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Abstract. It is well known that mathematicians switch to

di�erent views of a problem when needed. They can represent

a problem at a formal, conceptual, heuristic, algorithmic or

constraint level whenever necessary. To represent Mathemat-

ics within several formalisms has been the subject of many re-

search projects. However, only few knowledge-based systems

manage translations of representations between theories.

The goal of this paper is twofold. One the one hand, we

report on a hybrid knowledge representation and reasoning

system called Mantra. The system provides four di�erent

knowledge representation methods { �rst-order logic, termi-

nological language, semantic networks, and production rules

{ distributed into a three levels architecture. Speci�cations of

mathematical domains of computation and their inherently

related type inference mechanisms can be transformed into

knowledge bases.

On the other hand, we argue that a main requirement when

designing future environments is the capability to cooperate

and to integrate by communicating mathematical knowledge

among/through mathematical servicesbased upon restart-able

computation and reasoning. Therefore, structures represent-

ing intermediate results in any kind of mathematical compu-

tation must also be considered.

1 INTRODUCTION

The design of systems for mathematical problem solving re-

cently emerged form the development of specialized packages

in environments called mathematical assistants. Such envi-

ronments rely on sophisticated AI techniques: reasoning, rep-

resentation and cooperation.

It is well known that mathematicians switch to di�erent

views of a problem when needed. They can represent a prob-

lem at a formal, conceptual, heuristic, algorithmic or con-

straint level whenever necessary. To represent Mathematics

within the theories of several formalisms has been subject of

many research projects. However, only few knowledge-based

systems manage translations of representations between theo-

ries. The aim of the QED project [14] is to build a single, dis-

tributed, computerized repository that rigorously represents

all important, established mathematical knowledge. Such a

repository includes heterogeneous mathematical objects such
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as theorems, equations, de�nitions, algorithms, domains of

computations ...

Because of adequacy and e�ciency of di�erent formalisms,

we argue that systems for representing mathematical knowl-

edge should be hybrid by means of combining several for-

malisms and paradigms. Additional requirements for such sys-

tems are a clear semantics explaining the meaning of the ex-

pressions and decidability of all involved inference problems.

This papers describes such a system which provides four dif-

ferent knowledge representation methods { �rst-order logic,

terminological language, semantic networks, and production

rules { distributed into a three levels architecture.

Although the system is designed for the representation of

mathematical knowledge, to explicitly specify mathematics

in terms of hybrid knowledge representation formalisms is

awkward and inappropriate. We introduce a framework for

specifying mathematical domains of computation and their

inherently related type inference mechanisms as well as for

transforming those speci�cations into knowledge bases of the

knowledge representation system.

There has been a number of works to integrate systems

performing any kind of mathematical computation, i.e. com-

bining computer algebra systems (CAS) in Cas/� and Open-

Math [1], combining theorem provers (TPS) in OMRS [11]

and many others. The integration of CAS and TPS in a com-

mon environment has not yet led to powerful systems. How-

ever, some prototypes were developed which prove the advan-

tages of such a combination, e.g. Analytica [9], interfaces

between Hol and Maple [12], and Isabelle and Maple

[2]. We classify communication and cooperation methods for

such environments in [5]. As a result, a system for represent-

ing mathematical knowledge must also provide capabilities to

represent the contexts and intermediate results of reasoning

and computation. We introduce this knowledge in terms of

reasoning and computation structures.

The paper is organized as follows. The hybrid knowledge

representation system Mantra is introduced in section 2.

Mathematical knowledge is represented by several epistemo-

logical formalisms which can be accessed and combined by

hybrid inference algorithms. A framework for the speci�ca-

tion of mathematical domains of computation is given in sec-

tion 3. The speci�cations can be transformed and are repre-

sented by Mantra. Section 4 sketches structures for coop-

erated mathematical problem solving. Again, the structures

can be represented by labeled graphs of the hybrid knowledge

representation system.
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2 HYBRID KNOWLEDGE
REPRESENTATION

The representation of mathematical objects requires e�cient

and adequate encodings together with powerful inference ca-

pabilities. We designed and implemented Mantra
3
[3, 7, 4],

a system that supports the representation of mathematical

knowledge.

Mantra was implemented according to the following de-

sign principles: (i) several cooperating formalisms are better

than a unique representation formalism, (ii) a clear semantics

explaining the meaning of the knowledge representation lan-

guage is fundamental and (iii) all algorithms involved must

be decidable and reasonably fast. The decidability of all algo-

rithms involved is achieved by adopting a four-valued seman-

tics. The architecture of the system is shown in �gure 1.

RBase Management

Rule Interpreter

Logic Frames SNetsEpistemological Level

Logical Level

Heuristic Level

KBase Management

Inference

Figure 1. The Architecture of the System

The system provides four di�erent representation formalisms

{ �rst order logic, frames, semantic nets and production sys-

tems { which can interact through hybrid inference algorithms

{ assertional reasoning, terminological reasoning, inheritance

with exceptions and heuristic programming and any combi-

nation. The motivation is that several cooperating formalisms

ought to enhance the expressiveness and inference power of

the system. We adopt a knowledge representation approach

consisting of a representational theory, explaining which knowl-

edge is to be represented by which formalisms, and of a com-

mon semantics to de�ne the relationship between expressions

of di�erent formalisms in a semantically sound manner.

Each formalism standing alone is inadequate for represent-

ing mathematical objects. However, hybrid representations

and inferences provide adequacy and e�ciency. The logical

level supports inference mechanisms and knowledge base man-

agement { creation, modi�cation and query. Finally, the heuris-

tic level consists of production rules and Horn clauses provid-

ing capabilities for representing procedural knowledge and ad

hoc rules for the hybrid inferences.

Due to the interconnections among the di�erent epistemo-

logical methods a single data abstraction consisting of di-

rected graphs has been selected. The system has been im-

3 Modular Assertional, semantic Network and Terminological Rep-
resentation Approach

plemented in Common Lisp and uses the object-oriented ex-

tension CLOS to de�ne and manipulate the knowledge bases.

This increases the modularity of the system and makes it

easy to modify. A graphical user's interface allowing the visu-

alization and de�nition of knowledge is provided. It has been

implemented in C with XToolkit.

The soundness of the semantics is mandatory for specifying

mathematical domains of computation. The next section in-

troduces a speci�cation language and its transformation into

Mantra.

3 SPECIFYING MATHEMATICAL
DOMAINS OF COMPUTATION

Although Mantra is designed for the representation of math-

ematical knowledge, to explicitly specify mathematics in terms

of hybrid knowledge representation formalisms is awkward

and inappropriate. Formal speci�cation and query languages

denote and access mathematical domains and objects.

We introduced a framework, Formal, for specifying math-

ematical domains of computation and their inherently re-

lated type inference mechanisms as well as for transform-

ing those speci�cations into knowledge bases of Mantra in

[17, 6].Formal involves an algebraic speci�cation language, a

method to transform speci�cations into knowledge bases and

Mantra as illustrated in �gure 2.

The speci�cation language Formal-� provides modular

and well-structured speci�cations. It is well-suited to spec-

ify parametric and inclusion polymorphisms in a uni�ed way4.

The underlying formalism is based upon the so-called homo-

geneous uni�ed algebras [15] allowing the treatment of sorts

as values.

A speci�cation is represented by a module, e.g. the module

SemiGroup is speci�ed as a basic module possessing the con-

stant SemiGroup. It also possesses the function symbol o that

is represented in the Operation part together with its func-

tionality. The property of the function symbol is expressed by

means of Horn clauses with equality.

(Module SemiGroup

(Define (Constants SemiGroup)

(Operations (o (SemiGroup SemiGroup)

-> SemiGroup))

(Clauses (Imply (: (a b c) SemiGroup)

(= (o (o a b) c)

(o a (o b c)))))))

To achieve the executability of speci�cations they are com-

piled into an executable representation by Formal-�. A spec-

i�cation is transformed into a knowledge base according to its

syntax tree in a bottom up manner. Each transformation step

makes use of a particular transformation rule represented in

the following form:

I

R
0

*
C1

� � �
Cn

The above form is also equivalent to
fC1; � � � ; Cng

` R[I;O]

4 We use the notions of parametric and inclusion polymorphism
according to [8].
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Figure 2. Overview of Formal

The intended meaning of such a rule is the following. I and

O are called input and output scheme respectively. I is part of

a speci�cation in Formal-� and O is the corresponding repre-

sentation of I in the language ofMantra. A program scheme

is a term from W (PL [X), the term algebra over PL [X,

i.e. a term over PL (programming language) containing free

variables from a countable set X of typed scheme parameters.

C1 � � �Cn are applicability conditions which are Horn clauses

over an enrichment of PL[X, i.e. they may contain additional

syntactic and semantic predicates over program schemes.

A transformation rule is correct if it constitutes a valid in-

ference, i.e. if the program schemes I and O are in the seman-

tic relation indicated by R whenever the applicability con-

ditions are valid. The correctness of the transformation of a

speci�cation, i.e. the speci�cation and its corresponding rep-

resentation inMantra are semantically equivalent, is veri�ed

by giving a proof for each transformation rule that there is

a morphism from I to O according to the semantic predicate

R.

The transformation of a speci�cation can be outlined as

follows: The signature is represented by means of frames pro-

vided at the epistemological level of Mantra. The carrier is

a distributive lattice in a uni�ed algebra and is also modeled

by frames. The Horn clauses imposed on the speci�cation can

be represented at the heuristic level of Mantra.

Finally, the role of Formal-� consists in processing queries

given by the user, e.g. to simplify a term or to de�ne the type

of an expression.

4 STRUCTURES FOR
MATHEMATICAL SERVICES

There have been recent e�orts to combine systems for mathe-

matical computing and reasoning [1, 2, 9, 11, 12, 13]. The de-

sign of future environments for mathematical problem solving

will include algorithmic and logical services. A formal speci-

�cation of mathematical services is given in [13] consisting of

systems together with interfaces for restart-able computation

and reasoning. Consequently, structures representing interme-

diate results in any kind of mathematical computation must

also be considered. This section is restricted to the aspects of

a suitable representation of structures. [13, 5] describe coordi-

nation and cooperation of communicating structures among

mathematical services.

The formal speci�cation of structures for the representa-

tion of derivations and application of algorithms are based

on two kinds of theories. Reasoning theories are de�ned in

[11] to consist of a sequent system Ssys = hS; C; j=; I; [ ]i, a
set of identi�ers Id and a rule set ~r 2 Rset[Ssys; Id]. Com-

putation theories are introduced in [13] as an object sys-

tem OSys = hO;C; j=; I; [ ]i and a set of named algorithms

~a 2 Algs[OSys; Id]. Sequents and objects allow the use of

schematic variables and can be instantiated.

By extending notions and notations given in [11] we de�ne

reasoning and computation structures as labeled graphs con-

sisting of edges and two kinds of nodes. The nodes are labeled

by their corresponding sequents or objects and justi�cations

or explanations respectively. To enable vertical 
exibility the

explanations and justi�cations may contain nested reasoning

structures together with an instantiation. This enables to nest

structures within others to achieve better presentations and

readability.

Let RT = hSSys; Id; ~ri and CT = hOSys; Id; ~ai be arbitrary
but �xed reasoning and computation theories. A basic struc-

ture consists of two kinds of nodes and edges together with

the corresponding labeling maps. A basic reasoning struc-

ture rsI is illustrated in �gure 3. The labeling of the se-

quent nodes was omitted because of readability. Figure 4 illus-
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trates the graph of a basic computation structure without con-

straints. The structure represents the computation of a pred-

icate SquareFree by executing three algorithms. Reasoning
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Figure 4. Parts of a computation structure csI

and computation structures can be instantiated, generated

and manipulated by primitive operations. They are given in

[11] and [13] respectively as well as theorems about reacha-

bility, instantiation of derivation, elimination of nesting and

derivation of trees. The structures can be represented as di-

rected graphs in Mantra.

5 CONCLUSION AND FURTHER
RESEARCH

This paper deals with the representation, speci�cation and

communication of mathematical knowledge. We illustrate a

hybrid system which is well suited for the representation of

mathematical knowledge because of the decidability of all in-

ference problems and its capability to combine several repre-

sentation paradigms. A framework for specifying mathemati-

cal domains of computation and their related type inference

mechanisms can be transformed into the hybrid system. Fi-

nally, we argue that future systems for mathematical knowl-

edge representation must be capable to manage and represent

structures for cooperative mathematical problem solving.

We designed and implemented interfaces along the ideas

presented in this paper. The combination of the automated

theorem prover Dtp and the CAS Magma gives solutions

to mathematical problems which were unsolvable by a CAS

when standing alone. Another interface between the tactical

theorem prover Isabelle andMaple was implemented by ex-

tending the simpli�er of Isabelle by new kinds of rules to call

external functions of the CAS. The interactive proof involves

computation structures with only one algorithm application.

The semantic of the interaction is given in [2].

Among the work in progress is the development of an in-

terface between the interactive proof system Imps and the

CAS Calvin
5which allows restart-able and incremental ap-

plication of algorithms by managing contexts. They can be

used to guarantee correctness of computations, e.g. request-

ing the context of n when integrating xn.
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