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Abstract. Remote sensing can help to derive turbulent fluxes in the atmosphere even if the 
remote sensing technique used itself is not able to resolve turbulent fluctuations. Turbulent 
fluxes are important components of atmospheric energy and substance budgets and they play a 
dominant role in the surface-atmosphere exchange. Apart from high-resolution in situ 
measurements it is difficult to determine them. This paper presents an inverse method to derive 
a regionally-averaged vertical turbulent flux of methane from the surface into the atmospheric 
boundary layer. The determination of aggregated surface emission fluxes of methane from an 
agricultural area in Southern Germany on an intermediate scale between the local and the 
regional scale is based on using a boundary layer budget method combined with surface-based 
acoustic remote sensing of the mixing-layer height with a sodar. The order of magnitude of the 
resulting methane emission fluxes coincide well with the national methane emission inventory. 

1.  Introduction 
The supervision of the emission rates of greenhouse gases has become an important task for all nations 
complying with the Kyoto Protocol. This task is difficult if the sources are not well-known or if the 
sources are diffuse without fixed boundaries. One method to derive such diffuse emission fluxes is to 
measure the concentration of the emitted substance in question upwind and downwind of the supposed 
emission source and then – afterwards – to calculate the emission source strength via an inverse (i.e. 
backward) dispersion modelling ([1], [2]). 

If the diffuse emission takes place into a well-defined volume of air then the emission could be 
easily computed from the concentration increase within this air volume by a residual technique ([3], 
[4]). Such a well-defined air volume could be the air underneath a nocturnal near-surface inversion. 
The problem is then shifted to the task to monitor the height of this inversion. Here, remote sensing 
can be a good tool to do so ([5], [6], [7], [8]). 

In principle, different methods are available for the remote sensing of the mixing-layer height and 
nocturnal inversions. In [8] and [9] the abilities of a sodar and a ceilometer have been demonstrated. 
Here, a sodar was available as remote sensing device to monitor the height of the nocturnal inversion. 
The methane concentrations have been measured by a near-by surface-based in-situ instrument. This 
paper will describe in more detail the residual technique and will show the feasibility of this remote 
sensing-based method with an example already sketched in [10]. Section 2 shortly introduces the data, 
section 3 presents the residual technique, and section 4 displays some results. 
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2.  Data 
The data have been taken in the framework of the ICAROS NET project in May 2003 in Southern 
Germany. The ICAROS NET was designed to deliver mixing-layer height and air quality data for the 
intercomparison with satellite data (see [11] for an evaluation of the correlation between air pollution 
and mixing-layer height from this project). The methane concentrations have been measured with 30 
min resolution by a HORIBA APHA-350E HC analysator in Maisach west of Munich in a few metres 
height above ground. The sodar was a three-antenna METEK DSDR3x7 Doppler sodar with a 
maximum range of 1300 m which was operated with 30 m vertical resolution and 10 minutes time 
resolution. The spatial distance between the two instruments was about 2 km. The measurement site 
was an essentially flat rural area with a few isolated pieces of forest. Munich is situated about 25 km 
east of the site. Between the two instruments was the short-cut meadow of a no longer used military 
airfield. 

3.  Principle of the residual method 
Let e be an atmospheric property – here the concentration of the greenhouse gas methane - and v  the 
vector of the three-dimensional motion, and let us denote the mean quantity by an overbar ( ) and the 

deviation from this mean by a prime (‘). Then ve   is the mean flux of the property e and 've′  the 
turbulent (sub-synoptic) flux of this property. The actual flux of the property e therefore is the sum out 
of two parts: 
 

''veveve +=        (1) 
 

In areas – like those close to the lower boundary of the atmosphere - where mean vertical motions 
are negligible vertical transports of any property are completely governed by turbulent fluxes of this 
property. Basis of all residual techniques is the continuity equation for an atmospheric property e that 
has sources Q and/or sinks R in the volume of interest V.  
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By the virtue of the Gauss theorem the first volume integral on the right-hand side of (2) can be 

replaced by an integral over the surface S surrounding this volume (vn is the velocity component 
perpendicular to this surface). 
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Following (1) we can rewrite the right-hand side of (3). Hereby we imply that the spatial 

dimensions over which the integrals are computed are much larger than the spatial scale designed by 
the overbar. 
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Putting (2) to (4) together we can solve for the integral over the turbulent fluxes nve ′′  through the 

surface enclosing the volume of interest: 
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Neglecting horizontal turbulent fluxes, which are usually much smaller than their respective mean 

fluxes, denoting the vertical wind component by w and introducing a surface flux surfwe ′′  we get for 
the vertical turbulent flux through the horizontal surface S1 at the top of the volume V: 
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4.  Determination of spatially aggregated surface fluxes 
Imagine now an atmospheric boundary layer over an area with inhomogeneous land use patterns, 
which is covered by a thermal inversion that suppresses all turbulent motions at the height of the 
inversion. In this case, the left-hand side of (6) would be zero. In this case equation (6) can be 
evaluated in a residual way ([3], [4]). If we further assume that horizontal advection can be neglected, 
then the second term on the right-hand side of (6) vanishes, too. The same applies to the fourth and the 
fifth term on the right-hand side if we stipulate the absence of any sources and sinks within the 
boundary-layer air. We then get: 
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This means that a spatially aggregated surface flux of a property e into the atmospheric boundary 

layer can be determined from the increase of the density of e within the boundary-layer air in a volume 
 if the boundary layer is horizontally homogeneous in the respect that horizontal 

advection is negligible and if it is covered by an inversion in a known height z. Above the height z we 
assume to have background concentrations of methane. If the inversion moves upward this would 
mean entrainment of air with this background concentration from above. We will evaluate (7) for the 
time from 10 p.m. to 6 a.m. During this time the inversion will be in its lowest position (see Fig. 2, 
especially in the night from 23 May to 24 May and the following one). Therefore we will neglect 
entrainment when evaluating Eq. (7) in this paper. A possible imbalance in Eq. (7) may be given by 
the measurement errors for the density of the property e and the height of the volume z, the correctness 
of the assumption of negligible horizontal advection, and the correctness of the assumption of perfect 
vertical mixing in the layer below the inversion. Probably the last point has the largest influence on the 
result. The absolute value of the methane concentration is not really important, only the nocturnal 
increase has been used. This increase is believed to be correct with a few percent. The precision of the 
height z from the sodar data is limited by the vertical resolution used during the sodar operation. Thus 
the lowest height may be in error by up to 30%. With increasing height z this error decreases linearly. 
Therefore, finally, the methane surface flux values may be in error of about 50%. 

zSV surf ⋅=

The algorithm used here for the determination of the mixing layer height z from sodar data ([7], 
[8]) searches for: 

• the height of a turbulent layer (H1) characterised by high acoustic backscatter intensities R(z) 
due to thermal fluctuations (therefore having a high variance of the vertical velocity 
component σw),  

• several lifted inversions (H2_n) characterized by secondary maxima of acoustic backscatter 
due to a sharp increase of temperature with height and simultaneously low σw, and  
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• the height of a surface-based stable layer (H3) characterised by high backscatter intensities 
due to a large mean vertical temperature gradient starting directly at the ground and having a 
low variance of the vertical velocity component.  

Details for the determination of H1 and just one lifted inversion H2 have been described in [7]. In 
extension to the method described in [5] the variance of the vertical velocity component is used here 
as a second variable in addition to the acoustic backscatter intensity. Acoustic remote sensing by a 
SODAR also yields wind fields that in principle could be used for determination of the mixing layer 
height, too. Because the wind information above the inversion is not regularly available from SODAR 
measurements, wind data have not been included into the scheme for the determination of the mixing 
layer height. 

The height H1 corresponds to a sharp decrease of the acoustic backscatter intensity R(z) with 
height z usually indicating the top of a turbulent layer: 
 

H1 = z, if (R(z) < 88 dB and R(z+1) < 86 dB and R(z+2) < 84 dB).  (8) 
 
The dB values are derived from an arbitrary scale because the received acoustic backscatter 

intensities from a SODAR cannot be calibrated. Therefore, the R(z) values are specific for the type of 
SODAR used. Therefore, the numbers in (8) can be taken for illustration purposes only.  

Elevated inversions are diagnosed from secondary maxima of the backscatter intensity that are not 
related to high turbulence intensities. For elevated inversions increase in backscatter intensity below a 
certain height z = H2 and a decrease above is stipulated while the turbulence intensity is low: 
 

H2_n = z, if (∂R/∂z|z+1 < 0 and ∂R/∂z|z-1 > 0 and σw < 0.70 ms-1)  (9) 
 

for n = 1, …, N. In [8] N was chosen to be five. Here, for the boundary-layer budget method, N=1 
is sufficient. The determination of the height of the stable surface layer H3 is started if the backscatter 
intensity in the lowest range gates is above 105 dB while σw is smaller than 0.3 ms-1. The top of the 
stable layer H3 is at the height where either the backscatter intensity sinks below 105 dB or σw 
increases above 0.3 ms-1. 
 

H3 = z, if (R(z) > 105 dB and R(z+1) < 105 dB and σw(z) < 0.3 ms-1 )   
or if (σw(z) < 0.3 ms-1 and σw(z+1) > 0.3 ms-1 and R(z) > 105 dB)  (10) 

 
The dB values in (10) are given for the same illustrative purpose as in (8). The search for H1 to H3 

can be integrated into one search algorithm. If a surface-based stable layer with height H3 has been 
detected, the search for the first height H2_1 is started at the first range gate above H3, otherwise it 
starts at the lowest range gate. The search for elevated inversion is stopped when N elevated 
inversions have been found or the highest range gate of the available data has been reached. 

The σw values used in (9) and (10) have been determined by optimizing the automatic application 
of the detection algorithm. In doing so it turned out that no lifted inversions occurred with a variance 
σw lower than 0.7 ms-1 and that the variance σw in nocturnal stable surface layers was below 0.3 ms-1. 
The first σw threshold made it possible to distinguish between inversions and elevated layers of 
enhanced turbulence. The latter σw threshold made it possible to differentiate between nocturnal stable 
surface layers and daytime super-adiabatic surface layers although both types of surface layers yield 
more or less the same level of backscatter intensity. Finally the mixing-layer or inversion height z 
from the acoustic remote sensing is determined as the minimum of H1, H2_1, and H3: 
 

z = min (H1, H2_1, H3)      (11) 
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An example for the application of (7) together with (11) is given here from data from a 
measurement campaign from 13 to 30 May 2003 which took place west of Munich, Germany. In 
contrast to [3] and [4], in the dataset used here the most important parameter in (7), the mixing-layer 
height z, is known continuously from surface-based acoustic remote sensing with a sodar.  

 

Figure 1. Variation of the near-surface concentration of methane (in ppm) in a rural area west of 
Munich during the week from May 20 to May 26, 2003. 

 

 

Figure 2. Fig. 1, but for the mixing-layer height derived from surface-based acoustic remote sensing 
(in m). 
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Fig. 1 shows a part of the time series of the near surface concentration of methane. It is remarkable 
in this time series that the concentration always increased in the evening and in the night and that it 
then decreased again during the next day. Apart from slightly changing wind speeds the depth of the 
nocturnal stable surface layer seems to be the most important factor controlling these concentration 
increases in the night. Fig. 2 displays the variation of the mixing layer height derived from sodar data 
(hourly values) for the same time period. In the nights to May 24 and 25 the mixing-layer heights took 
their lowest values and remained at these low values for six (May 25) to twelve (May 24) hours. 
Consequently the nocturnal increase was largest in these nights. Fig. 3 illustrates the overall 
correlation between the data shown in Figs. 1 and 2. There is a clear relation showing increasing 
methane concentrations with decreasing inversion height z although the squared regression coefficient 
is low due to the large scatter of the data. Therefore, for the further analysis we will concentrate on the 
overall nocturnal increase of the methane concentration over eight hours (roughly from 10 p.m. to 6 
a.m.) and compare this increase to the mean MLH for the same period. 

 

 

Figure 3. Overall correlation between the methane concentration and MLH based on half-hourly 
values for the period 10 May to 30 May 2003. A linear regression line is plotted and the equation for 

the regression line is given. 
 
We now assume that the methane concentrations are equally dispersed within the shallow nocturnal 

boundary layer and that the measured mixing-layer height is representative for the region. We use (7) 
to convert the measured methane concentrations into spatially aggregated surface methane emission 
rates. The result is displayed in Fig. 4 for the whole measurement period of two weeks. A mean 
mixing-layer height for each night has been derived from the data shown in Fig. 2 and has been related 
to the mean nocturnal rate of increase in the methane concentration. The array of hyperbolae in Fig. 4 
indicates emission rates which would explain the assumed correlation between the concentration 
increase and the mixing-layer height if the adopted conditions would last for about eight hours. It turns 
out that most data points lie between 0.1 and 1 µg/(m2 s). If one assumes that vertical mixing takes 
place within one hour (from the definition of the term mixing-layer adopted in [6]) then moderate 
horizontal winds of 3 to 5 m/s would lead to horizontal transports of 11 to 18 km during this hour. 
From this estimation it can be inferred that emission rates calculated with this boundary-layer budget 
scheme are representative for an area of about 15 by 15 km2. 
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The emission rate of 0.1 to 1 µg/(m2 s) can be compared to the total methane emissions in the 

Federal Republic of Germany which is 2.2 1018 µg per year ([12]). Normalized to the area of 3.57 1011 
m2 this results in an average German methane emission rate of 0.2 µg/(m2 s). Two thirds of these 
emissions ([12]) are supposed to be from the agricultural sector (i.e. 0.13 µg/(m2 s). Since the 
measurements above have been made in a predominantly agricultural area, values a bit higher than the 
national average agricultural emission rate, as displayed in Fig. 4, can be regarded as realistic. On the 
other hand, incomplete vertical mixing in the nocturnal stable surface layer below the inversion would 
cause – under the assumptions used here - higher values emission values than the true value. Thus, 
some part of the higher emission rate found here could be due to incomplete vertical mixing. Seasonal 
variations in the methane emissions have been disregarded in this comparison. 

 

Figure 4. Correlation between the nocturnal increase of the near-surface methane concentration (x 
axis, in ppb) and the nocturnal mean mixing-layer height (y-axis, in m) in a rural area west of Munich 
for 18 nights between May 13 and May 30, 2003 (dots). Curves give mean emission rates for constant 

conditions over about eight hours. 

5.  Conclusions 
The feasibility of remote sensing to help to derive aggregated diffuse emission fluxes from larger areas 
has been demonstrated. In-situ measurements of such turbulent fluxes in the free atmosphere are 
difficult. Therefore other methods had to be developed to monitor turbulent fluxes. Naturally, these 
methods are indirect ones based on some sort of inversion algorithms. Here, a residual technique (or 
budget method) has been presented in chapters 2 and 3. Remote sensing of the mixing-layer height can 
deliver the most important parameter which is needed to apply successfully the nocturnal boundary-
layer budget method addressed in chapter 3. 

The acoustic remote sensing technique alone is probably sufficient as long as the heights of 
nocturnal inversions have to be determined. If inversion or the mixing-layer heights during daytime 
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are to be monitored the vertical range of a sodar can be insufficient, especially in spring and summer. 
In this case it is advisable to run a ceilometer in parallel to the sodar. The combined evaluation of both 
remote sensing devices can yield a quite complete picture of the vertical structure of the atmospheric 
boundary layer ([11]). 

A good knowledge and a full understanding of the vertical turbulent fluxes in the atmosphere is a 
prerequisite for the assessment of air-surface exchange and regional and global energy budgets. In 
future, both the development of ground-based remote sensing and of budget methods has to be 
continued in order to further advance reliable weather and climate prediction techniques.  
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