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to find improved characterizations for these assumptions. This can be achieved by a precise analysis of
their role in the completed proof for retracing unnecessary properties of them. Again, we can use KIV
as tool support for this process. The main difference to the usual use of KIV for verification purpose is
that we do not aim for a succeeded proof. Instead, already from the beginning we expect the proof not
to succeed and we use instead the open goals found during the proof process as result for further
consideration.

 

7 Related Work, Conclusions and Future Work

 

[vHA96], [BeA] also propose the use of conceptual models for the specification and verification of
KBSs. [BeA] provide some hand-made proofs. The idea of using algebraic specifications KBSs is also
used by [SpV94] and [PGT96]. However, they do not use dynamic logic and no actual proofs have been
reported. That should no be taken as a surprise as realistic formal proofs can only be done with
mechanical support. We have shown in the paper how tasks and problem-solving methods can be
specified and verified with KIV. KIV is well-suited for both as it combines algebraic specifications
with imperative constructs that enable the specification of the reasoning behaviour. The interactive
theorem prover provides excellent support in proceeding the different automatically generated proof
obligations. The modular concept of proofs and proof reuse for partial modified specification make the
verification effort feasible. In the paper, we have shown several proofs that are necessary to establish a
correct specification.

We also realized several promising lines of future work. The conceptual model used to specify
knowledge-based systems can be expressed in the generic module concept of KIV. However, this is
connected with a loss of information because the KIV specification does not distinguish the different
roles that specifications may have (goals, requirements, adapters etc.). Therefore, not all of the desired
proof obligations could be generated automatically or at least not directly. Still, it seems to be possible
to specialize the generic concepts of KIV. This would allow to provide the automatic generation of
according proof obligations and of predefined modules and specification combinations to model the
different aspects of a knowledge-based systems. Based on this, we plan to develop a methodological
framework for the stepwise development of correct specifications of knowledge-based systems. 
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that it is parsimonious in general. There may exist smaller subsets of it that are complete explanations.
The adapter has to introduce a new requirement on domain knowledge or an assumption (in the case
that it does not follow from the domain model) to guaranty, that the competence of the PSM is strong
enough to achieve the goal of the task. The 

 

monotony assumption

 

 (cf. Figure 5) is sufficient (and
necessary, cf. [FeS97]) to prove that the (global) parsimonious of the result of the PSM follows from its
local parsimoniality. To ensure the automatic generation and management of this proof obligations by
KIV we have to specify the adapter as a module that implements the task goal by importing the
mappings and exporting the goal of the task (cf. Figure 5).

The question may arise how to provide such assumptions that close the gap between task definitions
and PSM. In [FeS97], we present the idea of using mathematical proofs and analysis of their failure as a
systematic means for forming assumptions. A mathematical proof that a PSM solves a given problem
usually enforces the introduction of assumptions to close gaps in the line of reasoning of the proof. It
can therefore be viewed as a search process for hidden assumptions. Gaps that can be found in a failed
proof provide already first characterizations of these assumptions. Using an open goal of a proof
directly as an assumption normally leads to very strong assumptions. That is, these assumptions are
sufficient to guarantee the correctness of the proof, but they are often neither necessary for the proof
nor realistic in the sense that application problems will fulfil them. Therefore, further work is necessary

Fig. 4    Verifying the PSM with KIV.

Fig. 5    Connecting PSM and Task.

assumptions = enrich abduction problem with 
axioms

complete(all-hypotheses),
H1 ⊆  H2 → explain(H1) ⊆ explain(H2)

end enrich

adapter = module
export explanation
refinement

representation of operations
explanation# implements explanation;

import mapping
variables res : hypotheses;
implementation

explanation#(var res)
begin

res := local-parsimonious-explanation
end
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This property is proven by using the (three) axioms for the inferences 

 

generate-successors

 

and 

 

select-one-correct

 

 and a suitable case-distinction (i.e., four interactions).

 

iii-2-lemma.

 

 The proof is done, as for lemma iii-1-lemma, by induction on the recursive calls
of the 

 

hill-climbing

 

 procedure in a terminating run. For this it is enough to use the property of

 

select-one-correct

 

 that it yields a correct object set, whenever it does not yield its first
argument as result. This property follows immediately from the axioms.

 

iii-3-lemma.

 

 The proof is done, as for iii-1-lemma and iii-2-lemma, by induction on the
recursive calls of the 

 

hill-climbing

 

 procedure in a terminating run. The proof uses the property
that
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This property is proven as follows: First we show that from the condition 

 

∃ o. (o ∈ O ∧  correct(O \ o)) follows that
O1 := select-one-correct(O,generate-successors(O)) ∈ generate-successors(O)

From the axiom for generate successors follows that there must exist an o1 ∈ O such that O1
= O \ o1, i.e. O1 ≠ O.

To give an impression of how to work with KIV, Figure 4 is a screen dump of the KIV system when
proving iii-3-lemma. The current proof window on the right shows the partial proof tree currently
under development. Each node represents a sequent (of a sequent calculus for dynamic logic); the root
contains the theorem to prove. In the messages window the KIV system reports its ongoing activities.
The KIV-Strategy window is the main window, which shows the sequent of the current goal, i.e. an
open premise (leaf) of the (partial) proof tree. The user works either by selecting (clicking) one proof
tactic (the list on the left) or by selecting a command from the menu bar above. Proof tactics reduce the
current goal to subgoals and thereby make the proof tree grow. Commands include the selection of
heuristics, backtracking, pruning the proof tree, saving the proof, etc.

6 Adapter: Connecting Task and Problem-Solving Method
The description of an adapter maps the different terminologies of task definition, PSM, and domain
model and introduces further requirements and assumptions that have to be made to relate the
competence of a PSM with the functionality as it is introduced by the task definition. Because it relates
the three other parts of a specification together and establishes their relationship in a way that meets the
specific application problem they can be described independently and selected from libraries. Their
consistent combination and their adaptation to the specific aspects of the given application must be
provided by the adapter. Usually an adapter introduces new requirements or assumptions because in
general, most problems tackled with KBSs are inherently complex and intractable (cf. [FeS96],
[Neb96]). A PSM can only solve such tasks with reasonable computational effort by introducing
assumptions that restrict the complexity of the problem or by strengthening the requirements on domain
knowledge.

We have to introduce assumptions by the module assumptions (cf. Figure 5) to ensure that the
competence of our method implies the goal of the task. First, we have to require that the input of the
method is a complete explanation. Based on the mappings it is now simple to prove that the input
requirement of the method is fulfilled (i.e., the input is correct). Second, based on the mappings we can
prove that our method set-minimizer finds a local-minimal set that is parsimonious in the sense that
each subset that contains one element less is not a complete explanation. However, we cannot guaranty



5 Proving Termination and Correctness of the PSM
We have to prove for the operational specification of the PSM termination can be guaranteed and the
competence as specified. This proof obligations are automatically generated by KIV as formulas in
dynamic logic (cf. [Gol82], [Har84]). In our example, it derives the following proof obligations:

(i-1) |  <control#(output)> true, i.e. termination

(iii-1) |  <control#(output0)> output0 ⊆  input, corresponds to axiom 1 of the competence

(iii-2) |  <control#(output0)> correct(output0), corresponds to axiom 2 of the competence

(iii-3) |  <control#(output0)> o ∈  output0 → ¬  <control#(output0)>correct(output0 \ o), 
corresponds to axioms 3 of the competence.

The next step is to actually prove these obligations using KIV. For constructing proofs KIV provides an
integration of automated reasoning and interactive proof engineering. The user constructs proofs
interactively, but has only to give the key steps of the proof (e.g. induction, case distinction) and all the
numerous tedious steps (e.g. simplification) are done by the machine. Automation is achieved by
rewriting and by heuristics which can be chosen, combined and tailored by the proof engineer. If the
chosen set of heuristics get stuck in applying proof tactics the user has to select tactics on his own or
activate a different set of heuristics in order to continue the so far constructed partial proof. Most of
these user interactions can be done by selecting alternatives provided by a menu.

For each of the proof obligations we formulate straightforward auxiliary lemmas i-1-lemma, iii-1-
lemma, iii-2-lemma, and iii-3-lemma; one for each of these proof obligations, respectively. These
auxiliary lemmas express the corresponding property of the hill-climbing sub-procedure (cf. Figure 3):

(i-1-lemma) |  <hill-climbing#(current;output)> true

(iii-1-lemma) current ⊆  O |  <hill-climbing#(current;output)> output ⊆  O

(iii-2-lemma) correct(current) |  <hill-climbing#(current;output)> correct(output)

(iii-3-lemma) <hill-climbing#(current;output)> output = O |  ¬  ∃ o. o ∈  O ∧  correct(O \ o) 

Using these lemmas, each of the proof obligations can now directly be proven with the interactive proof
environment of KIV. Activating the standard set of predefined heuristics (by click) and then selecting
the auxiliary lemma to use (by click) is enough. KIV automatically does the unfolding of the control
procedure, finds the appropriate instantiation of the lemma, and carries out the first-order reasoning
(necessary e.g. for (iii-3)). Thus each of the proofs of (1-1), (iii-1), (iii-2), (iii-3) can be done with one
user interaction, respectively.

It remains to prove the four lemmas. All of these proofs work by induction. And for constructing them
with the help of KIV one has to tell KIV (again by clicking) which kind of induction should be used.
KIV is then able to unfold (and symbolically execute) the procedure hill-climbing and find the correct
instantiation of the induction hypothesis. While KIV tries to construct the proofs it comes up with
subgoals reflecting certain properties of the inference actions. We then interact by formulating these
properties as first-order lemmas in the specification of the inferences, and KIV is able to automatically
find and use them to close the open subgoals. Thus, again with quite little, and almost straight-forward
user interaction (besides the formulation of the lemmas) the original proof obligations are reduced to
the task of proving some properties of the inferences stated in first-order logic. These in turn can be
derived from the axioms. Here again some user interaction is required, mostly selecting the appropriate
axioms (and also one quantifier instantiation). Besides this KIV does all the first-order reasoning. We
now give a sketch of the proofs:

i-1-lemma. The termination of the PSM is proven by induction on the first parameter of hill-
climbing, where the (well-founded5) order ⊂ is used. In the induction step we use the fact that 

select-one-correct(O,generate-successors(O)) ≠ O → 
select-one-correct(O,generate-successors(O) ⊂ O.

5.  Remember that we deal with finite sets only.



provided in Figure 1 and the definition of some of its specifications and modules as given in Figure 3.

Domain Requirements. The main requirements on available knowledge and input that are
introduced by the method are: the existence of a possible set of objects (a sort), the existence
of a predicate correct holding true for some sets, and the method finally assumes that the input
is a correct set. These requirements on knowledge and input data are specified as (formal)
parameter of the specification of the method. They get replaced by concrete parameters when
the method is applied for a specific task and domain as we will see in section 6.4

Operational Specification. The method works as follows: First, we take the input. Then we
recursively generate the successors of the current set and select one of its correct successors.
If there is no new correct successor we return the current set. The functions generate-
successors and select-one-correct in the specification inferences correspond to elementary
inference actions in CommonKADS [SWA+94]. The procedural control (in KADS located at
the task body) is defined by the module control.

Competence. The competence in Figure 3 states that set-minimizer is able to find a local
minimal subset of the given set of objects. The three axioms state that it (1) finds a subset that
is correct (2), and minimal (3), i.e. that each set containing one element less is not a correct
set. 

4.  This parameterization also allows to get different variants of the competence of a method by varying its knowledge
requirement.

Specifications

psm-domain requirements = enrich objects with 
constants input : objects;
predicates correct : objects, 
axioms

correct(input)
end enrich

inferences = enrich object-sets with
functions 

generate-successors : objects → object-sets,
select-one-correct : objects x object-sets → objects; 

axioms
O2 ∈  generate-successors(O1) ↔ 

∃ o1 . (o1 ∈  O1 ∧  O2 = O1 \ o1),
(∃ O1 . (O1 ∈ OS ∧ correct(O1)) →

select-one-correct(O,OS) ∈  OS ∧
correct(select-one-correct(O,OS)),

¬∃ O1 . (O1 ∈ OS ∧ correct(O1)) 
→ select-one-correct(O,OS) = O

end enrich

competence = generic specification
parameter PSM-domain requirements target
constants local-minimal-set : objects;
axioms

(1) local-minimal-set ⊆ input,
(2) correct(local-minimal-set),
(3) o1 ∈  local-minimal-set 

→ ¬correct(local-minimal-set \ o1)
end generic specification

Fig. 3    The sub-specifications and modules of set-minimizer.

Modules

control = module
export competence
refinement

representation of operations
control# implements local-minimal-set 

import inferences
procedures hill-climbing#(objects) : objects
variables output, current, new :objects;
implementation

control#(var output)
begin

hill-climbing#(input,output)
end

hill-climbing#(current, var output)
begin

var new = 
select-one-correct

(current,generate-successors(current)) in 
if new = current

then output := current 
else hill-climbing#(new,output)

end



to include this directly in the KIV tool environment.

3 Formalizing a Task
The description of a task consists of two parts (cf. [FeG97]): It specifies a goal that should be achieved
in order to solve a given problem. The second part of a task specification is the definition of
requirements on domain knowledge necessary to define the goal in a given application domain. We use
a simple task to illustrate the formalization of our approach. The task abductive diagnosis receives a set
of observations as input and delivers a complete and parsimonious explanation (see e.g. [BAT+91]). An
explanation is a set of hypotheses. A complete explanation must explain all input data (i.e.,
observations) and a parsimonious explanation must be minimal (that is, no subset of it has the same or
a greater explanatory power). Figure 1 provides the modular structure of the task definition for our
example. The internal definitions of some of the specifications are given in Figure 2. The specification
abduction problem is an enrichment of data and hypothesis3 and introduces a requirement on domain
knowledge. A function explain must be provided to relate hypotheses with observations they explain.
Further on, the two predicates complete and parsimonious are introduced that are required to define a
solution of the task. Based on these definition, we can finally define what an explanation must fulfil. It
must be complete and parsimonious.

4 Formalizing a Problem-Solving Method
The concept PSM is present in a large part of current knowledge-engineering frameworks (e.g. Generic
Tasks [Cha86], CommonKADS [BvV94], [SWA+94], Method-to-task approach [EST+95]). In
general, PSMs are used to describe the reasoning process of a KBS. Besides some differences between
the approaches, there is strong consensus that a PSM decomposes the entire reasoning task into more
elementary inferences; defines the types of knowledge that are needed by the inference steps to be
done; and defines control and knowledge flow between the inferences. In addition, [vdV88] and
[AWS93] define the competence of a PSM independent from the specification of its operational
reasoning behaviour. Proving that a PSM has some competence has the clear advantage that the
selection of a method for a given problem and the verification whether a PSM fulfils its task can be done
independently from details of the internal reasoning behaviour of the method. The third element of a
PSM are requirements on domain knowledge. Each inference step and therefore the competence
description of a PSM requires specific types of domain knowledge. These complex requirements on
domain knowledge distinguish a PSM from usual software products. Pre-conditions on valid inputs are
extended to complex requirements on available domain knowledge.

We use the very simple PSM set-minimizer of [FeG97] for our example. It receives a set of objects as
input and tries to find a minimized version of the set that still fulfils a correctness requirement. The
applied search strategy is one-step look ahead. The overall structure of the PSM-specification is

3.  Data and hypothesis specify finite sets of data and hypothesis, respectively. Their specification is skipped for space
limitation.

dabduction problem = enrich hypotheses, data with
functions explain : hypotheses → data;
predicates

complete : hypotheses,
parsimonious : hypotheses;

axioms
 complete(H) ↔ explain(H) = all-data,
 parsimonious(H) ↔ 

¬  ∃  H1 . H1 ⊂ H ∧ explain(H) ⊆ explain(H1) 
end enrich

Fig. 2    The specification of the abductive task.

explanation = enrich abduction problem with
constants explanation : hypotheses;
axioms

 complete(explanation),
 parsimonious(explanation)

end enrich



2 The Structure of the Entire Specification
In KIV, the entire specification of a system can be split into smaller and more tractable pieces. Each
elementary specification introduces a signature and a set of axioms. The semantics of such a
specification is the class of all algebras that satisfy the first-order axioms (i.e., loose semantics is
applied [Wir90]). KIV provides several mechanisms to combine elementary specifications to more
complex specifications: sum, enrichment, renaming, and actualization of parameterized specifications
(cf. [Rei95]). In addition to (elementary) specifications, KIV provides modules to describe
implementations in a Pascal-like style. A module consists of an export specification, an import
specification, and an implementation that defines a collection of procedures implementing the
operations of the export specification.

Figure 1 provides the structure of the entire specification of our example. The development graph
provides an overview of the overall structure, i.e., the dependencies between the (sub-)specifications
and implementations. The single specifications (the rectangles in the graph) and modules (the rhomboid
units in the graph) are discussed during the following sections. The development graph of KIV does not
directly reflect the conceptual units we identified above (i.e., task, PSM, domain model, and adapter).
However they can be defined by hand as aggregation of elements of the graph and current work is done

2.  An extended version of the paper and containing all proofs is available via http://www.aifb.uni-karlsruhe.de/WBS/dfe/
eurovav.html.

Fig. 1    The development graph in KIV.
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framework for describing a KBS consists of four elements: a task that defines the problem that should
be solved by the KBS, a problem-solving method (PSM) that defines the reasoning process of a KBS; a
domain model that describes the domain knowledge of the KBS. Each of these three elements are
described independently to enable the reuse of task descriptions in different domains, the reuse of
PSMs for different tasks and domains, and the reuse of domain knowledge for different tasks and
PSMs. A fourth element of a specification of a KBS is an adapter that is necessary to adjust the three
other (reusable) parts to each other and to the specific application problem. It is used to introduce
assumptions and to map the different terminologies.

In this paper, we discuss the specification and verification of the different elements and their
relationships. We use the KIV system (Karlsruhe Interactive Verifier) (see [Rei95]) for both activities.
It is an advanced tool for the construction of provably correct software. KIV supports the entire design
process starting from formal specifications (algebraic full first-order logic with loose semantics) and
ending with verified code (Pascal-like procedures grouped into modules). It has been successfully
applied in case-studies up to a size of several thousand lines of code and specification (see e.g.
[FRS+95]). The use of the KIV system for the verification of KBSs is quite attractive. KIV supports
dynamic logic (cf. [Gol82], [Har84]) which has been proved useful in specification of KBSs (cf. KARL
[Fen95b], (ML)2 [vHB92], and MLPM [FeG96]). Dynamic logic has two main advantages (especially
if compared to first-order predicate logic). First, dynamic logic is quite expressive, e.g. one can
formalize and prove termination or equivalence of programs or generatedness of data types.1 Second in
dynamic logic programs are explicitly represented as part of the formulas. Thus (especially if compared
to the verification condition generator approach) formulas and proofs are more readable for humans and
provide more structural information which can be employed by proof heuristics.

KIV allows structuring of specifications and modularisation of software systems. Therefore, the
conceptual model of our specification can be realized by the modular structure of a specification in
KIV. Finally, the KIV system offers well-developed proof engineering facilities: Proof obligations are
generated automatically. Proof trees are visualized and can be manipulated with the help of a graphical
user interface. With the interactive theorem prover even complicated proofs can be constructed. A high
degree of automation can be achieved by a number of implemented heuristics. However, interaction is
necessary because for two reasons: In general, complex proofs cannot be completely automated and
proving usually means to find error either in the specification or in the implementation. The proof
process is therefore a kind of search process for errors. Analysis of failed proof attempts and the
automatic generation of counterexamples support the iterative process of developing correct
specifications and programs. Finally, an elaborated correctness management keeps track of lemma
dependencies (and their modifications) and automatic reuse of proofs allows an incremental
verification of corrected versions of programs and lemmas (see [ReS93]). Both aspects are essential to
make verification feasible given the fact that system development is a process of steady modification
and revision.

During the paper we illustrate some of the specification elements and proof processes necessary to
establish the correctness of the different elements of a complete specification. In each section, we use
different aspects of a running example for illustrating these processes. In section 2, we introduce the
structure of our specification in KIV. In section 3, we illustrate the specification of a task. In section 4,
we present the specification of a problem-solving method. Its termination and correctness proofs are
provided in section 5. During section 6, we illustrate how the appropriate relationship between task and
problem-solving method becomes established. Section 7 summarizes the paper and defines objectives
for future research. For the sake of space limitation we discuss only the verification of the PSM. We
cannot present the proofs of the adapter and the specification and verification of a domain model. In
general, we would have to prove that the domain knowledge is consistent and that it fulfils the
requirements of PSM, task, and adapter.2

1.  Of course, due to its expressive power any effective calculus for dynamic logic has to be incomplete. Fortunately, this does
not limit the practical applications (because the incompleteness stems from self reference). However, as in first-order logic,
fully automatic construction of proofs is in general not feasible due to the enormous size of the search space.
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Abstract. We discuss the use of the Karlsruhe Interactive Verifier (KIV) for the
verification of conceptual and formal specifications of knowledge-based systems. KIV
was originally developed for the verification of procedural programs but it fits well for
verifying knowledge-based systems. Its specification language is based on algebraic
specification means for the functional specification of components and dynamic logic for
the algorithmic specification. It provides an interactive theorem prover integrated into a
sophisticated tool environment supporting aspects like the automatic generation of proof
obligations, generation of counter examples, proof management, proof reuse etc. Only
through this support, verification of complex specifications becomes possible. We provide
some examples on how to specify and verify tasks, problem-solving methods, and their
relationships.
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1 INTRODUCTION
During the last years, several conceptual and formal specification techniques for knowledge-based
systems (KBSs) have been developed (see [FvH94], [Fen95c] for surveys). The advantage of these
modelling or specification techniques is that they enable the description of a KBS independent of its
implementation. This has several advantages. First, such a specification can be used as golden standard
for the validation and verification of the implementation of the KBS. It defines the requirements the
implementation must fulfil. Second, validation and verification of the functionality, the reasoning
behavior, and the domain knowledge of a KBS is already possible during the early phases of the
development process of the KBS. A model of the KBS can be investigated independently of aspects
that are only related to its implementation. Especially if a KBS is built up from reusable components it
becomes an essential task to verify whether the assumptions of such a reusable building block fit to
each other and the specific circumstances of the actual problem and knowledge. Third, integrating the
formal specification into a conceptual model supports understandability of specification as well as
verification (cf. [vHA96], [BeA]).

In [FeG97], we presented a conceptual and formal framework for the specification of KBSs based on
different reusable elements. The conceptual framework is developed in accordance to the
CommonKADS model of expertise (see [SWA+94]) which has become widely used by the knowledge
engineering community. As a consequence of our modularized specification, we identify several proof
obligations that arise in order to guarantee a consistent specification. The overall verification of a KBS
is broken down into different types of proof obligations that ensure that the different elements of a
specification together define a consistent system. Thus a separation of concerns is achieved that
contributes to the feasibility of the verification. The conceptual model applied to describe KBSs is used
to brake the general proof obligations into smaller pieces and makes parts of them reusable. Our
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