

Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-Based System
Workshop (KAW´96)

, Banff, Canada, November 9-14, 1996.
[Nebel, 1996] B. Nebel: Artificial intelligence: A Computational Perspective. In G. Brewka

(ed.),

Essentials in Knowledge Representation

, 1996.
[O’Hara & Shadbolt, 1996] K. O’Hara and N. Shadbolt: The Thin End of the Wedge: Efficiency

and the Generalized Directive Model Methodology. In N. Shadbolt (eds.),

Advances in
Knowledge Acquisition

, LNAI 1076, Springer-Verlag, Berlin, 1996.
[Puppe, 1993] F. Puppe:

Systematic Introduction to Expert Systems: Knowledge Representation
and Problem-Solving Methods

, Springer-Verlag, Berlin, 1993.
[Reif, 1992] W. Reif: The KIV-System: Systematic Construction of Verified Software,

Proceedings of the 11th International Conference on Automated Deduction

, CADE-92,
Lecture Notes in Computer Science (LNCS), no 607, Springer-Verlag, Berlin, 1992.

[Reif, 1995] W. Reif: The KIV Approach to Software Engineering. In M. Broy and S. Jähnichen
(eds.):

Methods, Languages, and Tools for the Construction of Correct Software

, LNCS
1009, Springer-Verlag, 1995.

[Smith & Lowry, 1990] D. R. Smith and M. R. Lowry: Algorithm Theories and Design Tactics,

Science of Computer Programming

, 14:305—321, 1990.
[Schreiber et al., 1993] A. Th. Schreiber, B. J. Wielinga, and J. A. Breuker (eds.):

KADS: A
Principled Approach to Knowledge-Based System Development, vol 11 of Knowledge-Based
Systems Book Series

, Academic Press, London, 1993.
[Schreiber et al., 1994] A. TH. Schreiber, B. Wielinga, J. M. Akkermans, W. Van De Velde, and

R. de Hoog: CommonKADS. A Comprehensive Methodology for KBS Development,

IEEE
Expert

, 9(6):28—37, 1994.
[Steels, 1990] L. Steels: Components of Expertise,

AI Magazine

, 11(2), 1990.
[ten Teije, 1997] A. ten Teije:

Automated Configuration of Problem Solving Methods in
Diagnosis

, PhD thesis, University of Amsterdam, Amsterdam, NL, 1997.
[Terpstra et al., 1993] P. Terpstra, G. van Heijst, B. Wielinga, and N. Shadbolt: Knowledge

Acquisition Support Through Generalised Directive Models. In M. David et al. (eds.):

Second Generation Expert Systems

, Springer-Verlag, 1993.
[van Heijst and A. Anjewerden, 1996] G. van Heijst and A. Anjewerden: Four Propositions

concerning the specification of Problem-Solving Methods. In

Supplementary Proceedings of
the 9th European Knowledge Acquisition Workshop EKAW-96

, Nottingham, England, May
14-17, 1996.

[Wielinga et al., 1995] B. J. Wielinga, J. M. Akkermans, and A. Th. Schreiber: A Formal
Analysis of Parametric Design Problem Solving. In

Proceedings of the 9th Banff Knowledge
Acquisition Workshop (KAW-95)

, Banff, Canada, January 26 - Feruary 3, 1995.
[Wirsing, 1990] M. Wirsing: Algebraic Specification. In J. van Leeuwen (ed.),

Handbook of
Theoretical Computer Science

, Elsevier Science Publ, 1990.

[Bylander et al., 1991] T. Bylander, D. Allemang, M. C. Tanner, and J. R. Josephson: The
Computational Complexity of Abduction,

Artificial Intelligence

, 49, 1991.
[Chandrasekaran et al., 1992] B. Chandrasekaran, T.R. Johnson, and J. W. Smith: Task Structure

Analysis for Knowledge Modeling,

Communications of the ACM

, 35(9): 124—137, 1992.
[David et al., 1993] J.-M. David, J.-P. Krivine, and R. Simmons (eds.):

Second Generation
Expert Systems

, Springer-Verlag, Berlin, 1993.
[de Kleer & Williams, 1987] J. de Kleer and B. C. Williams: Diagnosing Multiple Faults,

Artificial Intelligence

, 32:97-130, 1987.
[de Kleer, 1992] J. de Kleer, K. Mackworth, and R. Reiter: Characterizing Diagnoses and

Systems,

Artificial Intelligence

, 56, 1992.
[Eriksson et al., 1995] H. Eriksson, Y. Shahar, S. W. Tu, A. R. Puerta, and M. A. Musen: Task

Modeling with Reusable Problem-Solving Methods,

Artificial Intelligence

, 79(2):293—326,
1995.

[Fensel & Benjamins, 1996]D. Fensel and R. Benjamins: Assumptions in Model-Based
Diagnosis. In

Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-Based
System Workshop (KAW´96)

, Banff, Canada, November 9-14, 1996.
[Fensel, 1995] D. Fensel: Assumptions and Limitations of a Problem-Solving Method: A Case

Study. In

Proceedings of the 9th Banff Knowledge Acquisition for Knowledge-Based System
Workshop (KAW-95)

, Banff, Canada, January 26 - February 3, 1995.
[Fensel et al., 1996] D. Fensel, H. Eriksson, M. A. Musen, and R. Studer: Developing Problem-

Solving by Introducing Ontological Commitments,

International Journal of Expert Systems:
Research & Applications,

vol 9(4), 1996.
[Fensel & Straatman, 1996] D. Fensel and R. Straatman: The Essence of Problem-Solving

Methods: Making Assumptions for Efficiency Reasons. In N. Shadbolt et al. (eds.),

Advances
in Knowledge Acquisiiton, LNAI

 1076, Springer-Verlag, 1996.
[Fensel & Groenboom, 1997] D. Fensel and R. Groenboom: Specifying Knowledge-Based

Systems with Reusable Components. In

Proceedings of the 9th International Conference on
Software Engineering & Knowledge Engineering (SEKE-97)

, Madrid, Spain, June 18-20,
1997.

[Fensel & Schönegge, 1997a] D. Fensel and A. Schönegge: Assumption Hunting as
Development Method for Knowledge-Based Systems. In

Proceeedings of the Workshop on
Problem-Solving Methods for Knowledge-based Systems at the 15th International Joint
Conference on AI (IJCAI-97)

, Nagoya, Japan, August 23, 1997.
[Fensel & Schönegge, 1997b] D. Fensel and A. Schönegge: Specifying and Verifying

Knowledge-Based Systems with KIV. In

Proceedings of the European Symposium on the
Validation and Verification of Knowledge Based Systems EUROVAV-97

, Leuven Belgium,
June 26-28, 1997.

[Fensel et al., 1997] D. Fensel, E. Motta, S. Decker, Z. Zdrahal: Using Ontologies For Defining
Tasks, Problem-Solving Methods and Their Mappings. To appear in

Proceedings of the
European Knowledge Acquisition Workshop (EKAW-97)

, Sant Feliu de Guixols, Catalonia,
Spain, October 15-18,LNAI, Springer-Verlag, 1997.

[Harel, 1984] D. Harel: Dynamic Logic. In D. Gabby et al. (eds.),

Handbook of Philosophical
Logic, vol. II

, Extensions of Classical Logic, Publishing Company, Dordrecht (NL), 1984.
[Klinker et al., 1991] G. Klinker, C. Bhola, G. Dallemagne, D. Marques, and J. McDermott:

Usable and Reusable Programmin Constructs,

Knowledge Acquisition,

 3:117—136, 1991.
[Marcus, 1988] S. Marcus (ed.).

Automating Knowledge Acquisition for Experts Systems

,
Kluwer Academic Publisher, Boston, 1988.

[Motta & Zdrahal, 1996] E. Motta and Z. Zdrahal: Parametric Design Problem Solving. In

worries that (1) methods specified for one problem type can be applied to other
problems (requiring some renaming) and (2) not only the methods that are
provided for a problem class in the library can be applied to it.

During the paper we used simple examples to make the paper easy to understand. The
simple examples allowed us to present most of the details necessary to follow our
arguments. However this does not at all imply that we designed our framework for
block worlds. Currently we are applying our concept to the family of PSMs for
parametric design that are developed by [Motta & Zdrahal, 1996]. It turns out that it is
quite easy to scale up our approach. For example, propose & revise turns out to be a
loop of two local searches applied in different contexts. One proposes extensions of
design models (i.e., the propose step) and one revises design models in cases when
they are incorrect. So simply put it is a loop of two instantiations of hill climbing. The
different instantiations can be achieved by defining different successor relationships
(one via extension and one via correction of models). A formalization of the problem
definition of parametric design is already provided in [Fensel et al., 1997].

Acknowledgement.

 The paper conceptualizes work that was done together
with Arno Schönegge on specifying and verifying problem-solving methods.
Also I would like to thank Stefan Decker, Enrico Motta and Zdenek Zdrahal
with whom I am currently experimenting in applying the ideas to parametric
design and Rudi Studer and two anonymous reviewers for helpful comments.

References

[Akkermans et al., 1993] J. M. Akkermans, B. Wielinga, and A. TH. Schreiber: Steps in
Constructing Problem-Solving Methods. In N. Aussenac et al. (eds.):

Knowledge-Acquisition
for Knowledge-Based Systems

, Lecture Notes in AI, no 723, Springer-Verlag, 1993.
[Angele et al., 1996] J. Angele, D. Fensel, and R. Studer: Domain and Task Modelling in MIKE.

In A. Sutcliffe et al. (eds.),

Domain Knowledge for Interactive System Design

, Chapman &
Hall, 1996.

[Benjamins, 1995] R. Benjamins: Problem Solving Methods for Diagnosis And Their Role in
Knowledge Acquisition,

International Journal of Expert Systems: Research and Application

,
8(2):93—120, 1995.

[Benjamins & Pierret-Golbreich, 1996] R. Benjamins and C. Pierret-Golbreich: Assumptions of
Problem-Solving Method. In N. Shadbolt et al. (eds.),

Advances in Knowledge Acquisition

,
Lecture Notes in Artificial Intelligence (LNAI), no 1076, Springer-Verlag, Berlin, 1996.

[Benjamins et al., 1996] R. Benjamins, D. Fensel, and R. Straatman: Assumptions of Problem-
Solving Methods and Their Role in Knowledge Engineering. In

Proceedings of the 12.
European Conference on Artificial Intelligence (ECAI-96)

, Budapest, August 12-16, 1996.
[Beys et al., 1996] P. Beys, R. Benjamins, and G. van Heijst: Remedying the Reusability-

Usability Tradeoff for Problem-solving Methods. In

Proceedings of the 10th Banff
Knowledge Acquisition for Knowledge-Based System Workshop (KAW´96)

, Banff, Canada,
November 9-14, 1996.

[Breuker, 1997] J. Breuker: Problems in Indexing Problem Solving Methods. In

Proceeedings of
the Workshop on Problem-Solving Methods during the IJCAI-97

, Japan, August 24, 1997.
[Breuker & Van de Velde, 1994] J. Breuker and W. Van de Velde (eds.):

The CommonKADS
Library for Expertise Modelling

, IOS Press, Amsterdam, The Netherlands, 1994.

[Benjamins, 1995], [Terpstra et al., 1993]. The former deal only with a very limited
aspects of the methods as a method is essentially a description of

how

 to achieve some
goals. The latter assume that adapting a PSM to a given problem is an activity of
decomposing a problem in subproblems and defining control over the solution of the
subproblems (and recursively refining the subproblems). However it was often
reported in the literature that different control regimens can be applied to solve the
same problem and the same control regime can be applied to very different problems
[Breuker, 1997]. Therefore, we think that adapting a control regime is neither the only
nor the central point in adapting a PSM to a given problem. When defining the overall
control schema (i.e., local search, branch and bound, etc.) one mainly refers to
properties of the domain knowledge. For example, only when a useful successor
relation is provided local search can be applied and A* can only be applied if a useful
heuristic estimation function is provided. Besides this, they can be applied to any type
of problem that can be solved by a search process. An important distinction between
[Benjamins, 1995], [Terpstra et al., 1993] and our approach is that [Benjamins, 1995],
[Terpstra et al., 1993] express a PSM immediately in problem-specific terms (like
symptom detection, hypothesis generation, hypothesis discrimination, etc.) whereas
we describe general algorithmic schemas that become instantiated to a specific class of
problem via adapters. Therefore we can discuss these algorithmic schemas of PSMs
independently from specific problems reflecting the fact that the same PSM (or better
the same algorithmic schema) can be applied to different problem classes.

For organizing a library of PSMs we made the following proposals:

• Extending the library by including problem definitions and assumptions necessary
to relate the competence of method with the problems. By including problem
definitions in the library we can use them to select appropriate PSMs as proposed
by [Breuker, 1997]. We argue for inclusion of assumptions within our library
because they are as important as PSMs. Assumptions define the parts of the
problem that cannot be solved by the PSM but must be assumed as given (either
as domain knowledge or as problem restriction [Benjamins et al., 1996]). They
are the complement of the PSM relative to a selected problem. A kind of library
of assumptions for a specific type of problems is described in [Fensel &
Benjamins, 1996].

• Using adapters to relate units of problems, PSMs and assumptions of different
specificity to get rid of the usability-reusability trade-off of [Klinker et al., 1991].

• Defining two orthogonal dimensions for organising such a unified library: (1) the
specificity of problems, PSMs and assumptions (see Fig. 8) and (2) the
algorithmic schema used to derive the PSM (i.e., local search, branch and bound
etc., see Fig. 1).

5

 Current libraries of PSMs [Benjamins, 1995], [Breuker & Van
de Velde, 1994], [Chandrasekaran et al., 1992], [Motta & Zdrahal, 1996], [Puppe,
1993] interweave these two dimensions. As a consequence the literature is full of

5. One reviewer was wondering whether abduction should be solved by local search like we
illustrate in this paper. Especially he makes the point that there are many other search and
optimization techniques. Actually this circumstance is the reason for the second dimension in
our framework that allows different algorithm schemas as core of PSMs.

realizing an implementation and computing an actual solution

. They define a part of
the entire problem for which no implementation has to be provided. Therefore, the
system can be realized more easily and in system runtime this part of the problem does
not need to be computed.

4

In general, there is no distinction between problem specification, assumption
specification and the specification of the competence of a method. They are all
specification units. Only their roles within the entire specification differ. That is, it is
their context that creates their distinction:

• A

problem

 defines a specifications that becomes “realized“ by two other
specification. One of these specifies the part that is actually solved (the
competence of a PSM) and the other specifies the part that is assumed to be solved
(an assumption specification).

• An

assumption

 is a specification that has

no

 realization at all. Its realization is

assumed

 only.

• Finally, the

competence

 of a PSM is a specification that is directly realized by a
module that defines an operationalization. Again this operationalization relies on
a specification defining its knowledge requirements and inferences. Their
realization are either external to the specification or introduce a new level of
hierarchical refinement by being formulated as new problems.

4 Conclusion, Related and Future Work

We have show how to use adapters for developing PMSs and for organizing a library
of PSMs including problem definitions and assumptions. The development process of
PSMs is viewed as a refinement process that:

• introduces ontological commitments used to characterize initial, intermediate and
terminal states of the method;

• uses ontological commitments to specialize the state transitions of a method; and

• introduces assumption to bridge the gap between competence of a method and a
problem definition.

All these refinement were achieved by adding adapters to existing elements. A number
of authors [Beys et al., 1996][van Heijst and A. Anjewerden, 1996] have proposed that
PSMs should be described not only in a domain-independent, but also task-
independent way, so that they can become more broadly reusable. However, there is a
known trade-off between usability and reusability [Klinker et al., 1991]. With our
approach this dilemma disappears. PSMs can either be reused in their generic or more
problem-specific variant. The latter does not modify the former but adds only an
external description to it.

Existing approaches for developing PSMs either stop at the level of the competence of
the methods [Akkermans et al., 1993], [Wielinga et al., 1995], [ten Teije, 1997] or
view PSM development as process of hierarchically refining inference actions

4. See [O’Hara & Shadbolt, 1996] for a discussion of different dimensions of efficiency.

execution of imported operations (knowledge and inferences).

• Finally the competence of a PSM corresponds to the specification of the
functionality of a module.

A distinction between typical development graphs in KIV and our specifications is
introduced by problem definitions and assumptions. Usually in software engineering it
is assumed that the problem that should be solved is identical with the functionality of
the program. However most problems tackled with KBSs are inherently complex and
intractable (cf. [Nebel, 1996], [Fensel & Straatman, 1996]). A PSM can only solve
such problems with reasonable computational effort by introducing assumptions that
restrict the complexity of the problem, or by strengthening the requirements on domain
knowledge. Therefore, a specification of the problem independent from the
specification of the competence as well as the specification of assumptions are
introduced in our context. A method does not have the direct competence to solve the
problem. Only when adding assumptions that limit the problem can this be guaranteed.
The entire problem is therefore decomposed into a part that can be solved by the PSM
and for which an operationalization is provided and a second part of which the solution
is only assumed. This makes quite clear

how assumptions help to reduce the effort of

Fig. 9 Development graphs in KIV.

Specification of Import

program1

Specification of export

program2

inferences & requirements

control

competence

Problem-
solving
method

Assumption

Problem definition

Legend:

specification module used by implemented by

procedures provided in an export specification. It internally describes the algorithmic
realization of these procedures. It uses, through an import specification, operations that
are specified by other specifications (and realized by their modules). Usually a
specification in KIV has the following pattern:

• A specification defines the functionality of operations that are imported by a
module, i.e. by an implementation.

• A module imports some operations und uses them to implement new operations
that are exported.

• A second specification defines the required functionality of the exported
operations. Then a new implementation would use these operations as import.

The left side of Fig. 9 provides the structure of such a typical development graph. The
single specifications are the rectangles in the graph and modules are modelled by the
rhomboid units in the graph. Such a typical development graph corresponds with the
specification and operationalization of a PSM (viewed at the right side of Fig. 9).

• The inference actions are defined in the import specification of the PSM. No
algorithmic realization of the inference action is provided.

• The algorithmic realization of the knowledge requirements is also not part of the
PSM because this aspect is assumed to be covered by the domain knowledge or
by other agents of the entire problem-solving process. Therefore, its realization is
beyond the scope of the specification of the PSM.

• The operationalization of a PSM corresponds to an implementation module. It
describes how a specific competence can be achieved by defining control over the

Fig. 8 Refining PSMs, assumptions, and problem definitions.

hill climbing better neighbour global optimum

set minimizer monotonic minimal set

Problem-solving method Assumption Problem definition

abductive monotony abductive diagnosis

correctness

 (Fig 6)

 (Fig 6)O
nt

ol
og

ic
al

 R
ef

in
em

en
t (Fig 3) (Fig 6) (Fig 7)

(Fig 4)

(Fig 6)method (Fig 5)

3 An Integrated Library of Problem Definitions, Problem-
Solving Methods and Adapters

So far, we have illustrated the stepwise refinement of PSMs. We started with a generic
search strategy that became instantiated to hill-climbing that became later on refined to
set minimizer that became later on refined to a method for abductive problems. In the
same way we refined PSMs we can also refine problem definitions and assumptions
necessary to link PSMs and problem definitions. In [Fensel & Schönegge, 1997a] we
showed

that the monotony assumption is a problem-specific refinement of an
assumption that is necessary and sufficient to prove that hill climbing finds a global
optimum

. Hill climbing can solve the problem of finding a global optimum if we
assume the

better neighbour assumption

, i.e. each entity that is not a global optimum
has a better neighbour. Fig. 7 provides the definition of the corresponding problem and
Fig. 6 of the better-neighbour assumption. Therefore, it is not only possible to refine
PSMs but also problem definitions and assumptions. Fig. 8 summarizes our problem
definitions, assumptions and methods. With simple extensions of the mappings of the
two refinement adapters in Fig. 6 (by defining mappings for terms that were only used
in problem and assumption definitions) we can use them to refine corresponding
problem definitions and assumptions necessary to relate PSMs and problems as we did
in section 2 for PSMs.

The dimension of this refinement is the ontological commitments made by problem
definition, assumptions and PSMs. Notice that this specializations are kept separate via
adapters. Therefore, it is always possible to reuse very specific or very generic entities
from our library. We get an unified library of problem definitions, assumptions, and
PSMs where the refinements have a

virtual

 existence via adapters.

A second dimension of the library are the algorithmic schemas that are used to derive
the PSMs. Instead of local search we can also choose branch and bound or A* as
schemas that define the basic search algorithm of a method.

When organising such a library we have to go into the question of what are the
differences between problems, assumptions, and PSMs and whether these differences
have consequences in organising the library. We realized some significant properties
of these elements when specifying them with KIV. KIV is designed for the
specification and verification of programs. The entire specification of a system can be
split into smaller and more tractable pieces. A specification defines the functionality of
a program using algebraic specification techniques. In addition to specifications, KIV
provides modules to describe implementations. A module defines a collection of

Fig. 7 The specification of the problem finding a global optimum.

Problem global optimum
goal

 global-optimum ∈ input
¬∃ x . (x ∈ input ∧ global-optimum < x)

requirement
¬ (x < x)
 x < y ∧ y < z →x < z

average-case effort of finding all parsimonious and complete explanations with GDE.

2.4 Resume

We discussed four steps of the derivation of a refined PSM for abductive problems
from a generic local search frame via adapters (cf. Fig. 6):

• hill climbing := PSM-refinement-adapter

local search -> hill-climbing

(local search)

• set minimizer := PSM-refinement-adapter

hill climbing -> set minimizer

(hill climbing)

• abductive method := PSM-refinement-adapter

set minimizer -> abductive method

(set
minimizer)

• abductive diagnosis :=
Assumption-adapter

abductive method -> abductive diagnosis

(abductive method)

The first adapter

3

 refines mainly the definition of state transitions and introduces
knowledge requirements that allows the definition of the competence of the method in
terms of finding a local optimum. The second adapter refines the notion of states
(entities) to sets and refine the definition of state transition via defining a successor
relationship between sets. The third adapter adds some simple terminological
mappings that express the method in terms of abduction. Finally, an assumption is
added to guarantee that this methods achieves the goal as given by the problem
definition.

3. For reasons of limited space we do not provide the formal definition of this adapter in the
paper.

Fig. 6 The adapters.

PSM refinement adapter hill-climbing -> set-mimimizer
/* The input set must be correct. */

correct(input)
/* select- start must select the input set. */

select-start(x) = {x}
/* Successors are subsets that contain one element less.*/

successor(x,y) ↔ ∃ z . (z ∈ x ∧ y = x \ {z})
/* We prefer smaller sets if they are still correct. */

x < y ↔ correct(y) ∧ y ⊂ x

PSM refinement adapter set-mimimizer -> abduction-method
correct(x) = complete(x);
input = {h | h is hypothesis};

PSM refinement adapter abduction-method -> abductive diagnosis
H1 ⊆ H2 → expl(H1) ⊆ expl(H2)

Assumption adapter hill climbing -> global optimum
x ∈ input → (∃ y . (y ∈ input ∧ successor(x,y) ∧ x < y) ∨ ¬ ∃ z . (z ∈ input ∧ x < z))

method it is easy to overcome what was viewed as the usability/reusability trade-off of
PSMs [Klinker et al., 1991]. The original version of hill-climbing can be reused for
different problems requiring different kinds of refinement. The combination of hill-
climbing and the set-minimizer adapter can be used for problems that can be expressed
in terms of minimizing sets. While this combined version is less reusable, it is much
more usable for cases it can be applied to. For achieving a problem-specific variant of
a method it is not necessary to change the method itself. Instead, a problem-specific
adapter is added. These adapters can also be piled up (stacked) to increase the problem
specificity of methods. We will show this in the following section where we adapt set
minimizer to abductive diagnosis.

2.3 Abductive Diagnosis

The task of abductive diagnosis receives a set of observations as input and delivers a
complete and parsimonious explanation (see e.g. [Bylander et al., 1991]). An
explanation is a set of hypotheses. A complete explanation must explain all input data
(i.e., observations) and a parsimonious explanation must be minimal (that is, no subset
of it has the same or a greater explanatory power). The goal of the task is such a
complete and parsimonious explanation (see Fig. 5).

The problem-specific refinement of set-minimizer is straightforwards (Fig. 6). The set
of all hypotheses is the set that must be minimized and correctness is defined in terms
of completeness. However we have to introduce assumptions to ensure that the local-
minimal-set found by set-minimizer is a complete and parsimonious explanation. First,
we have to require that the input of the method is a complete explanation. Second,
based on the adapter we can prove that our method set-minimizer finds a set that is
parsimonious in the sense that each subset that contains one element less is not a
complete explanation. However, we cannot guarantee that it is parsimonious in
general. There may exist smaller subsets that are complete explanations. The adapter
has to introduce a new requirement on domain knowledge or an assumption (in the
case that it does not follow from the domain model) to guarantee that the competence
of the PSM is strong enough to achieve the goal of the task. The monotony assumption
(cf. Fig. 6) is sufficient and necessary [Fensel & Schönegge, 1997a] to prove that the
(global) parsimonious of the output of the PSM follows from its local parsimoniality. It
defines a natural subclass of abduction. For example [de Kleer, 1992] examine their
role in model-based diagnosis. The assumption holds for applications, where no
knowledge that constrains fault behaviour of devices is provided or where this
knowledge respects the limited-knowledge-of-abnormal behaviour assumption. This is
used by [de Kleer & Williams, 1987] as a minimal diagnosis hypothesis to reduce the

Fig. 5 The specification of abductive diagnosis.

Problem Abductive diagnosis
goal

goal(x) ↔ complete(x) ∧ parsimonious(x)
complete(x) ↔ expl(x) = observables
parsimonious(x) ↔ ¬∃ x’. (x’ ⊂ x ∧ expl(x) ⊆ expl(x’))

set minimizer adds additional ontological commitments used to characterize
states of the search process.

• The successor relationship is hard-wired into set minimizer. A set is a successor of
another set if it is a subset with one element less. The ontological commitment
used to characterize states is used to refine the definition of state transitions.

• A preference on entities is only defined implicitly. Smaller sets are preferred if
they are still correct.

Set minimizer describes only one of several possible problem-specific adaptations of
hill climbing. Traditionally for each variant the specification has to be re-done, all
termination and correctness proofs of the method have to be re-done, and the method
has to be re-implemented. Our approach provides adapters as means to add the
problem-specific refinement to hill-climbing, however keeping the adaptation
separate. Therefore, the complete specifications, proofs, and implementations of hill-
climbing can be reused. Only the problem-specific aspects have to be specified, proven
and implemented by an adapter. Fig. 6 provides the definition of such an adapter. Its
main proof obligations is to prove that the way the preference is defined fulfils the
requirement on such a relation (cf. [Fensel & Schönegge, 1997b]).

By keeping the problem-specific refinement separate from the generic core of the

Problem-solving method Set minmizer
competence

output ⊆ input,
correct(output),
x ∈ output → ¬correct(output \ {x})

control
output := set-minimizer(input)
set-minimizer(X)

begin
successors := generate(X);
if ¬ ∃ x . (x ∈ successors ∧ correct(x))

then output := X
else

new := select-successors(successors)
set-minimizer(new)

endif
end

inference actions
generate

/* generate creates subsets that contain one element less.*/
x ∈ generate(y) ↔ ∃ z . (z ∈ y ∧ x = y \ {z})

select-successors
/* A selected successor has to be correct. */
∃ x . (x ∈ y ∧ correct(x)) →

(correct(select-successors(y)) ∧ select-successors(y) ∈ y)
input requirement

correct(input)

Fig. 4 The specification of set minimizer.

one element less. This method is obviously a local search method specialized for a
specific type of problems. Set minimizer refines hill climbing with the following
refinements:

• A generic state of hill climbing is characterized as a set in set minimizer. That is,

Problem-solving method Hill climbing
competence

output ∈ input
∃ x . (x ∈ input ∧ select-criterion(x ,input) ∧ (x < output ∨ x = output))
¬∃ x . (successor(output,x) ∧ x ∈ input ∧ output < x)

control
hill-climbing(input)

begin
current := select-start(input);
output := recursion(current)

end
recursion(X)

begin
successors := generate(X);
new := select-successors(X,successors)
if goal(X,new)

then output := X
else recursion(new)

endif
end

inference actions
select-start

/* select-start must select an element of input and uses a selection criterion. */
select-start(x) ∈ x ∧ select-start(x) ∈ select-criterion(select-start(x),x)

generate
/* generate selects input elements that are in successor relation with the current
object.*/
x ∈ generate(y) ↔ x ∈ input ∧ successor(y,x)

select-a-best
/* select-successors selects the current object if no better successors exist or a
successor if a better successor exists. In the latter case the selected successor must
be better than the current object and there need not to be another successor that is
better than the selected successor. */
¬∃ z . (z ∈ {y} ∪ y´ ∧ select-successors(y,y´) < z)
¬∃ z . (z ∈ y´ ∧ y < z) → select-successors(y,y´) = y
∃ z . (z ∈ y´ ∧ y < z) → select-successors(y,y´) ∈ y´ ∧ y < select-successors(y,y´))

goal
goal(x,y) ↔ x = y

requirements
input requirement

∃ x. (x ∈ input ∧ x ∈ select-criterion)
knowledge requirement

¬ (x < x)
 x < y ∧ y < z →x < z

Fig. 3 The specification of hill-climbing.

local search strategy can be described by an initialization and a recursion (see Fig. 2).
Unlike to all other PSMs that will be discussed in this paper we cannot prove
termination of this general algorithmic structure. Therefore, we do not regard it is a
PSMs. Instead it is a starting point for deriving PSMs via refinement.2

2.1 Hill Climbing

A local search strategy is necessarily incomplete because it checks only a subset of the
transitive closure of the successor relationship of an initial node. Fig. 3 provides a
refined specification of a local search algorithm by introducing competence, control,
inferences and the knowledge requirements of hill-climbing. It can be used to find a
local optimum of a set of elements. The proof that the specified algorithm terminates
and has the competence as defined is given in [Fensel & Schönegge, 1997a]. The
specification of hill climbing will be the backbone of all our examples during the
paper. All other refined versions will be achieved by combining hill climbing with
adapters.

Hill climbing refines the generic local search strategy to an algorithm (1) for which
termination can be proven and (2) the competence of the method being defined in
terms of a preference and a successor relation. The output is a local optimal element in
the sense that it does not have a successor that is preferred. However this method is
very generic and can be applied to nearly any type of task with a successor relationship
(a local search structure) and a preference relation. In the next step we will specialize
this method to a method for minimizing sets. We will see that the preference relation
need not to be defined explicitly. It can also be provided implicitly by ontological
commitments used to characterize states and state transitions of the method.

2.2 Set Minimizer

[Fensel & Schönegge, 1997b] present a method called set minimizer that can be used
to find a minimal but still correct subset of a given set. The specification of this method
is provided in Fig. 4. Its only requirement is that the original set is correct. It returns a
correct set which is locally minimal in the sense that there is no correct subset that has

2. What we can prove is that if it terminates its output fulfils its goal.

Local search
current := select-start(input); output := local search(current)
local search(X)

begin
successors := generate(X);
new := select-successors(X,successors)
if goal(X,new)

then output := X
else recursion(new)

endif
end

Fig. 2 The specification of local search.

commitments, it is necessary to add assumptions to close the gap between a method
and a problem. In section 3 it is shown how these methods that search for a local
optimum can be applied to problems that define a global optimum and how this leads
to a refinement of problem definitions and assumptions similar to the refinement of
PSMs. We draw conclusions on how to organise a unified library of methods, problem
definitions and assumptions. Finally, section 4 provides conclusions, related work and
outlines possible directions of future work.

2 Refining Problem-Solving Methods

We start by describing the development process of PSMs with a very generic search
schema. During the following sections this schema will become refined to more
concrete control of the search process and the states it searches through. However, we
do not make a commitment to this top-down like development process. The process
can start at any level and can take the direction of specialization or generalization
because we provide a library containing these generic schemas and their adaptations.
Specialization is achieved by adding an adapter to an existing PSM-adapter
combination and generalization is achieved by deleting an adapter from an existing
PSM-adapter combination.

[Smith & Lowry, 1990] present a theory of search algorithms to support the
transformation of problem definitions into implementations. Fig. 1 shows their
hierarchy of search methods providing local search as an instance of generate&test-
like approaches working on local structures. The general algorithmic structure of a

Fig. 1 Refinement hierarchy of algorithm theories.

Problem Theory
generate & test

Problem Reduction Local Structure
local search
steepest ascent
simulated annealing
closure algorithms

Complementation And/Or-reduction
dynamic programming
branch-and-bound(AO*)
game tree search

And-reduction
divide-and-conquer
simple loops

Or-reduction
global search
binary search
backtrack
branch-and-bound (A*)
conditionals

PSMs, and domain knowledge. Building knowledge-based systems from reusable
elements requires adapters that properly link these elements and adapt them to the
application-specific circumstances. Because these elements should be reusable, they
must abstract from application-specific circumstances and because they are specified
independently from each other there is a need to introduce their mappings. Originally
intended as glue that brings other elements together, we will give adapters a much
more prominent role during this paper. They will play a central role in refining PSMs.
Actually, a refined version of a PSMs is achieved by combining it with an adapter.

The stepwise introduction of adapters can be used to stepwise refine generic PSMs.
This process can be used to develop and to adapt PSMs. More specifically, three
processes are supported by our approach:

• the terminological structure of the states of a method can be refined by
introducing ontological commitments;

• the refined terminological structure in describing states can be used to refine state
transitions of a method; and

• assumptions can be introduced to link the competence of a method with problem
definitions and domain knowledge.

This also leads to a entirely new organisation of a unified library providing problem
definitions, PSMs and assumptions organised at different levels of refinement.

The technical machinery for specifying and verifying our examples is provided by the
KIV approach (Karlsruhe Interactive Verifier) [Reif, 1995]. In KIV, the entire
specification of a system can be split into smaller and more tractable pieces to support
understandability and reuse of the different parts. Each elementary specification
introduces a signature and a set of axioms. The semantics of such a specification is the
isomorphic class of all algebras that satisfy the first-order axioms and that are
generated by the operations indicated in the generation clauses (i.e., loose semantics is
applied [Wirsing, 1990]). In addition to (elementary) specifications, KIV provides
module to describe implementations in a Pascal-like style. A module defines a
collection of procedures provided in an export specification. Internally, the module
describes the algorithmic realization of these procedures. A more detailed discussions
of KIV and most of the proofs our examples rely on are given in [Fensel & Schönegge,
1997b], [Fensel & Schönegge, 1997a].

The content of the paper is organised as follows. In section 2, we discuss the problem-
specific refinement of methods. First, we present the specification of the incomplete
search strategy hill-climbing, a common search strategy for local optima. Then we add
an adapter that transforms the method into a method specialized on minimizing sets.
Here, the search strategy remains the same but the ontological commitments of the
methods become refined. States and state transitions are described with an enriched
vocabulary. A further adapter transforms this method into a method for abductive
diagnosis (by adding additional ontological requirements). Besides adding ontological

1. We used originally the term task definition. However our task definitions define only goals
and requirements and not a way to achieve a goal. Therefore, the term problem definition is more
appropriate, see [Breuker, 1997].

 The Tower-of-Adapters Method for Developing and
Reusing Problem-Solving Methods

Dieter Fensel

University of Karlsruhe, Institute AIFB, 76128 Karlsruhe, Germany.
fensel@aifb.uni-karlsruhe.de, http://www.aifb.uni-karlsruhe.de/WBS/dfe

Abstract. The paper provides three novel contributions to knowledge
engineering. First, we provide a structured approach for the development and
adaptation of problem-solving methods. We start from very generic search
strategies with weak data structures and add adapters that refine the states and
state transitions of the search process and that add assumptions necessary to link
the competence of a method with given problem definitions and domain
knowledge. Second, we show how the usability-reusability trade-off of task-
specific versus task-independent problem-solving methods can easily be
overcome by the virtual existence of specific methods. Third, we provide the
concept of an integrated library combining reusable problem definitions,
problem-solving methods, and adapters.

1 Introduction

Problem-solving methods (PSMs) are used by most of the current knowledge-
engineering frameworks (e.g. Generic Tasks [Chandrasekaran et al., 1992];
Configurable Role-Limiting Methods [Puppe, 1993]; CommonKADS [Schreiber et al.,
1994]; the Method-To-Task approach [Eriksson et al., 1995]; Components of
Expertise [Steels, 1990]; GDM [Terpstra et al., 1993]; MIKE [Angele et al., 1996]).
Libraries of PSMs are described in [Benjamins, 1995], [Breuker & Van de Velde,
1994], [Chandrasekaran et al., 1992], [Motta & Zdrahal, 1996], and [Puppe, 1993].
Despite the strong agreement on the usefulness of PSMs and the large body of
documented PSMs there is still a lack of clear methodological support in developing
PSMs and in (re-)using them. Recent work [Akkermans et al., 1993], [Fensel, 1995],
[Wielinga et al., 1995], [Benjamins & Pierret-Golbreich, 1996], [Benjamins et al.,
1996], [Fensel & Benjamins, 1996], [Fensel et al., 1996], [Fensel & Straatman, 1996],
[Motta & Zdrahal, 1996], [Fensel & Schönegge, 1997a], [ten Teije, 1997], and
[Breuker, 1997] provide in-depth analysis of the essence and main rationales of some
PSMs. Some of these papers also outline general steps that have to be taken in
developing PSMs. However, it still remains rather unclear how to develop PSMs, how
to adapt PSMs to given problems and domain-specific circumstances and how to select
PSMs from a library, i.e. how to organise such a library.

Our contribution is concerned with these three problems. We show a principled way of
developing and adapting PSMs and provide a new way of organising a library of PSMs
to support their reuse. This is mainly achieved by using adapters as a means of
expressing the refinement of PSMs. Adapters were originally introduced in [Fensel &
Groenboom, 1997] to allow the independent specifications of problem definitions1,

To appear in
Proceedings of European Knowledge Acquisition Workshop (EKAW-97), Lecture Notes in Artificial
Intelligence (LNAI), Springer-Verlag, 1997.

