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Abstract

The rapid-prototyping approach of the early 1980’s
failed to deliver high-quality knowledge-based systems. As
a reaction, in the early 90’s, there has been a large ac-
tivity in the knowledge engineering community to define
methodologies for principled knowledge-based system de-
velopment. These methodologies succeeded in organising
the development process as a set of intermediate models of
the system to be built, to end in the final implementation.
Feedback from industries that use these methodologies in
practice reveals, however, that building a high-quality im-
plemented system remains a difficult and error-prone pro-
cess. In this paper, we outline an approach for assuring the
transition of a conceptual model into a final implementation
which satisfies particular quality criteria. The approach
is based on identifying and supporting adequate transition
paths and activities on models in order to achieve particular
quality criteria.

1. Introduction and motivation

Modern knowledge engineering (KE) methodologies
such as CommonKADS [20], VITAL [10], MIKE [3],
TASK [16] are successful in providing structure to the de-
velopment process of knowledge-based systems (KBSs) by
identifying intermediate models and defining the languages
and organisation of these models. These methodologies
have been originally set up in response to the industrial need
for a rigorous and systematic KBS development methodol-
ogy, as opposed to the rapid-prototyping practice that was
popular in the eighties. Such methodologies have been suc-
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cessful in the sense that conceptual models are now the
European industrial standard for describing high-level KBS
specifications. However, feedback from industries indicates
that moving from a high-level conceptual model to a high-
quality implementation is still a difficult and error-prone
process. High-quality means that the KBS exhibits certain
quality criteria, such as for example, reliability and main-
tainability. The main reason for these problems is that, al-
though the structure of the intermediatemodelsis now well
understood, there is not yet adequate provision in the form
of methods, guidelines, and tools to support thetransitions
between the models.

The aim of this paper is to outline an approach for assur-
ing the transition from a conceptual model to a final imple-
mentation which satisfies particular quality criteria. Rather
than inventing a new methodology, we build on existing
work, and focus on the issues that remain to be solved. In
Section 2, we sketch a typical industrial need, and in Sec-
tion 3, we outline the approach. Section 4 discusses the kind
of tools needed to support the approach, and in Section 5,
we present conclusions.

2. A typical industrial need

Modern KBS development methodologies provide a
clear structure of the development process by identify-
ing intermediate models, which enables industries to bet-
ter monitor and control the development process. One of
the key notions is that the development process starts with
the construction of a conceptual model of the KBS to be
built. Based on various European joint projects between
universities and industries, several tools have been devel-
oped for building conceptual models (e.g., KADSTOOL,
OpenKADS, the VITAL workbench, MIKE, VOID, the
CommonKADS workbench, PC-Pack, etc.), and some of



these are widely in use.
However, industries still have difficulties with applying

these methodologies in their full range to develop KBSs. A
common problem concerns the transformation of the high-
level conceptual model into a particular implementation
platform, such as for example an object-oriented environ-
ment or rules (e.g., Aion-ds, Nexpert, Clips). The reason
for this problem is that the current KE approaches do not
provide guidelines or tools to support this transformation,
and lack rigour and methodology needed for dealing with
KBSs of realistic size. There are several intermediate mod-
els (see Section 3.1), and it is not clear in what situation
to include a particular model. Moreover, it is difficult to
maintain consistency between the models, and between the
models and the implementation. However, see [22], for a
modest success story of applying such a methodology in its
full range.

Knowledge engineering methodologies will only boost
industrial productiveness if they (i) support the whole pro-
cess of KBS development, (ii) tightly relate the different
models to each other, (iii) enable optimal reuse of enter-
prise knowledge, and (iv) deliver high-quality KBSs (e.g.,
maintainable, correct, etc.). To achieve these goals, we need
to provide developers with correct and efficient transition
methods and by providing software support for managing
the interactions between different models.

3. Approach

The approach is based on three different dimensions: (1)
models of the functionality of the KBS; (2) activities on the
models; and (3) quality criteria of KBSs.

3.1. Models

Methodologies for KBS development are based on mul-
tiple models which bridge the gap between an abstract
conceptual model and an implementation. The transition
process between the models is structure-preserving, which
means that content and structure of the knowledge in the
conceptual model are preserved throughout the intermediate
models to the final implementation. The motivation is that,
if two models have a corresponding structure, the transi-
tion step between them becomes easier and semi-automatic
transformations are possible. This facilitates not only val-
idation and verification of the models, but also their mod-
ifications. The nature and structure of the different mod-
els have been brought to light in past research in Knowl-
edge Engineering (e.g., CommonKADS [20], VITAL [21],
MIKE [3], TASK [16]), and include the following:

A conceptual model(CM) is dedicated to capture the ex-
pertise in an informal, but structured way. ACM describes
the different types and roles of knowledge in reasoning

tasks. It facilitates initial KBS specification and human’s
understanding of the KBS [19]. Aformal model (FM) en-
codes knowledge in a symbolic formalism with a mathe-
matically sound basis and a declarative semantics. It allows
to eliminate ambiguities and inconsistencies from theCM,
and enables formal verification and validation [11, 17]. A
design model(DM) is concerned with, among others, an ef-
ficient realisation of theCM and/orFM on a computer. It
specifies, among others, the data structures, the algorithms
and the architecture of the target application. ADM also
records the rationale for the choices made [15, 23].

3.2. Activities on models

In general, we can perform various activities on the mod-
els of the model set mentioned above, as illustrated in Fig-
ure 1. Models can be transformed into each other, they can
be verified against each other [18], they can be revised and
modified, or they can be validated against some external re-
quirements. It is also possible to trace the changes made in
one model to an other model.

validation

modification

M

= ?

requirements

transformation

revision

verification

M2M1

= ?

trace

Figure 1. The different activities.

Transformation In the transformation step, the content
of one model is transformed into another model, for exam-
ple, aCM in a DM.

Validation and verification In V&V, we evaluate mod-
els. In validation we check whether a model complies with
some external (non-formal) requirements (e.g., user needs).
Validation works on one model (see right part of Figure 1).
Verification needs two models (left part of figure). Its goal
is to show that some specification (M2) satisfies its require-
ments (derived from M1). The output of both activities is
an evaluation containing statements about the model. In a
multiple model context, V&V can be stated in terms of the
properties that the different models must have with respect
to each other.

Revision and modificationRevision and modification
update a model, based on the output of the V&V activities.
Modification operates on one model, and modifies it. Re-
vision takes two models and revises the source model (see
Figure 1).

Tracing Tracing is performed between several models,
and is concerned with finding out the consequences of
changes in one model for the other model(s).



Activities are not only in forward direction (e.g., the
transformation of a model into a next model or implemen-
tation), but also in backward direction (e.g., verification of
a model/implementation against another model, or revision
of a model/implementation based on the outcome of a veri-
fication activity).

3.3. Quality criteria

Quality criteria of a KBS are the properties a KBS should
possess. In case of large and complex KBSs, such quality
criteria become increasingly important. We distinguish the
following quality criteria.

Applicability The knowledge-based system can be applied
and behaves as expected.

Maintainability Changes and updates of the KBS can be
easily traced through the different models to prevent
unexpected and undesired global side effects1.

Reliability, correctness The KBS delivers reliable and
correct solutions.

Consistency The different models of the KBS are consis-
tent with each other, and are internally consistent.

3.4. Transition paths

There are two main motivations underlying our approach
in order to make KE technology work in practice. First, we
want to identify appropriate transition paths in response to
particular quality criteria, and to provide corresponding tool
support. A transition path defines the different models to in-
clude in the transformation from a conceptual model to a fi-
nal implementation. We identified four transition paths that
make sense in different situations, as illustrated in Figure 2.
We can go directly from a conceptual model to an imple-
mentation, we can include an intermediate design model or
a formal model, or we can include both a formal and design
model.

CM FM DM implementation

Figure 2. Different transition paths between
a conceptual model and an implementation.
CM = conceptual model, FM = formal model
and DM = design model.

1Maintainability is also an important feature of each individual model.
This is, however, already included in the existing KE methodologies.

Second, we want to identify the simplest, but still ade-
quate, transition paths as possible for different situations.
The reason for this is that industries are not willing to spend
energy and time on activities that are not essential. For ex-
ample, consider the inclusion of a formal model. Formal
models are notoriously difficult to build [9], but have the
advantage that they can guarantee the correctness of the fu-
ture system [7]. Therefore a company will only be ready to
spend money on a formal model if the application cannot do
without it (e.g., if faults have disastrous consequences).

3.5. Quality criteria, transition paths and

models

In our approach, we relatequality criteria to activities,
which, on their turn, are related to certaintransition
paths . Table 1 summarises this.

Applicability If we have to guarantee theapplicability
of the KBS, it is important to carry out thevalidation
activity on the final implementation. Applicability is
a kind of minimum requirement for any KBS. The
resulting transition path is a directtransition
from the conceptual model into the
implementation . This does, however, not mean
that design decisions are unimportant here. What it does
mean is that for such applications the design decisions
are not likely to change over time, and that therefore one
can rely on a fixed design environment, that need not be
elaborated on in the transition process. Sometimes this
is referred to as “explorative prototyping”, because it is
possible to have a quick idea of the power of the knowledge
represented in the conceptual model.

Safety-critical If we are dealing with safety-critical
applications, such as airplanes, chemical process industries,
space missions, nuclear power plants, etc.,reliability
is an essential features, as well ascorrectness and
consistency. To guarantee that the final KBS exhibits
those quality criteria, formalverification is required [18]
and a specificstep through an intermediate
formal model appears in the transition
path .

Evolutionary systems KBSs that evolve considerably
over time need to be easilymaintainable. This means
that the consequences ofmodificationsand revisions of
one model need to be clear for the other models. For
example, when modifications are made in the conceptual
model due to changing requirements, it should be clear how
this change propagates to the design model and the imple-
mentation. On the other hand, when the implementation



or the design model is changed, for instance due to re-
pairing a bug, the implications for the conceptual model
should be clear (in user-understandable terms). Therefore
an important activity istracing between the different mod-
els. Experience shows that such evolutionary systems bene-
fit much from anexplicit design model in the
transition path that captures the design decisions
taken. If for some reason a design decision has to be re-
vised, it is clear what else has to be updated.

Quality criteria can be combined (as in the last row of Ta-
ble 1), which implies that their corresponding models have
to be included in the transition path.

Notice that there can be different types of each model,
and the type to include in the transition path depends on
the specific aim. For instance, if we want to use a formal
model for disambiguating the conceptual model, we require
a FM with high expressivenesssuch as(ML)2 [25], other-
wise there is the risk that we cannot represent all knowl-
edge in the conceptual model. On the other hand, if our aim
is validation, then anoperationalFM such as KARL [12],
would be more appropriate (limiting the expressive power
of theFM). See also [13, 17, 11]. Analogously, we can have
different types ofDMs [23, 15].

4. Supporting the transition paths

Past experience has shown that good methodologies will
not work in practice if they are not properly supported with
software tools and guidelines. This holds also for current
KE methodologies. Performing all transition steps through
the intermediate models until the final implementation is a
complex process, and it is practically impossible to manage
a complex transition path without dedicated tool support.

A good KE methodology supports guidance and good
documentation facilities and leads to reduction of effort in
building KBSs. In our approach, these goals are achieved
through the following2:

Guidelines During the transition process of one model
into another, many decision have to be taken, in particu-
lar, because the models become increasingly more precise
and they have a one-to-many relation to each other. If the
source and destination model have an isomorphic structure
(i.e., structure-preserving transitions) then concrete guide-
lines can be given. This is done for the transition between
the conceptual and the formal model in the context of the
CommonKADS methodology [2]3, where a set of 70 con-
crete guidelines is provided. Guidelines for the transition

2Most current KE tools already provide good documentation facilities,
therefore we will not elaborate on this.

3See http://www.swi.psy.uva.nl/usr/manfred/abstracts/Aben:92c.html.

from a conceptual model into an implementation are de-
scribed in [23].

Automatic translators It is also possible to build semi-
automatic translators for the transition of one model into
another. Such translators can be considered as computerised
versions of the guidelines mentioned above. [24] describe
a semi-automatic translator for two CommonKADS mod-
els: CML (conceptual) and(ML)2 (formal). The VOID
tool4 contains several automatic translators between dif-
ferent representational languages (CML, Ontolingua, Ex-
press).

Reusable libraries Reuse of ready-made components is
a promising way to facilitate the transition process. Instead
of specifying or generating a model fragment from scratch,
existing components can be retrieved from libraries. Since
our approach involves different models (conceptual, for-
mal, design) and executable code, libraries for each of these
should be considered. Several libraries exist to (automat-
ically) support the initial construction of the conceptual
model [4, 8, 5]. A library of general formal fragments can
be helpful in specifying the formal model [1]. In [6], we
show how this formal library helps to formalise a diagnos-
tic reasoner. Needless to say that there exist several libraries
of executable code in various languages that can also serve
our approach.

Apart from reusing model fragments, our approach aims
also at identifying reusable components in the form of pack-
ages. Such a package consists of a successful path from
a part of a generic conceptual model to its corresponding
generic part in the implementation, through possible inter-
mediate models (formal model, design model).

Verification support Proving that a formal model has
certain properties is a time consuming and error-prone pro-
cess. Therefore, we advocate the use of verification tools to
automate as much as possible, and to bother the user only
with the difficult issues. An interesting tool for such support
is the Karlsruhe Interactive Verifier, KIV5 [14] that enables
the reuse of partial proofs.

Change-management systemsWhen dealing with multi-
ple models that are closely related to each other, it becomes
very hard to keep track of the consequences of modifica-
tions in one model for the other models. In practice, many
decisions that are taken during the transition between mod-
els are subject to revision in a later stage. For instance, in
the design phase, conflicts between requirements may be
detected which did not surface earlier. In case of a revision,

4See http://www.swi.psy.uva.nl/projects/void/roadmap.html.
5See http://i11www.ira.uka.de/~kiv/.



Quality criterion Activity Transition path

applicability validation CM! implementation
maintainability tracing CM! DM ! implementation
reliability, correctness, consis-
tency

verification CM! FM! implementation

reliability, maintainability verification, trac-
ing

CM! FM! DM ! implementation

Table 1. The relations between quality criteria, activities, and transition paths.

the resulting modifications often must not only be made in
a more specific model, but must also be reflected in earlier
models, and must then be propagated in forward direction in
order to avoid models getting out of sync. Furthermore, the
decisions taken in the development process build on each
other. Thus, if one decision will be revised later on, several
others will also be invalidated, while others are not affected
by a particular revision [15]. Additionally, we will address
how decisions that are not affected by a revision can be “re-
played” (maybe in a modified context) after the revision has
taken place (a kind of reuse).

5. Conclusions

In this paper we argued that, although there exist
good knowledge engineering methodologies for developing
knowledge-based systems, this is not enough to make these
methodologies work in practice. Feedback from industries
tells us that it is still difficult to produce high-quality KBSs.
In our research, we have become aware that this is caused by
the lack of concrete guidelines and software support to ap-
ply the methodologies. The basic problem is that, although
the structure of the KBS development process is well un-
derstood (as a set of intermediate models), the transition
process between the models is less clear. The approach
outlined in this paper can be seen a proposal tocomplete
the current KE methodologies such as CommonKADS, VI-
TAL, MIKE, and TASK by focusing on the transitions, and
by identifying and developing appropriate tool support.

Ideally, we would want to combine the different existing
KE methodologies into a coherent environment that takes
the strong points of each of them. Seeds of such an inte-
grated environment already exist at the various research in-
stitutes involved. A first step towards such an integrated
environment could be achieved by making the different
components (e.g., the various specification languages for
the different models, the reusable libraries, the translators
and the change-management systems) available through the
WWW6. In fact, several efforts are currently undertaken to

6See http://www.swi.psy.uva.nl/,
http://www.aifb.uni-karlsruhe.de/WBS/index.engl.html,
http://www.lri.fr/equipes/iasi/,

do so. However, their real integration is far from trivial.
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