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Abstract. Urban air quality assessment requires the knowledge of the temporal and spatial 
structure of the mixing-layer height (MLH), because this variable controls the vertical space 
for rapid mixing of near-surface pollutants. Because MLH is a consequence of vertical 
temperature and moisture profiles in the lower atmosphere, remote sensing is a suitable tool to 
monitor MLH. Two ceilometers, a Vaisala LD40 and a Vaisala CL31, have been run for many 
months in the German city of Augsburg to observe the vertical aerosol distribution. Wind and 
temperature profile information have been obtained for the same period from sodar 
observations. This paper compares the MLH determined from the optical backscatter intensity 
received by the two ceilometers among each other and with the MLH derived from the acoustic 
backscatter intensity and the variance of the vertical wind component from sodar 
measurements. 

1.  Introduction 
The mixing layer height (MLH) is assumed to be a key parameter for the characterisation of air 
pollution, because this variable controls the vertical space for rapid mixing of near-surface pollutants. 
The determination and modelling of the MLH has therefore found considerable interest in the recent 
decade [1], especially in urban meteorology. With today’s availability of ground-based remote sensing 
devices for monitoring the structure of the atmospheric boundary layer (ABL) it has been shown that 
the ABL sometimes exhibits multiple layering (e.g. internal boundary layers, near-surface inversions 
and residual layers at night-time and in the morning hours)[2]. It was demonstrated that the lowest 
stable layer or inversion limits the vertical exchange of primary pollutants emitted at or near the 
surface [3] and thus controls the near-surface pollutant concentrations. Acoustic remote sensing has 
also been used to derive climatologic statistics of MLH for towns ([4], [5]) and wind and turbulence 
profiles over towns [6]. Multiple inversions within a few hundred meters above ground have been 
detected both with optical and acoustic remote sensing in an Alpine valley [7]. MLH information is 
also necessary for special kinds of satellite data interpretation, e. g. the retrievals of optical depths for 
the particle concentration near the surface [8]. 
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MLH is supposed to vary on the regional scale due to the weather conditions with smaller 
variations due to land surface properties types. Therefore it is interesting to analyze whether a town 
like Augsburg (about 265 000 inhabitants in 2007) influences and modifies MLH. Augsburg is 
situated about 60 km west-north-west of Munich in a rural area on the river Lech. The Lech is flowing 
north from the Alps (about 100 km south of Augsburg) towards the Danube in a shallow valley, which 
is about 10 km wide and about 100 m deep. Under synoptically calm conditions with weak pressure 
gradients we observe light winds from the south at night and from the north to north east at daytime. 
At the presence of stronger pressure gradients the winds do not deviate much from the large-scale 
synoptic winds. Prevailing wind direction of such cases is from the south west. 

For the investigation two ceilometers were placed at the northern edge of the town, in the town 
centre, and the sodar at the southern edge of the town. The investigation is complicated by the fact that 
two different ceilometers have been used in this measurement experiment. Therefore, in a comparison 
experiment, all three remote sensing instruments have been situated side by side for four weeks. The 
enhancement of the methodology for the determination of MLH from an integration of these different 
remote sensing methods is a further objective of this experiment. 

The paper presents results and conclusions from this intercomparison exercise. 

2.  Methodology 
In the following subsections we will describe the algorithms with which the MLH is derived from 
ground-based remote sensing data. We will denote with the letter H and an attached number certain 
derived heights which are related to inversions and the MLH; while we will use the variable z to 
denote the normal vertical coordinate. 

2.1.  Acoustic detection of MLH 
Beyrich [9] has listed possible ways to analyze MLH from acoustic backscatter intensities measured 
by a sodar. This algorithm has been enhanced in [4] by simultaneously using acoustic backscatter 
intensity and the variance of the vertical velocity component σw. In [7] the algorithm has been 
extended for the detection of multiple inversions present simultaneously. The algorithm determines 
(Figure 1): 

• the height of a turbulent layer (H1) characterised by high acoustic backscatter intensities 
R(z) due to thermal fluctuations (thus having a high σw),  

• several lifted inversions (H2_n) characterized by secondary maxima of acoustic backscatter 
due to a sharp increase of temperature with height and simultaneously low σw, and  

• the height of a surface-based stable layer (H3) characterised by high backscatter intensities 
due to a large mean vertical temperature gradient starting directly at the ground and having 
a low σw.  

The mixing layer height (MLH) is defined as the minimum of the heights H1, the lowest H2 (i.e. 
H2_1), and H3. Acoustic remote sensing by a SODAR also yields wind fields that in principle could 
be used for determination of the mixing layer height, too. Because the wind information above the 
inversion is not regularly available from SODAR measurements, wind data have not been included 
into the scheme for the determination of the mixing layer height. 

The height H1 corresponds to a sharp decrease of the acoustic backscatter intensity R(z) with 
height z usually indicating the top of a turbulent layer: 

 
H1 = z, if (R(z) < 88 dB and R(z+1) < 86 dB and R(z+2) < 84 dB).   (1) 

 
The dB values are derived from an arbitrary scale because the received acoustic backscatter 

intensities from a SODAR cannot be calibrated. Therefore, the R(z) values are specific for the type of 
SODAR used. Therefore, the numbers in (1) can be taken for illustration purposes only.  

14th International Symposium for the Advancement of Boundary Layer Remote Sensing IOP Publishing
IOP Conf. Series: Earth and Environmental Science 1 (2008) 012027 doi:10.1088/1755-1307/1/1/012027

2



 
 
 
 
 
 

Elevated inversions are diagnosed from secondary maxima of the backscatter intensity that are not 
related to high turbulence intensities. For elevated inversions an increase in backscatter intensity 
below a certain height z = H2 and a decrease above is stipulated while the turbulence intensity is low: 

 
H2_n = z, if (∂R/∂z|z+1 < 0 and ∂R/∂z|z-1 > 0 and σw < 0.70 ms-1)    (2) 

 
for n = 1, …, N. In [7] N was chosen to be five. The determination of the height of the stable 

surface layer H3 is started if the backscatter intensity in the lowest range gates is above 105 dB while 
σw is smaller than 0.3 ms-1. The top of the stable layer H3 is at the height where either the backscatter 
intensity sinks below 105 dB or σw increases above 0.3 ms-1. 

 
H3 = z, if (R(z) > 105 dB and R(z+1) < 105 dB and σw(z) < 0.3 ms-1 ) 

                             or if (σw(z) < 0.3 ms-1 and σw(z+1) > 0.3 ms-1 and R(z) > 105 dB)  (3) 
 
The dB values in (3) are given for the same illustrative purpose as in (1).  
The search for H2 to H3 can be integrated into one search algorithm. If a surface-based stable layer 

with height H3 has been detected, the search for the first height H2_1 is started at the first range gate 
above H3, otherwise it starts at the lowest range gate. The search for elevated inversion is stopped 
when N elevated inversions have been found or the highest range gate of the available data has been 
reached. 

The threshold values for σw used in (2) and (3) have been determined by optimizing the automatic 
application of the detection algorithm. In doing so it turned out that no lifted inversions occurred while 
the variance σw was lower than 0.7 ms-1. Thus this threshold made it possible to distinguish between 
inversions and elevated layers of enhanced turbulence. Further, the variance σw in nocturnal stable 
surface layers was always below 0.3 ms-1, so that this threshold made it possible to differentiate 
between nocturnal stable surface layers and daytime super-adiabatic surface layers although both types 
of surface layers yield more or less the same level of backscatter intensity. Finally MLH from the 
acoustic remote sensing is determined as the minimum of H1, H2_1, and H3: 

 
MLHac = min (H1, H2_1, H3)       (4) 

 

2.2.  Optical detection of MLH 
The heights of the near surface aerosol layers (H4_n) can be analysed from the optical vertical 
backscatter profiles. Here the gradient method is used. In this method the heights H4_n are 
characterized by minima of the vertical gradient (the term ‘gradient minimum’ is used here to denote 
the most negative value of the gradient, see also Fig. 1) of the optical attenuated backscatter intensity 
(B(z)). [10], [11] and [12] discussed the principle of the retrieval of this height. In [7] this approach 
has been refined and extended to enable the calculation of up to n=5 lifted inversions. 

Prior to the determination of gradient minima the overlap and range corrected attenuated 
backscatter profiles have to be averaged over time and height to suppress noise generated artefacts 
(see also section 3.1). Therefore the H4 values are determined in a two-step procedure. Between 140 
m and 500 m height sliding averaging is done over 15 min and a height interval Δh of 80 m. In the 
layer between 500 and 2000 m Δh for vertical averaging is extended to 160 m. Two additional 
parameters have been introduced to further reduce the number of false hits. The minimum accepted 
attenuated backscatter intensity Bmin right below a lifted inversion is set to 200*10-9 m-1sr-1 in the 
lower layer and 250*10-9 m-1sr-1 in the upper layer. Additionally the vertical gradient value ∂Β/∂zmax of 
a lifted inversion must be more negative than -0.30*10-9 m-2sr-1 in the lower layer and more negative 
than -0.30*10-9 m-2sr-1 in the upper layer. 
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If B(z) denotes the measured attenuated backscatter intensity in the height z above ground averaged 
over time and height and Δh is the height averaging interval, then the gradient ∂Β/∂z in the height z is 
calculated as 

 
∂Β/∂z|z = ( B(z+Δh/2) - B(z-Δh/2)) / Δh       (5) 

 
A gradient minimum is characterized by a change of sign from minus to plus of the second 

derivative of B(z). The height interval under examination is searched from bottom to top for these 
gradient minima H4_n. The second derivative of B(z) in the height z is 

 
∂2Β/∂z2|z = (∂Β/∂z|z+Δh/2 - ∂Β/∂z|z-Δh/2) / Δh.      (6) 

 
Thus H4_n is detected in a height z if the second derivative of B(z) one range gate below z is not 

positive, if the second derivative of B(z) in the height z is positive, and if the abovementioned false hit 
conditions are fulfilled: 

 
Η4_n = z, if ∂2Β/∂z2|z-1 ≤ 0 and ∂2Β/∂z2|z > 0 and B(z-Δh/2) ≥ Bmin and ∂Β/∂z|z ≤ ∂Β/∂zmax  (7) 

for n = 1, …, 5. 
 
The MLH from optical remote sensing is taken as the lowest height H4 (see Figure 1): 
 

MLHop = H4_1         (8) 
 

 

Figure 1.  Schematic comparison of MLH determination algorithms in the case of a nocturnal stable surface layer and an 
elevated inversion above it. Left: vertical profile of acoustic backscatter intensity, middle: vertical profile of optical 
backscatter intensity, right: vertical profile of the vertical gradient of the optical backscatter intensity. Lower arrows mark the 
position of the height H3 (left) and H4_1 (middle and right). Upper arrows mark the heights H2_1 (left) and H4_2 (right). 
From [7]. 
 

The comparison between the two schemes for the determination of MLH from acoustic and optical 
backscatter intensities reveals an interesting difference which should be noted carefully (Figure 1): 
While we detect H1 and H3 from the acoustic backscatter intensity itself and H2 from the first 
derivative of this backscatter intensity, we need the first and the second derivative of the optical 
backscatter intensity (but not the optical backscatter intensity itself) to determine H4. This difference 
comes from unequal scattering processes for acoustic and optical waves: Acoustic waves are scattered 
at atmospheric refractivity gradients and thus at temperature gradients ([13]) while optical waves are 
scattered at small particles. Therefore the optical backscatter intensity is proportional to the aerosol 
concentration itself. The MLH on the other hand, which we desire to derive from these backscatter 
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intensities, is in both cases found in heights where we have vertical gradients of the temperature and of 
the aerosol concentration. Therefore, in principle, the vertical distribution of the acoustic backscatter 
intensity should look very much alike the vertical distribution of the vertical gradient of the optical 
backscatter intensity. 

The analysis of the sodar data and the ceilometer data can be combined to one single MLH 
information by forming the minimum from (4) and (8): 

 
MLH = min (MLHac, MLHop)       (9) 

3.  Instrumentation 

3.1.  Ceilometer 
 

Two different ceilometers [10] have been used. One is a double-lens Vaisala LD40 (Figure 2, right) 
using infrared light with a wavelength of 855 nm, a height resolution of 7.5 m, and a maximum range 
of 13000 m. The other is the one-lens CL31 (Figure 2, left) using infrared light of 910 nm, a height 
resolution of 5 m, and a maximum range of 7500 m. The slightly different wavelengths and the 
unequal optical construction of both instruments lead to differences in the recorded optical backscatter 
intensities (see next section and Figure 4). Both ceilometers were sounding at zero zenith angles. 

For both ceilometers averaging over 2 min and 60 m is not sufficient to suppress the detection of 
noise generated artefacts as MLH; 4 min and 120 m averaging works well for convective layers below 
800 m but more reliable results are achieved with a time averaging interval of at least 10 min. 

 

 
Figure 2. CL31 and LD40 ceilometer schematics 
 

 
 

Figure 3. METEK DSDR3x7 sodar. 
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3.2.  Sodar 
The sodar (Figure 3) used in this study is a three-antenna METEK DSDR3x7 sodar [14] using an 
acoustic frequency of 1670 Hz, a height resolution of 30 m, and a maximum range of 1255 m. Two 
antennas were tilted at 20 degrees zenith angle, the third antenna was looking vertical. 

4.  Results 
Some results from the intercomparison period in May 2007 will be displayed here to show the ability 
of the three remote sensing instruments. Figure 4 presents a comparison of the optical backscatter 
intensities from the two ceilometers. The largest differences are found in the lower 200 m close to the 
ground due to the different optical paths in the two instruments (one optical axis in the CL31 versus 
two optical axes in the LD40). It turns out, as expected, that the one-lens system (the CL31) is much 
better suited to investigate the aerosol distribution in the lower layers close to the ground. But also in 
greater heights some differences can be found, which probably have to be credited to the slightly 
different wavelengths of the two instruments.  

 

 

Figure 4. Comparison of optical backscatter intensity for heights up to 2000 m above ground from the 
Vaisala LD40 (left) and from the Vaisala CL31 (right) during the intercomparison exercise on 20 May 

2007 in Augsburg, Germany. 

 

Figure 5. Acoustic backscatter intensity from the METEK DSDR3x7 sodar for heights up to 1270 m 
above ground during the during the intercomparison exercise on 20 May 2007 in Augsburg, Germany. 

14th International Symposium for the Advancement of Boundary Layer Remote Sensing IOP Publishing
IOP Conf. Series: Earth and Environmental Science 1 (2008) 012027 doi:10.1088/1755-1307/1/1/012027

6



 
 
 
 
 
 

Figure 5 displays the acoustic backscatter intensity recorded by the vertical antenna of the sodar. 
The other two antennas are used together with the vertical antenna in order to measure the three-
dimensional wind vector from the radial Doppler shifts of the backscattered sound pulses.  

In Figure 6 the mixing layer heights derived from the optical data of the two ceilometers are 
plotted. For large parts of the day both instruments give nearly the same results. In the morning hours 
it can clearly be seen that the CL31 is much better able to detect the shallow mixing layer height 
below 200 m. On the other hand, the LD 40 is a little bit better in following the top of the convective 
boundary layer in the later afternoon.  

 

Figure 6. MLH derived from the Vaisala LD40 ceilometer (blue dots) and from the Vaisala CL31 
ceilometer (purple dots) during the during the intercomparison exercise on 20 May 2007 in Augsburg, 

Germany. Sunrise was at 03:31, sunset at 18:56. 
 
In Figure 7 the MLH from the one-lens ceilometer (CL31) and sodar data are compared. Among 

the plotted sodar data ‘top turb.’ denotes H1 from eq. (1), ‘stable layer’ H3 from eq. (3), and ‘MLH’ 
MLHac from eq. (4). Among the ceilometer data ‘MLH 1’ and ‘MLH 2’ denote the first two H4_n 
from eq. (7). 

 
Figure 7. Mixing-layer height in Augsburg, Germany, on 19 and 20 May 2007 from CL31 

(triangles) and sodar (Squares, asterisks, and vertical lines) measurements. See text for further details. 
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We see that both types of instruments (the acoustic and the optical one) generally give the same 
results. But there are a few differences which are worth to be looked at in a little more detail. 

• On the morning of the first day plotted in Figure 7 two heights are detected by the 
ceilometer (between 100 and 300 m and between 1200 and 1400 m) while the sodar, due to 
its maximum vertical range, can only detect the lower one. The layer between these two 
heights is the residual layer left over from the convective boundary layer of the day before. 
The same partially happens in the next night (in the centre of the Figure). 

• On the second day the rise of the acoustically detected MLH is much faster than the rise of 
the optically detected MLH. This indicates that the vertical aerosol distribution needs some 
time to follow the thermal structure of the ABL. 

Both facts have already been documented in [2]. 

5.  Discussion 
Details of the optical construction (one lens versus two lenses) of ceilometers and the choice of the 
wavelength have some influence on the received optical backscatter intensity. Especially the CL31 
ceilometer used in this study has advantages when monitoring shallow nocturnal surface layers and 
mixing layer heights.  

Acoustic remote sensing with sodars allows a good detection of shallow nocturnal mixing layers 
but sodars have the decisive disadvantage that their vertical range is rather limited. On the other hand, 
a sodar permits the distinction between stable surface layers, convective boundary layers and the top 
of turbulent layers.  

Acoustic and optical remote sensing mostly deliver complementing results. When they both show 
the same process, e.g. the start of the development of the convective boundary layer in the morning, 
they allow the analysis of how fast the vertical aerosol distribution is able to follow the developing 
thermal structure of the boundary layer. 

The intercomparison experiment showed that the intended derivation of spatial structures in the 
urban mixing layer height over Augsburg will remain difficult from these three instruments used here. 
For this purpose identical instruments should be used at the different sites. This has been realized in 
the meantime by substituting the LD40 with a CL31 ceilometer. Results are forthcoming.  

6.  Conclusions and Outlook 
Remote sensing with ceilometers and sodars is a good way to monitor the vertical structure of the 
ABL. These instruments deliver data with high temporal and vertical resolution. 

The combined application of acoustic and optical remote sensing allows an assessment of the 
overall vertical structure of the ABL by indicating the occurrences of nocturnal stable surface layers, 
convective boundary layers and residual layers.  

The comparison of the increase of the height of the convective boundary layer in the morning from 
acoustic and from optical remote sensing gives some insight in the dynamics of vertical turbulent 
diffusion in the developing convective boundary layer.  

The delay in the development of the vertical aerosol distribution with respect to the development of 
the thermal structure of the boundary layer is an important result which has to be kept in mind if only 
ceilometers are used to monitor the mixing layer height. 

The deployment of a radio-acoustic sounding system (RASS) could lead to an even more complete 
monitoring of the structure of the boundary layer since a RASS delivers the temperature profile itself. 
The then remaining task would be a simultaneous vertical profiling of the moisture content of the 
boundary layer. But the existing instruments for the measurement of the moisture profile in the 
atmosphere (Raman-Lidar, water vapour lidar, micro-wave radiometer) still do not have the same 
vertical resolution and lower range gate which ceilometers and sodar have. 
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