

References

[Abe93] M. Aben: Formally Specifying Re-usable
Knowledge Model Components,

Knowledge Acquisition,

 5,
1993.

[AFS96] J. Angele, D. Fensel, and R. Studer: Domain and
Task Modelling in MIKE. In A. Sutcliffe et al. (eds.),

Domain Knowledge for Interactive System Design

,
Chapman & Hall, 1996.

[AWS93] J. M. Akkermans, B. Wielinga, and A. TH.
Schreiber: Steps in Constructing Problem-Solving
Methods. In N. Aussenac et al. (eds.):

Knowledge-
Acquisition for Knowledge-Based Systems

, Lecture Notes
in AI, no 723, Springer-Verlag, 1993.

[BAT+91] T. Bylander, D. Allemang, M. C. Tanner, and J. R.
Josephson: The Computational Complexity of Abduction,

Artificial Intelligence

, 49: 25-60, 1991.
[BeA] R. Benjamins and M. Aben: Structure-Preserving

KBS Development through Reusable Libraries: a Case
Study in Diagnosis. To appear in International Journal on
Human-Computer Studies.

[BeG96] R. Benjamins and C. Pierret-Golbreich:
Assumptions of Problem-Solving Method. In N. Shadbolt et
al. (eds.),

Advances in Knowledge Acquisition

, Lecture
Notes in Artificial Intelligence (LNAI), no 1076, Springer-
Verlag, Berlin, 1996.

[Ben95] V. R. Benjamins: Problem Solving Methods for
Diagnosis And Their Role in Knowledge Acquisition,

International Journal of Expert Systems: Research and
Application

, 8(2):93—120, 1995.
[BFS96] R. Benjamins, D. Fensel, and R. Straatman:

Assumptions of Problem-Solving Methods and Their Role
in Knowledge Engineering. In

Proceedings of the 12.
European Conference on Artificial Intelligence (ECAI-96)

,
Budapest, August 12-16, 1996.

[BrV94] J. Breuker and W. Van de Velde (eds.):

The
CommonKADS Library for Expertise Modelling

, IOS Press,
Amsterdam, The Netherlands, 1994.

[Cha86] B. Chandrasekaran: Generic Tasks in Knowledge-
based Reasoning: High-level Building Blocks for Expert
System Design.

IEEE Expert

, 1(3): 23—30, 1986.
[Dav91] M. David et al. (eds.):

Second Generation Expert
Systems

, Springer-Verlag, 1991.
[EST+95] H. Eriksson, Y. Shahar, S. W. Tu, A. R. Puerta,

and M. A. Musen: Task Modeling with Reusable Problem-
Solving Methods,

Artificial Intelligence

, 79(2):293—326,
1995.

[FeB96] D. Fensel and R. Benjamins: Assumptions in
Model-based Diagnosis. In

Proceedings of the 10h Banff
Knowledge Acquisition for Knowledge-Based System
Workshop (KAW´96)

, Banff, Canada, November 9th -
November 15th, 1996.

[Fen95a] D. Fensel: Assumptions and Limitations of a
Problem-Solving Method: A Case Study. In

Proceedings of
the 9th Banff Knowledge Acquisition for Knowledge-Based
System Workshop (KAW-95)

, Banff, Canada, February 26th
- February 3th, 1995.

[Fen95b] D. Fensel:

The Knowledge Acquisition and
Representation Language KARL

, Kluwer Academic Publ.,
Boston, 1995.

[FeG96] D. Fensel and R. Groenboom: MLPM: Defing a
Semantics and Axiomatization for Specifying the

Reasoning Process of Knowledge-based Systems. In

Proceedings of the 12th European Conference on Artificial
Intelligence (ECAI-96)

, Budapest, August 12-16.
[FeS96] D. Fensel und R. Straatman: The Essence of

Problem-Solving Methods: Making Assumptions for
Efficiency Reasons. In N. Shadbolt et al. (eds.),

Advances in
Knowledge Acquisiiton, Lecture Notes in Artificial
Intelligence (LNAI)

, no 1076, Springer-Verlag, Berlin,
1996.

[FSG+96] D. Fensel, A. Sch

ö

negge, R. Groenboom and B.
Wielinga: Specification and Verification of Knowledge-
Based Systems. In

Proceedings of the 10th Knowledge
Acquisition Workshop (KAW´96)

, Banff, Canada,
November 9-14, 1996.

[KlW87] J. de Kleer and B. C. Williams: Diagnosing
Multiple Faults,

Artificial Intelligence

, 32:97-130, 1987.
[KMR92] J. de Kleer, K. Mackworth, and R. Reiter:

Characterizing Diagnoses and Systems,

Artificial
Intelligence

, 56, 1992.
[Mar88] S. Marcus (ed.).

Automating Knowledge
Acquisition for Experts Systems

, Kluwer Academic
Publisher, Boston, 1988.

[Neb96] B. Nebel: Artificial Intelligence: A Computational
Perspective. In G. Brewka (ed.),

Essentials in Knowledge
Representation

, Springer Verlag, 1996.
[OHS96] K. O’Hara and N. Shadbolt: The Thin End of the

Wedge: Efficiency and the Generalized Directive Model
Methodology. In N. Shadbolt (eds.),

Advances in
Knowledge Acquisition

, LNAI 1076, Springer-Verlag,
Berlin, 1996.

[Pup93] F. Puppe:

 Systematic Introduction to Expert
Systems: Knowledge Representation and Problem-Solving
Methods

, Springer-Verlag, Berlin, 1993.
[Rei92] W. Reif: The KIV-System: Systematic Construction

of Verified Software,

Proceedings of the 11th International
Conference on Automated Deduction

, CADE-92, LNCS
607, Springer-Verlag, 1992.

[Ste90] L. Steels: Components of Expertise,

AI Magazine

,
11(2), 1990.

[SWA+94] A. TH. Schreiber, B. Wielinga, J. M. Akkermans,
W. Van De Velde, and R. de Hoog: CommonKADS. A
Comprehensive Methodology for KBS Development,

IEEE
Expert

, 9(6):28—37, 1994.
[SWB93] A. Th. Schreiber, B. J. Wielinga, and J. A. Breuker

(eds.):

KADS: A Principled Approach to Knowledge-Based
System Development, vol 11 of Knowledge-Based Systems
Book Series

, Academic Press, London, 1993.
[HTW+92] G. van Heijst, P. Terpstra, B. J. Wielinga and N.

Shadbolt: Using Generalised Directive Models in
Knowledge Acquisition. In T. Wetter et al. (eds.),

Current
Developments in Knowledge Acquisition

, LNAI, Springer-
Verlag, Berlin, 1992.

[vHB92] F. van Harmelen and J. Balder: (ML)

2

: A Formal
Language for KADS Conceptual Models,

Knowledge
Acquisition

, 4(1), 1992.
[vdV88] W. van de Velde: Inference Structure as a Basis for

Problem Solving. In

Proceedings of the 8th European
Conference on Artificial Intelligence (ECAI-88)

, Munich,
August 1-5, 1988.

parsimonious explanation. Following our approach we try to
find such assumptions by analysing the open goals in partial
proofs. Here it is natural to start a proof for the conjecture that
the so far established assumptions (

preference, input

, and

select-criterion assumption

) imply the

better-successor
assumption

, which we have shown to be minimal. This proof
attempt with KIV is straightforward and gets stuck in the
following subgoal:

H’

⊂

H

∧

expl

(

H

)

⊆

expl

(

H’

)

→

∃

H’’.

(

H’’

⊂

H

∧

expl

(

H

)

⊆

expl

(

H’’

)

∧

successor

(

H

,

H’’

))

In order to obtain a concise assumption, we strengthen
this goal by demanding that the

H’’

 can be chosen such that

H’

⊆

H’’

.

H’

⊂

H

∧

expl

(

H

)

⊆

expl

(

H’

)

→

∃

H’’.

(

H’

⊆

H’’

⊂

H

∧

expl

(

H

)

⊆

expl

(

H’’

)

∧

successor

(

H

,

H’’

))

Cutting out all subformulas concerned with

expl

 (which is
a natural technique to get simple assumptions), leads to the

successor assumption.

Successor assumption

:

H’

⊂

H

→

∃

H’’

 .(

H´

⊆

H’’

⊂

 H

∧

successor

(

H,H’’

))

Under this assumption the subgoal can be reduced to the
following

Abduction-problem assumption:
H’

⊆

H’’

⊂

H

∧

expl

(

H

)

⊆

expl

(

H’

)

→ expl(H) ⊆ expl(H’’)

Together with the select-criterion assumption we were
now able to prove that hill climbing finds a complete and
parsimonious explanation. The select-criterion assumption
guarantees completeness. The successor and abduction-
problem assumption form a task-specific translation of the
generic better-successor assumption for guaranteeing
parsimonity. Each of the three assumptions restricts different
parts of the required knowledge: the select-criterion, the
successor relation, and the explanation function (and
therefore the preference).

4.7 Monotonic Abduction Problems

The abduction-problem assumption we found is still not very
intuitive. So we continue in strengthening it in order to get a
more concise (but less minimal) assumption. By cutting out
all subformulas containing H’’ (a very simple and similar
technique as before) we can strengthen this assumption to

¬ (H’ ⊂ H ∧ expl(H) ⊆ expl(H’))

This however, would be a very restrictive assumption. A
superset H of a set of hypotheses H’ cannot have the same
explanatory power. We slightly weakened this assumption to

(*) ¬ (H’ ⊂ H ∧ expl(H) ⊂ expl(H’))

which says that a smaller set of hypotheses should not explain
more observations. Assuming it and trying to prove that the
abduction-problem assumption is an implication of it leads to
the even stronger monotonic-abduction-problem assumption

that implies

H’ ⊂ H → expl(H’) ⊆ expl(H)

This assumption imply (*) and the abduction-problem
assumption and shows an interesting link to work on
complexity analysis on abduction. Abduction in its general
definition is an intractable problem class. [BAT+91] analyse
several subclasses of abduction for their complexity. They
prove that with the monotonic-abduction-problem
assumptions it is possible to find a complete and
parsimonious explanation in polynomial time. This
assumption requires that a superset H’ of a hypothesis H
explains also a superset of data:

The monotonic-abduction problems defines a natural
subclass of abduction. For example [KMR92] examine their
role in model-based diagnosis. This assumption holds for
applications, where no knowledge that constrain fault
behaviour of devices is provided or where this knowledge
respects the limited-knowledge-of-abnormal behaviour
assumption. This is used by [KlW87] as minimal diagnosis
hypothesis to reduce the average-case effort of finding all
parsimonious and complete explanations with GDE. A
syntactical way to ensure this assumption (i.e., a
strengthening of this assumption) is the restriction of the
domain theory to Horn clauses constraining only the correct
behaviour of devices, cf. [KMR92]. It is interesting to see
how the very generic better-successor assumption transforms
into such intuitive task-specific assumptions.

5 Conclusions
In [FeS96] we proposed the idea of characterising and
developing PSMs by their underlying assumptions. However,
the problem arose how to find such assumptions. In this
paper, we present the idea of the failed proof and its
implementation by an interactive theorem prover. We
developed and adapted PSMs by introducing assumptions
that close the gap between the task and the competence of a
PSM. Some of the assumptions we reported in section 4
during the adaptation process of the search strategy hill
climbing to abductive tasks, could be integrated into its
definition to form a strong (i.e., task-specific) PSM for
abductive tasks. An interesting aspect that arose during the
paper is the derivation of intuitive task-specific assumptions
from very generic ones using the ontological commitments of
the task.

KIV has shown to be an excellent tool for our purpose. Its
concepts of proof modularity and proof reuse made the
development and adaptation process of PSM, that is highly
iterative and reversive, tractable. The interactive theorem
prover could be used to identify assumptions as open goals in
partial proofs. However, more work has to be done to
integrate conceptual models like the model of expertise of
CommonKADS [SWA+94] directly into the generic module
concept of KIV. Furthermore, proof tactics that make use of
this conceptual model are goals of our current work.

• The parsimonious requirement defines an implicit
preference between the objects. A subset of an object is
preferred if it is still a complete hypothesis. However, this
preference defines only a partial order.

In the following, we will discuss the consequences for hill
climbing when applying it to this new task.

4.2 Reformulating the Task

Reformulating the abduction task as a task to find a global
optimum, needs a preference relation. This preference can
naturally be derived from the parsimonious requirement. We
define

Preference assumption
H 〈 H’ ↔ H’ ⊂ H ∧ expl(H) ⊆ expl(H’)

and therefore get

parsimonious(H) ↔ ¬ ∃ H’ . H 〈 H’

Thus, an explanation is parsimonious if it is a global
optimum with respect to this preference.

4.3 Adapting Hill-Climbing to Partial Orders

The preference defined above is only a partial order. As a
consequence, we have to weaken the knowledge
requirements of the PSM by skipping the totality of the
preference relation (cf. Figure 3). Surprisingly, we could
weaken this knowledge requirement without weakening the
competence of the method. Apparently the set of knowledge
requirements in the original definition of hill climbing in
Figure 2 was not minimal. The totality assumption is not
necessary to achieve the desired competence of finding a
local optimum.

However, the totality assumption was necessary in our
original implementation of hill climbing. The main new
problem when relaxing the totality assumption and working
with partial orders comes from the fact that a best successor
may not be comparable with its predecessor. Our original
operationalization ignored this problem because it relied on
the totality assumption.3 By applying our version of hill
climbing to the new task we found the more generic
operationalization of Figure 2 that has the same competence
with less assumptions. That is, by reusing the method we
could get rid of some very specific assumptions that were
related with an original application but that were not
necessary for guaranteeing the desired competence. Applying
the modular structure of proofs in KIV, only some proofs had
to be redone. Proof reusability and proof modularity are
essential properties of KIV to make the proof process
practicable given the high need of revision and iteration in
developing and adapting PSMs.

Like the operationalization, we also have to modify the
better-successor assumption for ensuring that hill climbing
finds a global optimum in the case of partial orders:

3. With the totality assumption, a best successor is always
comparable with its predecessor because it is comparable with each
object. The original operationalization selected arbitrary one of the
best successors and compared them with its predecessor.

better-successor assumption:
∃ y .(successor(x,y) ∧ y ∈ input ∧ uf(x) 〈 uf(y))
∨ (z ∈ input → ¬ uf(x) 〈 uf(z))

4.4 Expressing Best Explanations as Global
Optima

We have to prove that each global optimum is a complete and
parsimonious explanation. A new assumption about the input
arose during proving that each global optimum is
parsimonious. We require that the input contains all sets of
hypotheses.

Input assumption: input(H)4

It remains to guarantee completeness. The empty set of
hypotheses is parsimonious but in most cases not complete.
Therefore, not every global optimum is a best explanation.
However, we could prove with KIV that each global optimum
that is preferred over a complete explanation is also complete.

Completeness lemma:

complete(H’) ∧ H’ 〈 H → complete(H)

This lemma follows directly from the definition of the
preference in section 4.2.

4.5 Finding Complete Explanations with Hill
Climbing

We have to ensure that a local optimum that is found by hill
climbing is a complete explanation. This follows from the
completeness lemma by additionally requiring that the
selection step delivers a complete explanation.

Select-criterion assumption:
H ∈ select-criterion → complete(H)

Again, we first received an open goal during the proof
process with KIV. It is necessary to know that the local
optimum found by hill climbing is equal to or preferred over
the selected start object of the search process for proving that
such a local optimum is a complete explanation. This
property actually follows from the operational specification
of hill climbing (cf. Figure 2) but it has to be added to the
competence description of hill climbing (cf. Figure 3). The
extended post condition (cf. Figure 3) of hill climbing is
therefore:

post condition
hill-climbing(input) ∈ input
¬∃ o. (successor(hill-climbing(input),o)

∧ o ∈ input ∧ uf(hill-climbing(input)) 〈 uf(o))
∃ x .(x ∈ input ∧ x ∈ select-criterion ∧

(x = hill-climbing(input)
∨ uf(x) 〈 uf(hill-climbing(input))))

4.6 Finding Parsimonious Explanations with Hill
Climbing

We already know that a global optimum is a parsimonious
explanation. Assumptions that ensure that hill climbing finds
a global optimum therefore ensure that hill climbing finds a

4. Because we are only interested in complete explanations we could
weaken the assumption to: complete(H) → input(H).

the task definition by the PSMs competence.

The question remains whether the assumptions are
minimal or whether one is implied by an other. Here,
minimality means that the assumption is necessary to
guarantee that the competence of the PSM implies the task,
formally,

(PSMcompetece → Task) → Assumption

An assumption minimal in the logical sense (i.e., necessary)
has the clear advantage that it maximizes the circumstances
under which it holds. However, besides logical minimality
other aspects like cognitive minimality (effort in
understanding an assumption) or computational minimality
(effort in proving an assumption) should influence the choice
of assumptions.

In fact, we have proven with KIV that the corrected
better-successor assumption is a minimal assumption in the
logical sense. It was also easy to prove with KIV that the
better-successor assumption is weaker2 than the totally-
connected assumption but the former has the disadvantage
that it is not only formulated in terms of domain knowledge
but also in terms of the current case input. Therefore, whether
this assumption holds cannot be proven statically
independent from the actual input. In general, minimizing
(i.e., weakening) of assumptions can be achieved by
analysing their sufficiency proof with KIV and eliminating
aspects that are not necessary for continuing the proof.

The two assumptions that we have introduced yet are
rather trivial. This is a consequence of our simplistic case
study. In the following section we will define a more complex
refinement of the current task and PSM which will lead to
more interesting assumptions.

2. A is weaker than B iff B |= A.

competence hill climbing
sorts

object, uf-value, objects : set of object
functions

uf: object → uf-value
input: objects
hill-climbing : objects → object

predicates
〈 : uf-value × uf-value
successor : object × object

variables x,y,z : uf-value, o : object
axioms

input requirement
∃ o. (o ∈ input ∧ o ∈ select-criterion)

knowledge requirement
¬ (x 〈 x)
 x 〈 y ∧ y 〈 z →x 〈 z
x 〈 y ∨ y 〈 x ∨ x = y

post condition
hill-climbing(input) ∈ input
¬∃ o. (successor(hill-climbing(input),o)
∧ o ∈ input ∧ uf(hill-climbing(input)) 〈 uf(o))

endcompetence

Fig. 3. The competence theory of hill-climbing.

4 Using Hill Climbing to Solve a Class of
Abduction Problems

In the following, we introduce a more complex task
definition. We ask for explanations, where an explanation is
a set of hypotheses that explains a set of observations. That is,
we define a typical abductive problem. We show how the
PSM of section 3 can be adapted stepwise to the newly
defined task by weakening some assumptions and by adding
new assumptions.

4.1 The Task of Finding Complete and
Parsimonious Explanations

[BAT+91] analyse the computational complexity of
abduction. They define an abduction problem by a set of input
data that must be explained and a set of hypotheses that can
be used to construct explanations. A complete explanation
must explain all input data (i.e., observations) and a
parsimonious explanation must be minimal (that is, no subset
of it explains all observations). Figure 4 provides the task
definition for our new example. The goal describes what a
best explanation must fulfil. The input requirement ensures
that there are observations.

The following differences arise when comparing our new
task with the task of section 3 (compare Figure 1):

• What was regarded as an object in section 3 is now a set
of objects (i.e., an explanation is a set of individual
hypotheses).

• The set of objects from which the best one is chosen is
fixed and not provided as input. However, a set of data that
must be explained by a selected object now plays the role
of the input. Only, complete hypotheses are possible
candidates for a best explanation.

task complete and parsimonious explanation
sorts

datum, data : set of datum,
hypothesis, hypotheses : set of hypothesis

functions
expl: hypotheses → data
best-explanation: hypotheses
observables: data

predicates
complete: hypotheses
parsimonious: hypotheses

variables
x : datum
H,H’ : hypotheses

axioms
goal

complete(best-explanation)
parsimonious(best-explanation)
complete(H) ↔ expl(H) = observables
parsimonious(H) ↔

¬∃ H’. (H’ ⊂ H ∧ expl(H) ⊆ expl(H’))
input requirement

∃ x . x ∈ observables
endtask

Fig. 4. The task definition for abduction.

for our running example. The goal describes what an
optimum must fulfil. There must be no other object that has a
higher value for the utility function uf. The requirements
ensure that there is a non-empty input and that the domain
knowledge provides a total order relationship (irreflexive,
transitive, and total).

3.2 The Problem-Solving Method: Finding a
Local Optimum

We decided to choose hill climbing for our example. Hill-
climbing is a local search algorithm that stops when it has
found a local optimum. The main new requirement on
domain knowledge that is introduced by hill-climbing (and by
other local search methods) is the existence of a successor
relationship between the objects that is used to guide the local
search process. The control flow is defined in Figure 2. The
method works as follows: First, we select a start object. Then
we recursively generate the successors of the current object,
select the best successors and compare them with the current
object. If we find a better successor we recursively repeat the
generation step. Otherwise, we return the object, that does not
have better successors. The functions select-one-object,
generate, select-the-bests, and select-one-better correspond
to elementary inference actions in CommonKADS
[SWA+94]. The competence theory in Figure 3 states that hill
climbing is able to find a local optimum of the given set of
objects. With KIV, we proved that our hill-climbing
algorithm in Figure 2 always terminates and that it actually
has the competence to find a local optimum.

3.3 Constructing Assumptions to Close the Gap
between Task and PSM

Linking a task definition with a PSM requires two activities.
First, the different terminologies have to be related (we will

task global optimum
sorts

object1, uf-value, objects : set of object
functions

uf: object → uf-value
global-optimum : object
input: objects

predicates
〈 : uf-value × uf-value

variables x,y,z : uf-value, o : object
axioms

goal
 global-optimum ∈ input
¬∃ o .(o ∈ input ∧ uf(global-optimum) 〈 uf(o)))

input requirement
∃ o . o ∈ input

knowledge requirement
¬ (x 〈 x)
 x 〈 y ∧ y 〈 z → x 〈 z
x 〈 y ∨ y 〈 x ∨ x = y

endtask

1. object is a finite type.

Fig. 1. The task definition global optimum.

not go into this aspect during the paper). Second, we have to
relate the strength of the PSM with the desired goal of the task
definition. Usually assumptions have to be introduced for this
purpose (cf. [Fen95a], [FeS96]). The PSM hill-climbing has
the competence to find a local optimum in a graph. The task
under concern requires to select an global optimum.

A trivial assumption which ensures that hill-climbing
finds a global optimum is to require that each object is
directly connected with each object.

totally-connected assumption: successor(x,y)

In this case, hill-climbing collapses to a complete search
in one step as all objects are successors of each possible start
object. If we improve the selection of the start object (i.e., on
select criterion) we could weaken the assumption to: Every
starting object must be connected with all objects. The
requirement on select criterion would be to provide such an
object.

A less drastic assumption is to require that each object
(except a global optimum) has a successor with a higher
preference.

better-successor assumption:
∃ y .(successor(x,y) ∧ uf(x) 〈 uf(y))
∨ uf(x) = uf(global-optimum)

However, we realised during the proof process that this
assumption is too weak to guarantee the implication of the
task definition by the PSM´s competence. We got the open
goal:

y ∈ input

That is, one has to add an assumption about the input of
the task. The missing piece of the assumption was detected as
a remaining open premise of an interactively constructed,
partial proof with KIV that failed to show the implication of

output := hill-climbing(input)
hill-climbing(input)
begin

current := select-one-object(input);
output := hill-climbing-resursion(current)

end
hill-climbing-recursion(current)
begin

successors := generate(current);
if successors = ∅
then output := current
else

best-successors := select-the-bests(successors)
new := select-one-better(current,best-successors)
if current = new
then output := current
else hill-climbing-recursion(new)
endif

endif
end

select-one-object(x) ∈ x

Fig. 2. The control flow of hill-climbing.

proof, but they are often neither necessary for the proof nor
realistic in the sense that application problems will fulfil
them. Therefore, further work is necessary to find improved
characterizations for these assumptions. This is achieved by a
precise analysis of their role in the completed proof that is
used to retrace unnecessary properties of them.

We provide tool support for this process by adapting the
Karlsruhe Interactive Verifier (KIV) [Rei92] for our purpose.
KIV was originally developed for the verification of
procedural programs but it can be applied to formal
specifications of PSMs in dynamic logic as used by (ML)2

[vHB92], KARL [Fen95b], or MLPM [FeG96]. It is the
interactive character of the underlying tactical theorem
prover of KIV that makes it suitable for hunting hidden
assumptions. Instead of returning with a failure KIV returns
with open goals that could not be solved during its proof
process. Further important support is provided by correctness
management and reuse facilities. As the development process
of the appropriate task definition, PSMs, and assumptions is
an iterative and reversible process, one has to keep track of
(repeated) changes of lemmas, assumptions and proofs.

The content of the paper is organised as follows. In
section 2, a framework for the specification of PSMs is
sketched. In section 3, we discuss our first example. We
introduce the task find a global optimum and the local search
technique hill climbing as PSM. Because hill climbing can
only guarantee to find a local optimum, assumptions have to
be introduced to bridge the gap between task and PSM. We
then discuss in section 4, how the specification of the PSM
and its assumptions must be modified when they get reused
for a more complex task. The task is to find a best explanation
where an explanation is a set of hypotheses. The definition of
hill climbing has to be changed and the assumptions has to be
refined.

2 A Framework for Specifying Problem-
Solving Methods

We identify four different aspects of a specification of KBS:
a task definition defines the problem to be solved by the KBS;
a problem-solving method defines the reasoning process of
the KBS; a domain model describes the domain knowledge of
the KBS; and adapters that are necessary to adjust the
reusable elements to each other and to the specific
requirements of a given application problem.

The task definition specifies the goals that should be
achieved in order to solve a given problem. A task definition
also defines assumptions about the domain knowledge. For
example, a task that concerns the selection of the maximal
element of a set of elements, requires a preference relation as
domain knowledge. Assumptions are used to define the
requirements on such a relation (e.g. transitivity, symmetry,
etc.).

The reasoning of a KBS can be described by a problem-
solving method (PSM). A PSM consists of three parts. First, a
definition of its competence (cf. [vdV88], [AWS93]).
Second, an operational description which defines the

dynamic reasoning process, i.e. describes how the
competence can be achieved in terms of the reasoning steps
and their dynamic interaction (i.e., the knowledge and control
flow). The third part of a PSM concerns assumptions about
the domain knowledge. Each inference step requires a
specific type of domain knowledge with specific
characteristics. Preconditions on inputs are complemented by
complex requirements on available domain knowledge.

The description of the domain model introduces the
domain knowledge as it is required by the PSM and the task
definition. Three elements define a domain model. First, a
meta-level description of properties of the domain
knowledge. This is the counterpart of the assumptions on
domain knowledge made by the other parts of a KBS
specification. In the case of knowledge acquisition these
properties define goals for the modelling process of domain
knowledge. The second element of a domain model concerns
the domain knowledge and case data necessary to define the
task in the given application domain, and necessary to carry
out the inference steps of the chosen problem-solving
method. The third element is formed by external assumptions
that link the domain knowledge with the actual domain (e.g.,
complete fault models, no measurement faults etc.).1

The description of an adapter maps the different
terminologies of task definition, PSM, and domain model and
introduces assumptions that have to be made to relate the
competence of a PSM with the functionality defined by the
task. It relates the parts of a specification to each other and
establishes their relationship in a way that meets the specific
application problem.

The assumptions of the different parts of the specification
of a KBS define their proper relationships and the adequate
relationship of the overall specification with its environment.
During the following, we will provide several illustrations for
these assumptions and a method to find and to construct them.

3 A Simple Case Study: Global Optimum and
Hill Climbing

We take a very simple problem as starting point for
illustrating our ideas. We investigate the task of finding a
global optimum and use the weak problem-solving method
(or search strategy) hill climbing to solve this problem (cf.
[FSG+96]). Additional assumptions have to be provided by
the adapter because hill climbing can only guarantee to find a
local optimum. In the following, we sketch the different
elements of a specification and describe the process of
finding assumptions.

3.1 The Task: Finding an Optimum

The definition of the task introduces the goal and
requirements on domain knowledge necessary to define the
task for a given application. Figure 1 provides the definition

1. These external assumptions can be viewed as the missing pieces
in the proof that the domain knowledge fulfils its meta-level
characterisations.

Abstract

Problem-solving methods (PSMs) for knowledge-
based systems need to make assumptions to provide
effective and efficient problem solving: assumptions
about the scope of the problem they should solve and
assumptions about the domain knowledge they can
use as a resource for their reasoning process. If these
assumptions are made explicit they can improve the
reusability of PSMs by guiding the refinement process
of problem-solving methods for a given application
and by defining goals for the acquisition process of
domain knowledge. However, making the underlying
assumptions explicit is not an easy task. The goal of
our paper is to contribute to solve this problem. The
main idea is to construct mathematical proofs and
analysis of their failure as a systematic means for
formulating assumptions. Tool support is provided by
adapting the Karlsruhe Interactive Verifier (KIV) for
our purpose. KIV is an interactive theorem prover that
returns with open goals if a proof could not be
completed. These open goals can be used to derive the
assumptions we are looking for.

1 Introduction
The concept problem-solving method (PSM) is present in a
large part of current knowledge-engineering frameworks
(e.g. GENERIC TASKS [Cha86]; ROLE-LIMITING
METHODS [Mar88], [Pup93]; KADS [SWB93] and
CommonKADS [SWA+94]; the METHOD-TO-TASK
approach [EST+95]; COMPONENTS OF EXPERTISE
[Ste90]; GDM [HTW+92]; MIKE [AFS96]). Libraries of PSM
are described in [Ben95], [BrV94], [Cha86], and [Pup93]. In
general, a PSM describes which reasoning steps and which
types of knowledge are needed to perform a task. Such a
description should be domain and implementation
independent. PSMs are used in a number of ways in
knowledge engineering: as a guideline to acquire problem-
solving knowledge from an expert, as a description of the
main rationale of the reasoning process of the expert and the

knowledge-based system (KBS), as a skeletal description of
the design model of the KBS, and to enable flexible reasoning
by selecting methods during problem solving.

During the last years, PSMs have become quite successful
in describing the reasoning behavior of KBS. However, there
is still no solid theoretical background in characterising the
precise competence of PSMs and in providing guidelines for
developing reusable PSMs and for adapting these PSMs to
application specific circumstances. Recent work tries to
achieve both by characterising PSMs in terms of their
underlying assumptions (cf. [Fen95a], [BeG96], [FeS96],
[OHS96], [FSG+96], [BFS96], [FeB96], [BeA]).

In general, most problems tackled with KBSs are
inherently complex and intractable (cf. [FeS96], [Neb96]).
Efficient reasoning is only possible by introducing
assumptions. These assumptions are necessary to reduce the
complexity of the reasoning task and the development
process of the reasoning system. They either formulate
requirements on domain knowledge used by the PSM or
restriction on the size of the problem that is solved by the
PSM (cf. [BFS96]).

As a consequence the important question arises of how to
get such assumptions. In this paper, we introduce a
systematic approach for constructing such assumptions. We
propose a method and a tool for this purpose. The main idea
is to use mathematical proofs and analysis of their failure as
a systematic means for forming assumptions. A mathematical
proof that a PSM solves a given problem usually enforces the
introduction of assumptions to close gaps in the line of
reasoning of the proof. It can therefore be viewed as a search
process for hidden assumptions. Gaps that can be found in a
failed proof provide already first characterizations of these
assumptions. An assumption that implies a lemma would
close the gap in the proof is a possible candidate we are
looking for. That is, formulating this lemma as an assumption
is a first step in finding and/or constructing assumptions that
are necessary to ensure that the competence of a PSM is
strong enough to achieve the goals as they are defined by the
task.

Using an open goal of a proof directly as an assumption
normally leads to very strong assumptions. That is, these
assumptions are sufficient to guarantee the correctness of the

 Assumption Hunting as Developing Method for Problem-Solving Methods

Dieter Fensel1 and Arno Schönegge2

1 University of Karlsruhe, Institute AIFB, 76128 Karlsruhe, Germany. E-mail: dieter.fensel@aifb.uni-karlsruhe.de
2 University of Karlsruhe, Institut für Logik, Komplexität und Deduktionssysteme, 76128 Karlsruhe, Germany.

E-mail: schoeneg@ira.uka.de

 In Proceeedings of the
Workshop on Problem-Solving Methods for Knowledge-based Systems at the 15th International Joint
Conference on AI (IJCAI-97), Nagoya, Japan, August 23, 1997.

