 100 100 100 100 100

LFR(0.5) 39 54 59 64 65 65 29 49 56 63 64 65 65
LFR(1.0) 63 80 85 89 89 90 47 75 82 88 89 89 90
LFR(2.0) 85 96 97 98 99 99 69 93 97 98 98 99 99
LFR(3.0) 92 99 99 100 100 100 79 98 99 100 100 100 100

IG(1, 1.0) 99 78 57 32 26 21 100 90 68 35 27 21 15
IG(1, 1.2) 100 97 88 64 56 48 100 99 93 68 57 48 38
IG(1, 1.5) 100 100 99 93 88 82 100 100 100 95 89 83 72
IG(1, 2.0) 100 100 100 100 100 99 100 100 100 100 100 99 96

Par(0.25) 48 64 68 72 73 72 35 58 65 72 73 73 71
Par(0.50) 93 97 98 98 98 98 84 96 98 98 98 98 97
Par(0.75) 100 100 100 100 100 100 99 100 100 100 100 100 100
Par(1.00) 100 100 100 100 100 100 100 100 100 100 100 100 100

Table 7: Empirical power of the tests based on T ∗
n,a, T̃ ∗

n,a and T ∗
n,∞, α = 0.05,

n = 100, 10000 replications

tions which may occur, it is reasonable to use tests that are well adapted

to detect the possible alternatives. On the other hand, the example of the

IG(µ, µ)-distribution which may be a reasonable life distribution shows that

it may be even more dangerous to overly restrict the set of possible alterna-

tives.

In this respect, the proposed tests for exponentiality against the L-class,

which is the largest of the commonly used classes of life distributions, seem

to be a good compromise.
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